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Abstract

We introduce the language QML, a functional language for quantum
computations on finite types. QML introduces quantum data and control
structures, and integrates reversible and irreversible quantum computa-
tion. QML is based on strict linear logic, hence weakenings, which may
lead to decoherence, have to be explicit. We present an operational se-
mantics of QML programs using quantum circuits, and a denotational
semantics using superoperators.

1 Introduction

Quantum programming is now a firmly established field, as we can see from
the availability of introductory text books such as [Gru99, NC00, Pit00, Hir01]
and, not to forget, Preskill’s excellent online notes [Pre99]. However, quantum
programs are usually presented in a semi-formal style and on a very low level,
usually as families of quantum circuits. We believe that high level quantum pro-
gramming languages can improve the presentation, further our understanding
of the power of quantum computing, and lead to new applications — as they
have done in conventional programming.

One of the first proposals towards a quantum programming language were
Knill’s conventions for quantum pseudo code [Kni96]. More recently, Ömer
implemented an imperative language QCL with quantum primitives [Öme03].
Sanders and Zuliani [SZ00] proposed qGCL, which extends the probabilistic
guarded command language by quantum primitives. A very promising venue is
the integration of quantum programming with functional programming, [MB01],
[Kar03] and [Sab03]. Recently, in joint work with the first author, Vizotto and
Sabry [VAS04] have shown that quantum programming can be modelled using
Haskell’s arrow library [Hug00], presenting a high level, but constructive, view
of quantum effects.

Andre van Tonder has proposed a quantum λ-calculus incorporating higher
order programs [vT03a, vT03b], however he does not consider measurements as
part of his language. In [vT03b] he suggests a semantics for a finitary, but higher
order, calculus, based on Hilbert bundles. However, at least for the moment it
is not clear how his calculus could be realized operationally, e.g. using quantum
circuits.
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Peter Selinger’s influential paper [Sel04] introduces a single-assignment (es-
sentially functional) quantum programming language, which is based on the
separation of classical control and quantum data. This language combines high-
level classical structures with operations on quantum data, and has a clear
mathematical semantics in the form of superoperators. Quantum data can be
manipulated by using unitary operators or by measurement, which can affect
the classical control flow. Recently, Selinger and Valiron [SV05] have presented a
functional language based on the classical control and quantum data paradigm.

None of the approaches discussed so far introduces quantum control struc-
tures, i.e. quantum data can only be processed using combinators correspond-
ing to quantum circuits or by measurement. In contrast, QML, which was first
introduced in [AG04], features both quantum data structures, using the connec-
tives ⊗ and ⊕, and quantum control structures, in particular a quantum case
construct case◦ – which analyses quantum data without measuring, and hence
without changing the data.

QML’s type system is based on strict linear logic, that is linear logic with
contraction, but without implicit weakening. This is in contrast to Selinger and
Valiron [SV05], whose language has an affine type system, i.e. without implicit
contraction. The absence of contraction in their language is motivated by the
no-cloning property of quantum states. QML’s type system allows implicit con-
traction, this is possible since contraction is modelled, as in classical functional
programming, by sharing and not by cloning. Indeed, on the level of reversible
circuits, classical or quantum, sharing can be realized using a conditional not
(CNOT) circuit:

Q2 • Q2

X
� Q2

φδ

with the 2nd input to the gate initialised with |0〉. The circuit is, as expected,
the diagonal for classical states; i.e. it maps |0〉 to |00〉 and |1〉 to |11〉. It doesn’t
clone quantum states like |0〉+ |1〉 1 , but shares them: the circuit would output
|00〉+ |11〉 and not (|0〉+ |1〉)(|0〉+ |1〉), which would correspond to cloning. The
contraction as sharing interpretation been independently suggested in [?].

In our view it is not contraction which has to be policed, but weakening.
The reason is that we cannot forget a quantum bit without measuring it first.
This may affect other parts of the computation, for example it will change qbits
which are entangled with the qbit we want to dispose of.

As an example, consider the following simple program which should swap
two qbits:

swap ∈ Q2 ⊗Q2 ( Q2 ⊗Q2

swap p = let (x , y) = p

1To be precise, we mean 1√
2
|0〉+ 1√

2
|1〉, however, we avoid the clutter since the necessary

factors can be easily inferred by the reader.
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in (y , x )
If we use a conventional type system, with rules such as

Γ ` t : σ Γ ` u : τ

Γ ` (t, u) : σ ⊗ τ Γ, x : σ ` x : σ

where the variables x and y are interpreted by projections:

x x

y y�

x x
�

y y

we end up interpreting swap by the following circuit:

x

φδ

�

�

33
33 y

y

φδ

���� x

� �

Indeed, this is essentially how a conventional functional language is imple-
mented; using the stack as a temporary and easily disposable data storage.
However, in a quantum setting this implementation doesn’t give the desired
effect. While base states are properly swapped, i.e. |01〉 is mapped to |10〉, a
superposition like (|0〉 − |1〉)(|0〉+ |1〉), is mapped to one of |00〉 , |01〉 , |10〉 , |11〉
with equal probability.

