Categories of Containers

Michael Abbott!, Thorsten Altenkirch?, and Neil Ghanil

1 Department of Mathematics and Computer Science, University of Leicester
2 school of Computer Science and Information Technology, Nottingham University

Abstract. We introduce the notion of containers as a mathematical formalisation
of the idea that many important datatypes consist of templates where data is
stored. We show that containers have good closure properties under a variety of
constructions including the formation of initial algebras and final coalgebras. We
also show that containers include strictly positive types and shapely types but that
there are containers which do not correspond to either of these. Further, we derive
a representation result classifying the nature of polymorphic functions between
containers. We finish this paper with an application to the theory of shapely types
and refer to a forthcoming paper which applies this theory to differentiable types.

1 Introduction

Any element of the type List(X) of lists over X can be uniquely written as a natural
number n given by the length of the list, together with a function {1,...,n} — X which
labels each position within the list with an element from X:

n:N, g:{l.n}=>X.

Similarly, any binary tree tree can be described by its underlying shape which is
obtained by deleting the data stored at the leaves with a function mapping the positions
in this shape to the data thus:

@e»@)

More generally, we are led to consider datatypes which are given by a set of shapes S
and, for each s € S, a family of positions P(s). This presentation of the datatype defines
an endofunctor X —]_[S€SXP(S) on Set. In this paper we formalise these intuitions
by considering families of objects in a locally cartesian closed category C, where the
family s: S+ P(s) is represented by an object P € C/S, and the associated functor
Tep:C — Cisdefined by Tg, pX = Z5:S.(P(s) = X).

We begin by constructing a category ¢ of “container generators”, ie syntactic
presentations of shapes and positions, and define a full and faithful functor T to
the category of endofunctors of C. Given that polymorphic functions are natural
transformations, full and faithfulness allows us to classify polymorphic functions
between container functors in terms of their action on the shapes and positions of the
underlying container generators.

We show that ¢ is complete and cocomplete and that limits and coproducts are
preserved by T. This immediately shows that i) container types are closed under
products, coproducts and subset types; and ii) this semantics is compositional in that
the semantics of a datatype is constructed canonically from the semantics of its parts.
The construction of initial algebras and final coalgebras of containers requires, firstly,
the definition of containers with multiple parameters and, secondly, a detailed analysis
of when T preserves limits and colimits of certain filtered diagrams.

We conclude the paper by relating containers to the shapely types of Jay and Cockett
(1994) and Jay (1995). The definition of shapely types does not require the hypothesis
of local cartesian closure which we assume, but when C is locally cartesian closed then
it turns out that the shapely types are precisely the functors generated by the “discretely
finite” containers. A container is discretely finite precisely when each of its objects of
positions is locally isomorphic to a finite cardinal.

Further, we gain much by the introduction of extra categorical structure, e.g. the
ability to form initial algebras and final coalgebras of containers and the representation
result concerning natural transformations between containers. Note also that, unlike
containers, shapely types are not closed under the construction of coinductive types.
(since the position object of an infinite list cannot be discretely finite).

In this paper we assume that C is locally finitely presentable (Ifp), hence complete
and cocomplete, which excludes several interesting examples including Scott domains
and realisability models. Here we use the Ifp structure for the construction of initial
algebras and final coalgebras. In future work we expect to replace this assumption with
a more delicate treatment of induction using internal structure.

Another application of containers is as a foundation for generic programming within
a dependently typed programming framework (Altenkirch and McBride, 2002). An
instance of this theme, the derivatives of functors as suggested in McBride (2001), is
developed in Abbott et al. (2003) using the material presented here.

The use of the word container to refer to a class of datatypes can be found in
Hoogendijk and de Moor (2000) who investigated them in a relational setting: their
containers are actually closed under quotienting. Containers as introduced here are
closely related to analytical functors, which were introduced by Joyal, see Hasegawa
(2002). Here we consider them in a more general setting by looking at locally
cartesian categories with some additional properties. In the case of Set containers
are a generalisation of normal functors, closing them under quotients would lead to
a generalisation of analytical functors.

In summary, this paper makes the following contributions:

— We develop a new and generic concept of what a container is which is applicable
to a wide range of semantic domains.

— We give a representation theorem (Theorem 3.4) which provides a simple analysis
of polymorphic functions between datatypes.

— We show a number of closure properties of the category of containers which allow
us to interpret all strictly positive types by containers.

— We lay the foundation for a theory of generic programming; a first application is
the theory of differentiable datatypes as presented in Abbott et al. (2003).

— We show that Jay and Cockett’s shapely types are all containers.

2 Definitions and Notation

This paper implicitly uses the machinery of fibrations (Jacobs 1999, Borceux 1994,
chapter 8, etc) to develop the key properties of container categories, and in particular
the fullness of the functor T relies on the use of fibred natural transformations. This
section collects together the key definitions and results required in this paper.

Given a category with finite limits C, refer to the slice category C/A over A € C as
the fibre of C over A. Pullbacks in C allow us to lift each f: A — B in C to a pullback or
reindexing functor f*:C/B — C/A. Assigning a fibre category to each object of C and
a reindexing functor to each morphism of C is (subject to certain coherence equations)
a presentation of a fibration over C.

Composition with f yields a functor = : C/A — C/B left adjoint to f*. C is locally
cartesian closed iff each fibre of C is cartesian closed, or equivalently, if each pullback
functor f* has a right adjoint f* < T1,.

Each exponential category C' can in turn be regarded as fibred over C by taking the
fibre of C over A € C equal to (C/A)'. Now define [C,C’] to be the category of fibred
functors F :C' — €’ and fibred natural transformations, where F consists of functors
Fa:(C/A)" = (C/A)? such that (f*)Fg = F,(f*)! foreach f:A — Band similarly for
natural transformations.

Write a: At B(a) oreven just A B for B e C/A. We’ll write a:A,b:B(a) F C(a,b)
as a shorthand for (a,b) : >,B I C(a,b). When dealing with a collection A; fori € I,
we’ll write this as (A;);c, or A or even just A. Write Za: A and Ma: A for the % and
I types corresponding to the adjoints to reindexing. Substitution in variables will be
used interchangeably with substitution by pullback, so A - f*B may also be written
asa:AF B(f(a)) or a:AF B(fa). The signs [and] will be used for coproducts
and products respectively over external sets, while Z and I refer to the corresponding
internal constructions in C. See Hofmann (1997) for a more detailed explanation of the
interaction between type theory and semantics assumed in this paper.

Limits and colimits are fibred iff they exist in each fibre and are preserved by
reindexing functors. Limits and colimits in a locally cartesian closed category C are
automatically fibred. This useful result allows us to omit the qualification that limits
and colimits be “fibred” throughout this paper.

When C is locally cartesian closed say that coproducts are disjoint (or equivalently
that C is extensive)® iff the pullback of distinct coprojections k; : A; = [T A, into
a coproduct is always the initial object 0. Henceforth, we’ll assume that C has finite
limits, is locally cartesian closed and has disjoint coproducts. The following notion of
“disjoint fibres” follows from disjoint coproducts.

-

Proposition 2.1. If C has disjoint coproducts then the functor K*:C/]];c A —
MNiei (C/A;), taking [T, A; F B to (A F k*B);¢, is an equivalence. Say that C has
disjoint fibres when this holds. O

Write | : [ie; (C/A;) = €/ [, A for the adjoint to K* and —+— for the binary case.
Note that [, B; = [i 2B for (A; FBy)icr € Niecr (C/A).

1 For general C, coproducts are disjoint iff coprojections are also mono, and C is extensive iff
coproducts are disjoint and are preserved by pullbacks.

The following lemma collects together some useful identities which hold in any
category considered in this paper.

Lemma 2.2. For extensive locally cartesian closed C the following isomorphisms hold
(IC stands for intensional choice, Cu for Curry and DF for disjoint fibres):

Ma:A.xZb:B(a).C(a,b)= Zf:(MNa:A.B(a)).Ma:A.C(a, fa) (IC1)
[Tic 20:B;-Ci(b) = Za: [, B [Ci (752) (IC2)
Ma:A.(B(a)=C) = (Za:A.B(a))=>c (Cul)
[lieBi=C)= (H B) = (Cu2)
(H_ B,) (k) = B;() (DF1)
]_[Sa:A,.C(ka) = ZaH A.C(a (DF2) O

For technical convenience, a choice of pullbacks is assumed in C (this ensures that our
fibrations are cloven). Finally, note that we make essential use of classical set theory
with choice in the meta-theory in theorem 5.6 and proposition 6.6. It should be possible
to avoid this dependency by developing more of the theory internally to C.

3 Basic Properties of Containers

The basic notion of a container generator is a dependent pair of types A - B creating a
functor Ty, gX = Za:A.(B(a) = X). In order to understand a morphism of containers,
consider the map tail:ListX — 1+ ListX taking the empty list to 1 and otherwise
yielding the tail of the given list:

tail of list
-G, - @B

This map is defined by i) a choice of shape in 1+ List X for each shape in List X; and ii)
for each position in the chosen shape a position in the original shape. Thus a morphism
of containers (A + B) — (C + D) is a pair of morphisms (u:A — C, f:u*D — B).
With this definition of a category ¢ of container generators we can construct a full and
faithful functor T : ¢ — [C,C] and show the completeness properties discussed in the
introduction.