Hence, in QML, we use a strict linear type system, with the rules:

Γ `◦ t : σ ∆ `◦ u : τ

Γ⊗∆ `◦ (t, u) : σ ⊗ τ x : σ ` x : σ

where Γ ⊗∆ is an operation which allows us to split the context. As a conse-
quence, we interpret swap by

x ??
? y

y
��� x

which behaves as we would expect: (|0〉 − |1〉)(|0〉 + |1〉), is mapped to (|0〉 +
|1〉)(|0〉 − |1〉).

However, weakening is not the only source of decoherence. How do we in-
terpret the following definition of negation?

mnot ∈ Q2 ( Q2

mnot x = if x then qfalse else qtrue
If we follow the classcial control paradigm then branching over a qbit entails

measuring it. As a consequence the interpretation of mnot doesn’t work as
expected on superpositions. For example, the input |0〉 − |1〉 gets mapped to
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|0〉 or |1〉 with equal probability. A proper quantum negation operator should
return |1〉 − |0〉. Indeed, in QML we can implement this behaviour by

qnot ∈ Q2 ( Q2

qnot x = if◦ x then qfalse else qtrue
if◦ is a quantum control structure; it allows us to analyse a quantum bit with-
out measuring it. However, we cannot always replace if by if◦. Consider the
conditional swap program:

cswap ∈ Q2 ( Q2 ⊗Q2 ( Q2 ⊗Q2

cswap c p = if c
then swap p
else p

If both components of p are the same then cswap in effect forgets the control
qbit. However, forgetting is not possible without measuring and hence we cannot
replace if by if◦. The only way to avoid this is to include the control qbit in
the output:

cswap ∈ Q2 ( Q2 ⊗Q2 ( Q2 ⊗Q2 ⊗Q2

cswap c p = if◦ c
then (qtrue, swap p)
else (qfalse, p)

The design of QML is based on these considerations: we use a strict linear logic
with an explicit weakening operator, but implicit contractions. This is justified
by the fact that the meaning of a program can be affected by changing the weak-
enings, but not by moving contractions. We also introduce two case operators:
case which measures a qbit; and case◦ which doesn’t, but which requires that
its branches are orthogonal, reflected by introducing an orthogonality judgement
on QML terms.

1.1 Structure of the paper

We begin by introducing QML’s syntax and typing rules, based on strict lin-
ear logic, in section 2 and present some small example programs: a variant
of Deutsch’s algorithm, and a formalisation of quantum teleportation. The
operational semantics of QML is presented in section 3 by translating QML
into quantum circuits, which for the purposes of the operational semantics we
consider as black boxes. In section 4 we present a denotational semantics of
quantum circuits and QML programs by interpreting the operational semantics
by superoperators. We close with conclusions and indicate areas for further
work (section 5).

2 Syntax and typing rules

We introduce the syntax and typing rules of QML based on strict linear logic:
contractions are implicit, while weakenings are an explicit operation which cor-
respond to measurements. QML’s types are first order and finite. There are no
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recursive types, so, for example, we cannot represent a type of quantum natural
numbers. How to overcome those limitations is discussed in section 5.

QML’s type constructors are the tensor product, ⊗, which plays the rule of
a product type, and a tensorial coproduct, ⊕, which corresponds to a disjoint
union in conventional programming. Qbits are not primitive, but are definable
as Q2 = Q1 ⊕ Q1, using the coproduct. QML has two case constructs: case
which measures a qbit in the data it analyses; and case◦, which doesn’t measure,
but requires that the results will always live in orthogonal subspaces. The proofs
of orthogonality can be inserted automatically by the compiler, and hence don’t
feature in the syntax of terms.

We use σ, τ, ρ to vary over QML types which are given by the following
grammar:

σ = Q1 | σ ⊗ τ | σ ⊕ τ
We assume an infinite supply of concrete variable names, and use x, y, z to vary
over names. Typing contexts (Γ,∆) are given by

Γ = • | Γ, x : σ
where • stands for the empty context, but is omitted if the context is non-empty.
For simplicity we assume that every variable appears at most once. Contexts
correspond to functions from a finite set of variables to types.

To define the syntax of expressions we also use complex number constants
κ, ι ∈ C and function variables to refer to a previously defined QML program:

t = x | let x = t in u
| x~y | ()
| (t , u) | let (x , y) = t in u
| qinl t | qinr u
| case t of {qinl x ⇒ u | qinr y ⇒ u ′}
| case◦ t of {qinl x ⇒ u | qinr y ⇒ u ′}
| {(κ) t | (ι) u }
| f ~t

Here, the vector notation ~a is used for sequences of syntactic objects. Formally,
it corresponds to the following meta notation:

~a = ε | a ~a
A QML program is a sequence of function definitions ~d, where a function defi-
nition d is given by f Γ = t : τ . However, we shall use a Haskell style syntax to
present program examples, using ( instead of → in the definition. That is we
write

f : σ1 ( σ2 · · · ( σn ( τ
f x1 x2 . . . xn = t

for
f (x1 : σ1, x2 : σ2, . . . , xn : σn) = t : τ

Our basic typing judgements are

Typing of terms
~d; Γ ` t : σ
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Typing of strict terms
~d; Γ `◦ t : σ

Orthogonality
t ⊥ u

Well-typed programs
` ~d

Since all of the rules just pass ~d we omit ~d from rule definitions, with the
exception of the application rule (app), and just write Γ ` t : σ (or Γ `◦ t : σ)
instead.To avoid repetition, we also use the schematic judgements Γ `a t : σ
where a ∈ {−, ◦}.

For the additive rules, we introduce the operator ⊗, mapping pairs of con-
texts to contexts:

Γ, x : σ ⊗∆, x : σ = (Γ⊗∆), x : σ
Γ, x : σ ⊗∆ = (Γ⊗∆), x : σ if x /∈ dom ∆
• ⊗∆ = ∆

This operation is partial – it is only well-defined if the two contexts do not
assign different types to the same variable. Whenever, we use this operator we
omit the implicit assumption that it is well-defined.

2.1 Structural rules

We embed strict terms into terms by

Γ `◦ t : σ
emb

Γ ` t : σ

The variable rule is strict and hence requires the context to contain only the
variable used. We also introduce the explicit weakening rules, which is non-
strict: a term can be marked by a set of variables over which it is weakened:

var
x : σ `◦ x : σ

Γ ` t : σ
weak

Γ⊗∆ ` tdom ∆ : σ

dom ∆ is the set of variables defined in ∆, this corresponds to the functional
reading of contexts. Combining the two rules we can derive a non-strict variable
rule:

Γ, x : σ ` xdom Γ : σ

However, having only this rule is not sufficient since we need to use non-atomic
weakening when constructing case◦-expressions, because we cannot use weak-
enings in the strict branches.
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Next, we introduce a let-rule which is also the basic vehicle to define first
order programs.

Γ `a t : σ
∆, x : σ `a u : τ

let
Γ⊗∆ `a let x = t in u : τ

By combining (let) and (emb) we can derive a more convenient scheme:

Γ `a t : σ
∆, x : σ `b u : τ

Γ⊗∆ `aub let x = t in u : τ

where ◦ u ◦ = ◦ and − otherwise.
Weakenings can affect the meaning of a program. As an example consider:

y : Q2 ` let x = y in x{} : Q2

This program will be interpreted as the identity circuit, in particular it is
decoherence-free. However, consider

y : Q2 ` let x = y in x{y} : Q2

This program uses weakening which will be interpreted as a measurement which
causes decoherence.

2.2 Products (⊗)

The rules for Q1, ⊗ are the standard rules from linear logic. In the case of Q1

instead of an explicit elimination rule we allow implicit weakening:

Q1 − intro
• `◦ () : Q1

Γ, x : Q1 `a t : σ
Q1 − weak

Γ `a t : σ

Note that Q1 − weak preserves strictness, because no actual piece of informa-
tion is eliminated. Using weakening we can derive non-strict version of the
introduction rule:

Γ ` ()dom Γ : Q1

The product introduction rule is standard:

Γ `a t : σ ∆ `a u : τ
⊗− intro

Γ⊗∆ `a (t, u) : σ ⊗ τ
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The elimination rule is the usual pattern matching variant of the let-rule:

Γ `a t : σ ⊗ τ
∆, x : σ, y : τ `a u : ρ

⊗− elim
Γ⊗∆ `a let (x, y) = t in u : ρ

As before for the let-rule, using (emb) we can derive

Γ `a t : σ ⊗ τ
∆, x : σ, y : τ `b u : ρ

Γ⊗∆ `aub let (x, y) = t in u : ρ

As an example, here is swap again:

p : Q2 ⊗Q2 ` let (x, y) = p in (y{}, x{}) : Q2 ⊗Q2

It is important to mark the variables with the empty set of variables. The
alternative program

p : Q2 ⊗Q2 ` let (x, y) = p in (y{p}, x{p}) : Q2 ⊗Q2

would measure the qbits while swapping them — this corresponds to the first
version of swap in the introduction, based on the multiplicative rules.

2.3 Coproducts (⊕)

The introduction rules for ⊕ are the usual classical rules for +; note that they
preserve strictness.

Γ `a s : σ
⊕−intro1

Γ `a inl s : σ ⊕ τ

Γ `a t : τ
⊕−intro2

Γ `a inr t : σ ⊕ τ

We define qbits Q2 = Q1 ⊕Q1 and abbreviate qtrue~x = qinl ()~x and qfalse~x =
qinr ()~x. We are not restricted to Q2 but can represent any finite type directly.
As an example consider qtrits Q3 = Q1 ⊕ (Q1 ⊗Q1) whose constructors 0, 1, 2
can be defined anagolously to qtrue and qfalse.

As already indicated, we have two different elimination rules. We begin with
the one which measures a qbit, since it is basically the classical rule modulo
additivity of contexts.