However, when constructing fixed points it is also necessary to take account of
containers with parameters, so we define T : ¢4 — [C',C] for each parameter index set
1. For the purposes of this paper the index set n or | will generally be a finite set, but this
makes little difference. Indeed, it is straightforward to generalise the developmentin this
paper to the case where containers are parameterised by internal index objects | € C;
when C has enough coproducts nothing is lost by doing this, since C' ~ C/ia 1.
This generalisation will be important for future developments of this theory, but is not
required in this paper.

Definition 3.1. Given an index set | define the category of container generators ¢, as
follows:

— Objects are pairs (A € C, B € (C/A)"); write thisas (A B) €
— Amorphism (A>B) — (C» D) isa pair (u, f) foru:A—CinCand f:(u*)'D » B
in (C/A)'.
A container (A> B) € ¢, can be written using type theoretic notation as
FA i:l,a:AF B(a) .
A morphism (u, f): (A B) — (C > D) can be written in type theoretic notation as
u:tA—C i:l,a:AF fi(a):D;(ua) = B;(a) .

Finally, each (A> B) € ¢, thought of as a syntactic presentation of a datatype, generates
a fibred functor T, 5 : C' — C which is its semantics.

Definition 3.2. Define the container construction functor T : %, — [C',C] as follows.
Given (A>B) € % and X € C' define

TapX = 2a:A [(Bi(2) = X)

and for (u,f):(A> B) = (C > D) define T, :Ty g = To,p to be the natural
transformation T, (X : Ty gX — Tg,pX thus:

(aag) :TADBX F TU,fx(aag) = (u(a), (g|) fi)iel) .
The following proposition follows more or less immediately by the construction of T.

Proposition 3.3. For each container F € ¢, and each container morphism a :F — G
the functor T, and natural transformation T, are fibred over C. O

By making essential use of the fact that the natural transformations in [C',C] are fibred
(c.f. section 2) we can show that T is full and faithful.

Theorem 3.4. The functor T : %, — [C',C] is full and faithful.

Proof. To show that T is full and faithful it is sufficient to lift each natural
transformation a : Ty g = Te,p i [C',C] to @ map (Uq, fg): (A B) — (C»> D) in
¢, and show this construction is inverseto T.

Given a:Tyg = Tg,p Construct £ = (@', idg) € Ty,gB in the fibre C/A (or in
terms of type theory, add &’ : A to the context). We can now construct aB-£ € T, ;B =
2c:C.Mie (Dj(c) = B;(@')) in the same context, and write aB-£ = (uq, fy) where
Ug(@’):Cand fg(a'): Mg (D;(uqgd’) = B;(a’)) fora’: A.

Thus (uq, fg) can be understood as a morphism (A> B) — (C > D) in ¢%,. It remains
to show that this construction is inverseto T.

Whena =T, ¢, justevaluate aB-£ = (ud', id -), which corresponds to the original
map (u, f).

To show in general that a =T

uof,e 16X € C', azAand g: i (B;(a) = X;) be
given, consider the diagram

TaogY
1t 1B 1 X
laB lax
(uga, fa(a))
ToopB —— = T pX
Teon9

and evaluate
aX-(a,9) =aX Ty g0 € =T pg-aB-£ =T, 0 (Ugd, fy(a))
= (Uaaag . fa(a)) = Tua’fax . (avg) -
This shows that a =T, as required. O

This theorem gives a particularly simple analysis of polymorphic functions between
container functors. For example, it is easy to observe that there are precisely n™
polymorphic functions X" — X™: the data type X" is the container (1> n) and hence
there is a bijection between polymorphic functions X" — X™ and functions m — n.
Similarly, any polymorphic function ListX — ListX can be uniquely written as a
function u: N — N together with for each natural number n: N a function f,:un — n.

4 Limits and Colimits of Containers

It turns out that each ¢, inherits completeness and cocompleteness from C, and that T
preserves completeness. Preservation of cocompleteness is more complex, and only a
limited class of colimits are preserved by T.

Proposition 4.1. If C has limits and colimits of shape J then ¢, has limits of shape J
and T preserves these limits.

Proof. We’ll proceed by appealing to the fact that T reflects limits (since it is full and
faithful), and the proof will proceed separately for products and equalisers.