Γ ` c : σ ⊕ τ
∆, x : σ ` t : ρ
∆, y : τ ` u : ρ

⊕−elim
Γ⊗∆ ` case c of {inl x⇒ t | inr y ⇒ u} : ρ
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We can derive if-then-else as
if b then t else u = case b of {inl ⇒ t | inr ⇒ u }

and use this to implement a form of negation:
mnot :Q2 ( Q2

mnot x = if x then qfalse else qtrue
However, this program will measure the qbit before negating it. If we want to
avoid this we have to use the decoherence-free version of case, which relies on
the orthogonality judgement: t ⊥ u, which is defined for terms in the same type
and context Γ ` t, u : A. We will introduce the rules for orthogonality later.
Intuitively, t ⊥ u holds if the outputs t and u are always orthogonal, e.g. we
will be able to derive qtrue{} ⊥ qfalse{}. Hence, we introduce the strict case
by:

Γ `a c : σ ⊕ τ
∆, x : σ `◦ t : ρ
∆, y : τ `◦ u : ρ t ⊥ u

⊕−elim◦

Γ⊗∆ `a case◦ c of
{inl x⇒ t | inr y ⇒ u} : ρ

Using the decoherence-free version if◦ we can implement standard reversible
and hence quantum operations such as qnot :

qnot :Q2 ( Q2

qnot x = if◦ x
then qfalse
else qtrue

and the conditional not cnot:
cnot :Q2 ( Q2 ( Q2 ⊗Q2

cnot c x = if◦ c
then (qtrue, qnot x )
else (qfalse, x )

and finally the Toffolli operator which is basically a conditional cnot:
toff :Q2 ( Q2 ( Q2 ( Q2 ⊗ (Q2 ⊗Q2)
toff c x y = if◦ c

then (qtrue, cnot x y)
else (qfalse, (x , y))

2.4 Superpositions

To be able to exploit quantum parallelism we have to be able to create superposi-
tions like {qtrue | qfalse}, which is actually a shorthand for {( 1√

2
)qtrue|( 1√

2
)qfalse}.

Γ `◦ t, u : σ t ⊥ u
|λ|2 + |λ′|2 = 1

sup
Γ `◦ {(λ)t | (λ′)u} : σ

9



As an example we can implement the Hadamard operator in QML:
had ∈ Q2 ( Q2

had x = if◦ x then {(−1) qtrue | qfalse}
else {qtrue | qfalse}

As already indicated earlier we omit the normalisation factors, which can be
inferred. As we will see below the two alternatives are actually orthogonal,
hence the the use of if◦ is permitted.

If one of the coefficents is 0 it may be omitted, e.g. we write {(−1) qtrue} to
construct a qbit which behaves like qtrue, if measured, but which has a different
phase. There is no need to introduce an n-ary superposition operator, since this
can be simulated by nested uses of the binary operator, e.g.

{0 | 1 | 2} :Q3

can be encoded as
{( 1

3 ) 0 | ( 2
3 ){1 | 2}} :Q3

2.5 Orthogonality

The idea of t ⊥ u is that we have an observation which tells the two terms apart.
We will see that the information obtained by interpreting the derivations of this
judgement is essential to compile case◦ and superpositions.

Different injections are orthogonal, we leave the typing premises for t, u
implicit:

Γ `◦ t : σ Γ `◦ u : τ
Oinlr,Oinrl

inl t ⊥ inr u inr t ⊥ inl u

Constructors preserve orthogonality:

t ⊥ u
Oinl,Oinr

inl t ⊥ inl u inr t ⊥ inr u

t ⊥ u
Opairl,Opairr

(t, v) ⊥ (u,w) (v, t) ⊥ (w, u)

Finally, superpositions can be orthogonal:

t ⊥ u λ∗0κ0 = −λ∗1κ1
Osup

{(λ0)t | (λ1)u} ⊥ {(κ0)t | (κ1)u}

An instance of this rule is used when defining the Hadamard operator: we
have that

{(−1)qtrue|qfalse}|{qtrue|qfalse}

which is just short for

{(− 1√
2
)qtrue|( 1√

2
)qfalse} ⊥ {( 1√

2
)qtrue|( 1√

2
)qfalse}
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The rules for orthogonality are incomplete, e.g. we never allow case◦-
expressions to be orthogonal, even though semantically this may be the case.
Hence, we may in future add additional rules.

2.6 Programs

Programs are definitions of terms in contexts. We have omitted passing the
programs explicitely through the rules and also the requirement that the axioms
require that the program is well-typed. Well-typed programs can be constructed
by the following obvious rule:

` ~d ~d; Γ ` t : σ
def

` ~d, fΓ = t : σ

Note that unlike [Sel04], we do not allow any recursion. Previously defined
functions can be used:

~d = ~d′, f(x1 : σ1, .., xn : σn) = t : τ ~d; Γ ` t1 : σ1, . . . tn : σn
app

~d; Γ ` f~t : τ

2.7 Examples

We present two small QML programs: a variant of Deutsch’s algorithm and an
encoding of quantum teleportation in QML.