Products. Let (A, > B,), .« be a family of objects in ¢, and compute (the labels
refer to lemma 2.2)

[kex Tase X = [Tiex Za:A- [i) (Byi (@) = X;)
=22 [Ne A [ek [ier B (52) = X)) (IC2)

=32 e A [iar (I B (5@) = %) (Cu2)

=T X
Mk A Liex (T5)' By

showing by reflection along T that

[Tiex (A Bi) = (l_lkeKAk > erK("ﬁ)'Bk) :

Equalisers. Given parallel maps (u,), (v,9) : (A> B) = (C > D) construct

(u,f)
EsQ~ 2" (avB)—— (D)
(v,9)

where e is the equaliser in C of u,v and q is the coequaliser in (C/E)' of (e*)' f, (e*)'g.
To show that Teq is the equaliser of T, ¢, Tyg fix X € ¢, UeCandleta:U — Ty X
be given equalising this parallel pair at X.

For x:U write a(x) = (a,h) where a: A, h:[];., (B;(a) = X;). The condition on a
tells us that u(a) = v(a) and so there is a unique y : E with a = e(y). Similarly we know
that h- f(ey) = h-g(ey) and in particular there is a unique k: Q(y) — X withh=k-q.

The assignment x — (y,k) defines a map 8:U — Te.oX giving a unique
factorisation of a, showing that TegX is an equaliser and hence so is (e, q). O

In particular, this result tells us that the limit in [C' , C] of a diagram of container functors
is itself a container functor.

It’s nice to see that coproducts of containers are also well behaved.

Proposition 4.2. If C has products and coproducts of size K then ¢, has coproducts of
size K preserved by T.

Proof. Given a family (A, - B,)« Of objects in %, calculate (making essential use of
disjointness of fibres):

HkEK TAkDBkX - HkGK 2a: Ak |_| iel (Bk,| (a))
= erK za: A [ig (H) (k@) = X) (DF1)
=2a: erK Ak €l (erKBkl =X) (DFZ)
- TUkEKAkD(erKBj,i)ie

showing by reflection along T that

HkKAKDB (HkKAKDHkK) =

The fate of coequalisers is more complicated. It turns out that &, has coequalisers when
C has both equalisers and coequalisers, but they are not preserved by T.

The following proposition is presented without proof (the construction of
coequalisers in ¢ is fairly complex and is not required in this paper).

Proposition 4.3. If C has equalisers and coequalisers then ¢, has coequalisers. O

The following example shows that coequalisers are not preserved by T.

Example 4.4. Consider the following coequaliser diagram in [C,C]

iy x

X x X X x X ———s= (X x X)/ ~

(', m)

where (x,y) ~ (¥,X). The functor X — X x X is a container functor generated by (1> 2),
and the coequaliser of the corresponding parallel pair in ¢, is the container (1> 0). Note
however that T, (X = 12 (X x X)/ ~.

Unfortunately, filtered colimits aren’t preserved by T either.

Example 4.5. Consider the w-chain in ¢, given by n— (1 A") (for fixed A) on objects
and (n = n+m) — Tm: AT 22 A" x AT — A" on maps. The filtered colimit of this
diagram can be computed in ¢, to be (1 AY). However, applying T to this diagram
produces the cw-chain

X o1

X WA X1

)(A2 X1

and the colimit of this chain in Set is strictly smaller than XAY,

5 Filtered Colimits of Cartesian Diagrams

Although ¢, has colimits they are not preserved by T, and this also applies to filtered
colimits. As we will want to use filtered colimits for the construction of initial algebras,
this is a potential problem. Fortunately, there exists a class of filtered colimit diagrams
which is both sufficient for the construction of initial algebras and which are preserved
by T.

Throughout this section take C to be finitely accessible (C has filtered colimits and
a generating set of finitely presentable objects, Adamek and Rosicky 1994) as well as
being locally cartesian closed.

Definition 5.1. A morphism (u, f) in &, is cartesian iff f is an isomorphism?.

For each u there is a bijection between cartesian morphisms (u, f): (A B) — (C > D)
in ¢, and morphisms f in C' making each square below a pullback:

f

]

u

2 (u, f) is cartesian with respect to this definition precisely when it is cartesian (in the sense of
fibrations) with respect to the projection functor m: %, — C taking (A B) to A.

We can also translate the notion of cartesian morphism into natural transformations
between container functors: a natural transformation a : T, g — T, derives from
a cartesian map iff the naturality squares of a are all pullbacks (such natural
transformations are often also called cartesian, in this case with respect to the
“evaluation at 1” functor).