2.7.1 Deutsch’s algorithm

Deutsch’s algorithm is usually presented as the problem to find out whether a
classical function on Booleans is constant by querying the function only once.
To avoid to have to resort to higher order, we solve here the morally equivalent
problem to decide whether two qbits, which are assumed to be classical, are
equal, with the property that each branch of the program only queries one of
the input bits. We arrive at the following QML program:

deutsch :Q2 ( Q2 ( Q2

deutsch a b = let (x , y) = if◦{qfalse | qtrue}
then (qtrue, if◦ a

then ({qfalse | (−1) qtrue}, (qtrue, b))
else ({(−1) qfalse | qtrue}, (qfalse, b)))

else (qfalse, if◦ b
then ({(−1) qfalse | qtrue}, (a, qtrue))
else ({qfalse | (−1) qtrue}, (a, qfalse)))

in had x
We observe that the need to store both input qbits in the temporary structure

computed by if◦ is actually unnecessary since we can assume that these bits are
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classical and hence can be used without further measuring. If we had access to
classical bits we could simplify this program to:

deutsch : 2 ( 2 ( Q2

deutsch a b = let (x , y) = if◦{qfalse | qtrue}
then (qtrue, if a

then {qfalse | (−1) qtrue}
else {(−1) qfalse | qtrue}

else (qfalse, if b
then {(−1) qfalse | qtrue}
else {qfalse | (−1) qtrue}

in had x
We plan to incorporate classical bits in future versions of QML, very much

along the lines of Selinger’s QPL [Sel04].

2.7.2 Quantum teleportation

The quantum teleport protocoll allows us to teleport a qbit to a partner with
whom we share a EPR pair, using only two bits of classical information. We
cannot formalize the separation of the partners or their classical computation
in QML, but we can implement a function tel , which encodes what happens to
the teleported qbit. The correctness of the teleport protocol can be verified by
showing that tel is extensionally equivalent to the identity function.

Auxilliary, we define Pauli’s Z-function:
z :Q2 ( Q2

z x = if x then {(−1) qtrue} else qfalse
and we implement tel as:

tel :Q2 ( Q2

tel x = let (a, b) = {(qfalse, qfalse), (qtrue, qtrue)}
(a ′, x ′) = cnot a x
b′ = if a ′ then qnot b else b
b′′ = if had x ′ then z b′ else b′

in b′′

3 Operational semantics

We define an operational semantics of QML by presenting a translation of QML
derivations to quantum computations representable as circuits. We will show
that the semantics doesn’t depend on the choice of derivations, but only on the
term up to extensional equality; introduced in the next section. We represent
irreversible computations as a reversible computation, which may use additional
quantum registers, or wires, which are initialised, and which can dispose of some
registers at the end of the computation. We have used this construction to
define the category of finite quantum computations, FQC [AG04]. Here we will
use the same notion for QML’s operational semantics, but we will not identify
computations up to extensional equality here.
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We use the size of a register, or equivalently the number of wires, as the types
of our computation. We use Q1 for 0 because it can represent just one state, and
Q2 for 1, which is the type of qbits. We define a⊗ b = a+ b, because addition
of wires corresponds to the tensor product in the structures we consider. We
identify finite sets with natural numbers, i.e. any number a ∈ N is identified
with its initial segment, e.g. 2 = {0, 1}.

3.1 Reversible computations

We define the set if reversible quantum computations (or circuits) of size a ∈ N,
FQC' a inductively:

rotation rot u ∈ FQC' Q2, where u ∈ 2 → 2 → C is a unitary matrix(
u00 u01

u10 u11

)
with u00u10 + u01u11 = 0. Note that negation qnot ∈ FQC' Q2 is a
special rotation given by qnot = rot unot where

unot =
(

0 1
1 0

)
wires wires φ ∈ FQC' a where φ : a ' a is a bijection. This represents any

rewiring, including the identity ida = wires id

sequential composition Given φ ∈ FQC' a and ψ ∈ FQC' a we construct
φ ◦ ψ ∈ FQC' a.

a ψ φ

parallel composition Given φ ∈ FQC' a and ψ ∈ FQC' b we construct
φ⊗ ψ : FQC' (a ⊗ b).

a φ

b ψ

conditional Given φ, ψ ∈ FQC' a we construct φ | ψ ∈ FQC' (Q2 ⊗ a).

In the literature the unary conditional is used. However, it is straightfor-
ward to reduce our binary conditional to the usual unary:

Q2 • X • X

a ψ φ
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To be able to interpret circuit diagrams unambiguously we assume that
(FQC', id, ◦,Q1,⊗) is a strict monoidal category where FQC' a a = FQC' a
and FQC' a b = { }, if a 6≡ b and that wires are a strict monoidal functor.
That is, we consider FQC' as a quotient — this could have been avoided by
using a notion of monoidal normal form, but this seems hardly relevant here.

In the literature, it is common to consider only a finite set of gates, this can
be achieved by using only a finite base of rotations from which any rotation can
be approximated, see [NC00], pp. 188.

3.2 Irreversible computations

Given a, b ∈ N standing for the size of inputs and output registers of the com-
putation, a finite quantum computation α ∈ FQC a b is given by α = (h, g , φ)
where

• h ∈ N is the size of the initial heap,

• g ∈ N is the size of the garbage to be disposed at the end of the compu-
tation,

• c = a ⊗ h = b ⊗ g , otherwise we wouldn’t be able to find a reversible
computation,

• φ ∈ FQC' c is a reversible computation.