Define¥, to have the same objects as ¢, but only cartesian arrows as morphisms.
We will show that %A, has filtered colimits which are preserved by T (when restricted to
%), and hence also by the inclusion &, < %,.

The lemma below follows directly from the corresponding result in Set and helps
us work with maps from finitely presentable objects to filtered colimits (write\/ D for
the colimit of a filtered diagram D).

Lemma5.2. Let D:J — C be afiltered diagram with colimiting coned:D — \/D and
let U be finitely presentable.

1. Foreacha:U — VD thereexists J € J and a;:U — DJ such that a = d; - aj.
2. Givena:U — DI, B:U — DJ such that d, - a = d; - B there exists K € J and maps
f:1=-K,g:J— KsuchthatDf-a =Dg- . O

Before the main result we need a technical lemma about filtered colimits in finitely
accessible categories.

Lemma 5.3. Given a filtered diagram in C™ with every edge a pullback then the
arrows of the colimiting cone are also pullbacks.

Proof. We need to show, for each | € C, that the square

€
El —— \/E

J B

DIT\/D

is a pullback, where E % Dis the diagram, (d,e) are the components of its colimiting

cone and q is the factorisation of d - a through e. So let a cone DI & U L\ \/ E satisfying
d, -a = a-b be given. Without loss of generality we can assume that U is finitely
presentable and we can now appeal to lemma 5.2 above.

Construct first bj:U — EJ such that b=-e;-b;; thenasd,-a=a-e;-b; =d;-
(aj-by) there exist f:1 - K, g:J — K with Df -a=Dg-a;-b; = a, -Eg-b; and
S0 we can construct a factorisation b, :U — EI through the pullback over f satisfying
a,-b, =aandEf-b, =Eg-b;. Thisis a factorisation of (a, b) sincee, -b, =ey -Ef-b, =
ex-Eg-e;=e;-b;=h.

This factorisation is unique. Let b,b’:U = EI be given such that e, -b =¢, - b’.
Then there exist f,f':1 = J with Ef -b = Ef’-b’; but indeed there exists g:J — K
withh=g-f =g-f" andso Eh-b=Eh-b’. As the square over h is a pullback we can
concludeb="b'. O

Now we are in a position to state the main result, that the filtered colimit of a cartesian
diagram of container functors is itself a container functor.

Proposition 5.4. For each set | the category S?, has filtered colimits which are
preserved by T.

Proof. Letadiagram (D>E):J — %A, be given, i.e. for each K € J there is a container
(DK > EK) and for each f : K — L a cartesian container morphism (Df,Ef).

Foreach f:K — L in J, write E f for the map EK — EL derived from cartesian E f
so that we get the left hand pullback square below:

Ef ¢ —

EK EL : \E
_ _ l

DK ——= DL D

After taking the colimits shown (with colimiting cones d and "e), we know from lemma
5.3 that the right hand square is also a pullback and we can interpret the right hand side
as a container together with a cartesian cone (d,e): (D> E)=(\V D> VE).

It remains to show that T, .\ ¢ = VT, g, SO let a cone f:Tp XU be given
as shown below, where the map ki takes (a,g) to (dy(a),g), using the isomorphism

(VE);(d(a)) = EK{(a) (for K € J, i:1, a: DK;) derived from (d,e) cartesian.

Za:DK;. [ic (EKi(2) = X) K Za:\/D.[ia (VE)i(3) = X))

x L///h

U

To construct h let a:\/D and g: 7 ((VD);(a) = X;) be given and choose K € J,
ay € DK such that a = dy (ax), and so we have (ay,9) : Tpk,ex X and can compute
h(a,g) = fx (ax,9); this construction of h(a,) is unique and independent of the choice
of Kand a. O

Finally the above proposition can be applied to the construction of fixed points on 4.

Definition 5.5. Say that an endofunctor F on a category with filtered colimits has rank
iff there exists a cardinal (1, the rank of F, such that F preserves O -filtered colimits.

The following theorem is a variant of Adamek and Koubek (1979).

Theorem 5.6 (Adamek). If a category C has an initial object and colimits of all filtered
diagrams then every endofunctor on C with rank has an initial algebra.

If G:C — DD preserves the initial object and all filtered colimits then any endofunctor
F’ on D satisfying F'G = GF for some endofunctor F on C with rank has an initial
algebra given by the image under G of the initial algebra of F. O

The construction of initial algebras in ¢ now follows as a corollary of the above.

Theorem 5.7. Let F be an endofunctor on &, such that F restricts to an endofunctor F

on %A' (i.e., F preserves cartesian morphisms) and such that F has rank, then F has an
initial algebra uF € ¢, which is preserved by T.