This is different from our presentation of FQC in [AG04]: we only consider
finite sets of powers of 2, i.e. bit vectors, and we omit the heap initialisation
vector, as a vector of 0’s is always used for the initialisation.

Diagrammatically, we represent such a computation as:

a b

φ
�

h g �

Note that, in the above diagram, heap inputs are initialised with a `, and
garbage outputs are terminated with a a.

Given a ∈ N we define ida = (Q1, Q1, ida) and the sequential composition
of computations α = (hα, gα, φα) ∈ FQC a b and β = (hβ , gβ , φβ) ∈ FQC a b as
β ◦ α = (h, g, φ) ∈ FQC a c where

h = hα ⊗ hβ

g = gα ⊗ gβ

φβ◦α = (gα ⊗ φβ) ◦ (gβ ⊗ φα)
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omitting some obvious monoidal isomorphisms from the definition of φβ◦α. Di-
agrammatically this construction is given by:

a

φα

b
φβ

c

hα
�

;;
;;

;

88
88

8 gα
�

hβ
�

�����

����� gβ
�

φβ◦α
We also define parallel composition for α ∈ FQC a b and β ∈ FQC c d as

α⊗ β = (h, g, φ) ∈ FQC (a⊗ c) (b⊗ d) where

h = hα ⊗ hβ

g = gα ⊗ gβ

φα⊗β = φα ⊗ φβ

again omotting monoidal isomorphisms. Diagrammatically, this is simply:

a

φα

b

c

88
88

8

88
88

8 d

hα

������

φβ

����� gα
�

hβ
� gβ

�

φα⊗β
We notice that (FQC, id, ◦,Q1,⊗) is a strict monoidal category. However,

we will not exploit this fact but always construct FQC' diagrams directly.
We define strict computations α = (h, φ) ∈ FQC◦ a b as one where g = Q1,

hence we are omitting it. We observe that this is a monoidal subcategory of
FQC.

3.3 Interpretation of judgements

First, we have to calculate the size of types and contexts, indeed this is the same
as for classical circuits:

|1| = Q1

= 0
|σ ⊕ τ | = Q2 + |σ| t |τ |

= 1 + |σ| t |τ |
|σ ⊗ τ | = |σ| ⊗ |τ |

= |σ|+ |τ |

We use a t b for the maximum of two numbers. Contexts correspond to the
tensor product of their component types, hence:

|•| = Q1

|Γ, x : σ| = |Γ| ⊗ |σ|

15



We will frequently omit the size function and just write Γ for |Γ| and σ for
|σ|. We interpret derivations d

Γ`t:σ as JdKop ∈ FQC Γ σ and d
Γ`ot:σ as JdKop ∈

FQC◦ Γ σ. Given Γ `◦ t : σ and Γ′ `◦ u : σ we interpret a derivation d
t⊥u as a

structure JdK⊥ = (c, l , r , ψ) where

• c ∈ N,

• l ∈ FQC◦ Γ c

• r ∈ FQC◦ Γ′ c

• ψ ∈ FQC' σ (Q2 ⊗ c)

The semantics of programs ` ~d, is given by an assignement of circuits to function
names. We will not study this in detail, since this it is straightforward and
standard.

3.4 Operations on contexts

Using Γ ⊗ ∆ we can use a variable several times, allowing contraction. This
is interpreted using δ = (Q2, φδ) ∈ FQC◦Q2 (Q2 ⊗ Q2) where φδ = id|qnot is
conditional negation. First, we note that we can iterate δ to contract registers
of any size: given a ∈ N we define δa ∈ FQC◦ a (a ⊗ a) by δ0 = wires id and
δa⊗Q2 can be constructed from δa by

Q2 • Q2

a

//
//

/ X
//

//
/ a������

φδa

����� Q2

�
a

Given Γ,∆ such that Γ⊗∆ is well-defined, we construct

CΓ,∆ ∈ FQC◦ |Γ⊗∆| (|Γ| ⊗ |∆|)

by induction over the definition of Γ⊗∆. Note that the explicit use of |. . .| in
this formula is essential, since ⊗ is defined differently for contexts and for their
size.

Γ, x : σ ⊗∆, x : σ = (Γ⊗∆), x : σ

Γ⊗∆
φCΓ,∆

Γ

σ
88

88
88

88 σ�����
φδ σ

���� ∆
�

σ

Γ, x : σ ⊗∆ = (Γ⊗∆), x : σ, if x /∈ dom∆

Γ⊗∆
φCΓ,∆

Γ

σ
88

88
88

88 σ

hΓ,∆

�����
���� ∆
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• ⊗∆ = ∆
•⊗∆ ∆

For the weakening rule we need an operator which forgets all variables which
only occur in the second context, WΓ,∆ ∈ FQC |Γ⊗∆| |Γ|. Again, this is
defined by induction over the definition of Γ⊗∆: in the first two cases we have

Γ⊗∆
φWΓ,∆

Γ

88
88 σ

σ

���� �

and in the final case where, Γ is empty, we simply put ∆ into the garbage.

• ⊗∆ = ∆

•⊗∆ •�

To interpret injections, it is necessary to increase the size of a morphism
so it is the same size as another. To adjust the value of smaller size we use a
padding operator Pσ,τ ∈ FQC◦ σ (σ t τ), which simply sets unused qbits to 0
using extra heap space, equal to the difference.

σ
φPσ,τ

σtτ

hσ
.−τ

�

Here a .− b is cutoff subtraction, i.e. a .− b = a− b, if b 6 a and 0, otherwise.

3.5 Structural rules

We present the compilation of rules using circuit diagrams. The interpretation
of (emb) is invisible, since FQC◦ a b ⊆ FQC a b. Below are the circuits arising
from the variable and the weakening rule. (weak) uses the interpretation of
its premise, we omit explicit references to h and g but refer to the reversible
circuit φt arising from the interpretation of d

Γ`t:σ and we will continue to use
this convention in the subsequent diagrams.

var
x : σ `◦ x : σ

Γ ` t : σ
weak

Γ⊗∆ ` tdom ∆ : σ

σ σ Γ⊗∆
φWΓ,∆

Γ
φt

σ

55
55

�
�

				 �

Note that the variable rule is interpreted by a strict morphism. The let-rule is
actually a scheme of two rules depending on a:

Γ `a t : σ
∆, x : σ `a u : τ

let
Γ⊗∆ `a let x = t in u : τ

17



Its circuit interpretation uses the copy circuit C and is uniform in a:

Γ⊗∆
φC

Γ

99
99 ∆

φu
�

∆

����
φt

σ τ

�

99
99

9
33

33
�

�
�����

���� �

We notice that the result is strict, if both subderivations were strict.

3.6 Products (⊗)

The interpretation of the rules for Q1 in terms of circuits is invisible, since Q1

doesn’t carry any information. The interpretation of the rules for ⊗ is slightly
more interesting — the introduction rule simply merges the components:

Γ `a t : σ ∆ `a u : τ
⊗− intro

Γ⊗∆ `a (t, u) : σ ⊗ τ

Γ⊗∆
φC

Γ

φt

σ σ

�
∆

99
99

77
77

7 τ

�
�����

φu

τ

���� �

� �

Using the fact that σ ⊗ τ is just interpreted by concatenating wires, the inter-
pretation of the elimination rule is basically identical to the let-rule:

Γ `a t : σ ⊗ τ
∆, x : σ, y : τ `a u : ρ

⊗− elim
Γ⊗∆ `a let (x, y) = t in u : ρ

Γ⊗∆
φC

Γ

99
99 ∆

φu

�
∆

����

φt

σ

τ ρ

�

99
99

9
33

33
�

�
�����

���� �

3.7 Coproducts (⊕)

As in classical computing, we represent values of σ⊕ τ as a register which is big
enough to hold a value of either σ or τ and an extra bit for tagging. To adjust
the size of the value of smaller size we use the padding operator:

The introduction rules are compiled into circuits which pad and set the tag
appropriately, we use σ t τ to mark a quantum register which is large enough

18



to hold values of either type.

Γ `a s : σ
⊕ intro1

Γ `a inl s : σ ⊕ τ

Γ
φs

σ

φPσ,τ�
==

== σtτ
�

����
33

33 Q2

Q2 X
�

���� �

Γ `a t : τ
⊕ intro2

Γ `a inr t : σ ⊕ τ

Γ
φt

τ

φPτ,σ�

77
77

7 σtτ

�
����

33
33 Q2

Q2
�

���� �

We turn our attention to the two elimination operators: first the non-strict case
rule

Γ ` c : σ ⊕ τ
∆, x : σ ` t : ρ
∆, y : τ ` u : ρ

⊕− elim
Γ⊗∆ ` case c of {inl x⇒ t | inr y ⇒ u} : ρ

We want to use the biconditional on the tagging qbit which arises from the
interpretation of the derivation of c. However, there is no reason, why the
reversible computations arising from the derivations of t and u:

φt ∈ FQC' st

φu ∈ FQC' su

where

st = Γ⊗ σ ⊗ ht

= ρ⊗ gt

su = Γ⊗ τ ⊗ hu

= ρ⊗ gu

should have the same size. However, we can pad the smaller computation: We
obtain

ψt = φt ⊗ (su
.− st)

∈ FQC' (st t su)
ψu = φt ⊗ (st

.− su)
∈ FQC' (st t su)
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We arrive at the following circuit:

Γ⊗∆
φC

Γ

99
99

ψt|ψu

�
∆

����

φc

σ t τ ρ

Q2 Q2
�

�

CC
CC

C �

�
{{{{{ �

Note that the non-strict case always introduce an extra qbit of garbage, which
is the qbit being measured.