Proof. We’ve established that %A, has filtered colimits which are preserved by%AI =9

and by T and it’s clear that the initial object of ¢, is initial in fél\ and is also preserved
by T and so we can apply theorem 5.6. O

As noted in section 2 it would be desirable to have a constructive version of this
theorem, probably along the lines suggested by Taylor (1999, Section 6.7).

6 Fixed Points of Containers

Categories of containers are, under suitable assumptions, closed under the operations
of taking least and greatest fixed points, or in other words given a container functor
F(X,Y) in n+ 1 parameters the types uY.F(X,Y) and vY.F(X,Y) are containers (in n
parameters).

The least and greatest fixed points of a type are defined by repeated substitution, for
example the type vY.F(X,Y) can be constructed as the limit of the w-chain

1<—F(X,1) =—F(X,F(X,1)) = - = lim__ F"[1]

where we write F[Y] = F(X,Y) (note that the v type only needs w-limits for its
construction, but as discussed below, 11 types can require colimits of transfinite chaing).
Therefore the first thing we need to do is to define the composition of two containers.

Given containers F € %, , and G € ¢, we can compose their images under T to
construct the functor

(idy,Te) T
rord=@ et cagn g

This composition can be lifted to a functor —[—]:¥,,, x4, — ¢, as follows. For a
container in & , write (A> B,E) € %_,, where B € (C/A)" and E € C/A and define:

(AbB,E)[(Co D)) = (a:A, f:E(a) =C > (B,(a)+Ze:E(a).D;(fe));) -

In other words, given type constructors F()'(',Y) nd G(X) this construction defines the
composite type constructor F[G](X) = F(X,G(X)).

3 For example, the type of w-branching trees, puY.X 4+ (N = Y), cannot be constructed using
only w-colimits.

Proposition 6. 1 Composition of containers commutes with composition of functors
thus: T [T] = Ty g
Proof. Calculate (for conciseness we write exponentials using superscripts where
convenient and write Z, for Za: A. throughout, eliding the parameter a):

TaselTeplX = zA((I_l|e|) x (E=2c:C. |_||G|)))

(
(

=3, (M X?) % (ZF:CE.Me:E. [, X219)) (Ic1)
=3,71:CE [, (X% x (Me:E.XP(1))

5,21 :CF. [((Bi +Ze:E.Di(fe)) = X;) (Cul, Cu2)
=T agE)conX

As all the above isomorphisms are natural in X we get the desired isomorphism of
functors. O

The next lemma is useful for the construction of both least and greatest fixed points and
has other applications. In particular, T preserves both pullbacks and cofiltered limits.

Lemma 6.2. For (A B) € ¢ the functor T,_ 5 preserves limits of connected non-empty
diagrams (connected limits).

Proof. Since [and = preserve limits, it is sufficient to observe that 2, preserves
connected limits, which is noted, for example, in Carboni and Johnstone (1995). O

Corollary 6.3. For each F € 4, the functor F[-]:¥, — ¥, preserves connected
limits.

Proof. Let D be a non-empty connected diagram, then since T preserves connected
limits it is easy to see that TF[Ilm D] = Ilm(TF[D]) Since T preserves limits we can
calculate

~T

=Te [T@D] = Te[limTp] = lim(Te[Tp]) = limT, ljm(F (D))

— F[D]

Trpymo)
and so by reflection along T conclude that F[I(Ln D] = M(F[D]). O

We can immediately conclude that if C is complete and cocomplete (in fact, - limits
and colimits are sufficient) then containers have final coalgebras.

Theorem 6.4. Each F € ¢, has a final coalgebra vF € ¢, which is preserved by T
(and so satisfies T, = vTg).

Proof. Since F[—] preserves limits of cw-chains the final coalgebra of F can be
constructed as the limit lim__ o F[1], and since T preserves this limit the fixed point is
also preserved by T, by the dual of theorem 5.6 O

For the construction of least fixed points (or initial algebras) two more preliminary
results are needed. First we need to show that the construction of the fixed point can be

restricted to &, so that we know that it will be preserved by T.

Proposition 6.5. The functor —[—]:%, ; x ¢ — ¢, restricts to a functor on the
category of cartesian container morphisms, —[—] :E?Hl X %A, - %A,

Proof. It is sufficient to show that when a :F — F and B:G — G’ are both cartesian
then so is a[B], and indeed it is sufficient to show that T"[TB] is a cartesian natural
transformation. This follows immediately from the fact that T preserves pullbacks and
that T, and TB are cartesian natural transformations. O

Secondly we need to show that F[—] has rank. Assume from now to the end of this
section that C is a finitely* accessible category.

Proposition 6.6. When C is finitely accessible, every container functor has rank.

Proof. Let (A> B) € ¢, be a container. We first need to establish the result

[(Bi = VJEJXj,i) = \/je_]] [Ticr(Bi = X))

for sufficiently large O and O-filtered J, which we do by appealing to two results of
Adamek and Rosicky (1994). First, we know (from their theorem 2.39) that each functor
category C' is accessible, and secondly we know from their proposition 2.23 that each
functor with an adjoint between accessible categories has rank.

Now since , preserves colimits we can conclude that T, 5 has rank. O
Corollary 6.7. For each F € 4, the endofunctor F[—] on & restricts to an
endofunctor on %A, with rank.

Proof. Let O be the rank of T and let D be an O-filtered diagram in 4. We know
that T-[—] will preserve \/ D so we can now repeat the calculation of corollary 6.3 to
conclude that F[—] also has rank 0. O

That containers have least fixed points now follows from corollary 6.7 and theorem 5.7.

Theorem 6.8. Each F € ¢, has a least fixed point uF € ¥, satisfying Tyr =T
O

7 Strictly Positive Types

We now return to the point that all strictly positive types can be described as containers.

Definition 7.1. A strictly positive type in n variables (Abel and Altenkirch, 2000) is
a type expression (with type variables X, ...,Xy) built up according to the following
rules:

4 The qualification fi nitely is not strictly necessary here.

— if K is a constant type (with no type variables) then K is a strictly positive type;

— each type variable X; is a strictly positive type;

— ifU, V are strictly positive types then so are U +V and U x V;

— if K isa constant type and U a strictly positive type then K = U is a strictly positive
type;

— if U is a strictly positive type in n+ 1 variables then uX.U and vX.U are strictly
positive types in n variables (for X any type variable).

Note that the type expression for a strictly positive type U can be interpreted as a functor
U:C" — C, and indeed we can see that each strictly positive type corresponds to a
container in %,.

Let strictly positive types U, V be represented by containers (A > B) and (C > D)
respectively, then the table below shows the correspondence between strictly positive
types and containers®.

K~ (K> 0) X (1> (8)jer)

1
U+V = (A+C»B+¥D) UxV i (a:A,c:CrB(a) x D(c))
K=U > (f:K=Ab k:K.B(fk))

The construction of fixed points is a bit more difficult to describe in type-theoretic
terms. Let W be represented by (A> B,E) € &, (see section 6), then for any fixed point
C of Ty, g with @:T, C = C we can define C - [} as the initial solution of

Do(®(a, f)) =B(a) +Ze:E.D(fe) ; @)
we can now define

HXW = (X Tp g X > Dyxr, x)

VX.W = (VX Ty g X > Dvx_TADEX) .

All the initial and terminal (co)algebras used above can be constructed explicitly using
the results of section 6. It is interesting to note that u and v only differ in the type of
shapes but that the type of positions can be defined uniformly.

Indeed, consider F(X) = pY.1+ X x Y, then uX.F(X) is the type of lists and as
we have already observed the type of shapes is isomorphic to N = uX.1+ X and the
family of positions over n can be conveniently described by P(n) = {i | i < n}. Dually,
vX.F(X) is the type of lazy (i.e. potentially infinite) lists. The type of shapes is given
by N® = vX.1+ X, the conatural numbers, which contain a fixed point of the successor
w = s(w) : N, Hence P(w) = N and this represents the infinite lists whose elements
can be indexed by the natural numbers. Had we used the terminal solution of (*) to
construct the type of positions, then the representation of infinite lists would incorrectly
have an additional infinite position.

In the reverse direction it seems that there are containers which do not correspond
to strictly positive types. A probable counterexample is the type of nests, defined as the
least solution to the equation

N(Y)221+Y x N(Y xY) .

® We write & ; = Liffi = j and § ; = 0 otherwise.

The datatype N is a container since it can be written as N(X) = ¥n:N.X2"'~1, but it
should be possible to show that it is not strictly positive following the argument used in
Moggi et al. (1999) to show that the type of square matrices is not regular.

8 Relationships with Shapely Types

In Jay and Cockett (1994) and Jay (1995) “shapely types” (in one parameter) in a
category C are defined to be strong pullback preserving functors C — C equipped with
a strong cartesian natural transformation to the list type, where the list type is the initial
algebra uY.1+X x Y.

To see the relationship with containers, note that proposition 2.6.11 of Jacobs (1999)
tells us that strong pullback preserving functors are in bijection with fibred pullback
preserving functors, and similarly strong natural transformations between such functors
correspond to fibred natural transformations. The next proposition will allow us to
immediately observe that shapely types are containers.

Proposition 8.1. Any functor G € [C',C] equipped with a cartesian natural transfor-
mation a : G — T to a container functor is itself isomorphic to a container functor.

Proof. Let F = (A> B) then (al,idaIB) :(G1lv a;B) — (A B) is a cartesian map in
¢, this yields a cartesian natural transformation Tewazg = Tap: ItNOW follows from

the observation that each o, makes GX the pullback along a; of the map T, zX — A
that G = Tetazs 8 required.

Since the “list type” is given by the container (n: N [n]), it immediately follows (when
C is locally cartesian closed) that every shapely type is a container functor.

In the opposite direction, containers which are locally isomorphic to finite cardinals
give rise to shapely types. To see this, we follow Johnstone (1977) and refer to the
object [—] € C/N, which can be constructed as the morphism N x N — N mapping
(n,m) = n+m+ 1, as the object of finite cardinals in C.

Definition 8.2. AnobjectA + Bis discretely finite iff there exists a morphismu:A — N
such that B 22 u*[—], i.e. each fibre a: A I B(a) is isomorphic to a finite cardinal.

Say that a container (A > B) € ¢, is discretely finite iff each component B for i € |
is discretely finite.

Note that “discretely finite” is strictly stronger than finitely presentable and other
possible notions of finiteness. An immediate consequence of this definition is that
the object of finite cardinals is a generic object for the category of discretely finite
containers, and the following theorem relating shapely types and containers now follows
as a corollary.

Theorem 8.3. In a locally cartesian closed category with a natural number object the
category of shapely functors and strong natural transformations is equivalent to the
category of discretely finite containers. O

However, this paper tells us more about shapely types. In particular, containers show
how to extend shapely types to cover coinductive types. Finally, the representation result
for containers clearly translates into a representation result classifying the polymorphic
functions between shapely types.

It interesting to note that the “traversals” of Moggi et al. (1999) do not carry over
to containers in general, for example the type N = X does not effectively traverse over
the lifting monad X — X + 1.

References

M. Abbott, T. Altenkirch, N. Ghani, and C. McBride. Derivatives of containers. URL
http://www.cs.nott.ac.uk/"txa/. Submitted for publication, 2003.

A. Abel and T. Altenkirch. A predicative strong normalisation proof for a A-calculus
with interleaving inductive types. In Types for Proof and Programs, TYPES 99,
volume 1956 of Lecture Notes in Computer Science, 2000.

J. Adamek and V. Koubek. Least fixed point of a functor. Journal of Computer and
System Sciences, 19:163-178, 1979.

J. Adamek and J. Rosicky. Locally Presentable and Accessible Categories. Number 189
in London Mathematical Society Lecture Note Series. Cambridge University Press,
1994.

T. Altenkirch and C. McBride. Generic programming within dependently typed
programming. In IFIP Working Conference on Generic Programming, 2002.

F. Borceux. Handbook of Categorical Algebra 2. Cambridge University Press, 1994.

A. Carboni and P. Johnstone. Connected limits, familial representability and Artin
glueing. Math. Struct. in Comp. Science, 5:441-459, 1995.

R. Hasegawa. Two applications of analytic functors. Theoretical Computer Science,
272(1-2):112-175, 2002.

M. Hofmann. Syntax and semantics of dependent types. In A. M. Pitts and P. Dybjer,
editors, Semantics and Logics of Computation, volume 14, pages 79-130. Cambridge
University Press, Cambridge, 1997.

P. Hoogendijk and O. de Moor. Container types categorically. Journal of Functional
Programming, 10(2):191-225, 2000.

B. Jacobs. Categorical Logic and Type Theory. Number 141 in Studies in Logic and
the Foundations of Mathematics. Elsevier, 1999.

C. B. Jay. A semantics for shape. Science of Computer Programming, 25:251-283,
1995.

C. B. Jay and J. R. B. Cockett. Shapely types and shape polymorphism. In ESOP
’94: 5th European Symposium on Programming, Lecture Notes in Computer Science,
pages 302-316. Springer-Verlag, 1994.

P. T. Johnstone. Topos Theory. Academic Press, 1977.

C. McBride. The derivative of a regular type is its type of one-hole contexts. URL
http://www.dur.ac.uk/c.t. mcbride/. 2001.

E. Moggi, G. Bellé, and C. B. Jay. Monads, shapely functors and traversals. Electronic
Notes in Theoretical Computer Science, 29, 1999.

P. Taylor. Practical Foundations of Mathematics. Cambridge University Press, 1999.