To compile the strict case rule:

Γ `a c : σ ⊕ τ
∆, x : σ `◦ t : ρ
∆, y : τ `◦ u : ρ t ⊥ u

⊕− elim◦

Γ⊗∆ `a case◦ c of
{inl x⇒ t | inr y ⇒ u} : ρ

we have to exploit the data (d, l, r, ψt⊥u) which arises from interpreting the
orthogonality judgement t ⊥ u. However, no further procrustenation is needed,
because both φl, φr ∈ FQC'd. We arrive at the following circuit:

Γ⊗∆
φC

Γ
77

7

φl|φr

�
∆

���

φc

σ t τ d

ψt⊥u

ρ

Q2 Q2

�
DDDD

�
{{{{{ �

We observe that this rule preserve strictness, no garbage is added to the one
already produced by interpreting the derivation of c.

3.8 Superpositions

There is a simple syntactic translation we use to reduce the superposition op-
erator to the problem of creating an arbitrary 1-qbit state:

Γ `◦ t, u : σ t ⊥ u
|λ|2 + |λ′|2 = 1 λ, λ′ 6= 0

Γ `◦ {(λ)t | (λ′)u} : σ
≡ if◦ {(λ)qtrue | (λ′)qfalse}

then t else u

We can use our rotation primitive to produce any 1-qbit superposition simply
by rotating 0, the heap initialisation, to the intended position, i.e. we use(

λ λ′

λ′ −λ

)
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Note that we have some freedom how to rotate the rest of the sphere, but any
choice is as good as any other.

3.9 Orthogonality

We assume that Γ `◦ t, u : ρ and interpret d
t⊥u as JdK◦⊥ = (c, l, r, ψ) by induction

over the derivation:

(Oinlr,Oinrl)

Γ `◦ t : σ Γ `◦ u : τ
Oinlr,Oinrl

inl t ⊥ inr u inr t ⊥ inl u

Here ρ = σ ⊕ τ , we set c = |σ| t |τ |. In both cases l is obtained by
interpreting t combined with padding and r is given by the interpretation
of u and padding. The circuits for ψ for these rules are given by:

c

Q2

ρ

 c

Q2 X
ρ


t ⊥ u

inl t ⊥ inl u inr t ⊥ inr u

Let Γ `◦ inl t, inl u : σ⊕τ and let (c, l , r , ψ) be the interpretation of t ⊥
u. From this data we are constructing the interpretation of inl t ⊥ inl u
as (c′, l ′, r ′, ψ′). We set c′ = c ⊗Q2 ⊗ h where h = |σ| .− |τ |, which is the
heap needed by inl . We construct l ′ and r ′ by applying inl to l , r on the
level of semantics but by using the appropriate part of c′ as the heap:

Γ

ψl
hl c

Q2 Q2

h h

ψ is given by the following diagram:

c

ψ
c′ Q2

77
77

7
77

77
7

ψPσtτ
σ .−τ

����
==

==
����

Q2

����
ρ




The second rule for inr is done symmetrically.
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t ⊥ u

(t, v) ⊥ (u,w) (v, t) ⊥ (w, u)

As above, let Γ `◦ (t, v), (u,w) : σ ⊗ τ and let (c, l, r, ψ) be the inter-
pretation of t ⊥ u to construct the interpretation of (t, v) ⊥ (u,w) as
(c′, l′, r′, ψ′). We set c′ = c ⊗ |τ | and construct l ′ and r ′ by pairing with
v ,w , semantically:

Γ⊗∆
φC

Γ

ψl′
c

�
∆

99
99

�
�����

ψv

τ

�

The definition of ψ′ is given by the following diagram:

c
ψc′

τ
44

44 σ

Q2





 τ
ρ

 
t ⊥ u λ∗0κ0 = −λ∗1κ1

{(λ0)t | (λ1)u} ⊥ {(κ0)t | (κ1)u}

Let (c, l, r, ψ) be the interpretation of t ⊥ u we construct the interpretation
of the conclusion as (c, l, r, ψ). We set c = c′ and define ψ ∈ FQC'Q2 as

ψ =
(
λ0 λ1

κ0 κ1

)

4 Denotational semantics

The denotational semantics of QML is based on a high level view of quantum
mechanics inspired by Selinger’s denotational semantics of QPL [Sel04]: we
model finite-dimensional quantum states as vectors in a complex vector space,
i.e. as functions from the finite classical state space to complex numbers. We
can perform measurements on those states which have probabilistic outcomes
related to the complex amplitude and which collapses the part of the state which
is measured. Hence we require that the sum of probabilities of all possible
outcomes of a measurement add up to 1. Reversible quantum computations
can be modelled by unitary operators, these are linear isomorphisms which
preserve the probabilistic interpretation of amplitudes. Irreversible programs,
involve measurements because we cannot dispose of a quantum bit without
measuring it, and hence lead to mixed states, i.e. probabilistic distribution of
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pure states. We use density operators to model mixed states and super operators
(aka completely positive operators) to interpret irreversible programs acting on
pure states.

4.1 Linear algebra

In this section we review some basic notions from linear algebra. We also intro-
duce the notation we use, which is based on functional programming idioms.

We use natural numbers as objects of the category of finite sets FinSet
whose homsets are given by FinSet a b = a → b, as before we identify natural
numbers with their initial segements. Given a ∈ N we define C a = a → C.
This function on objects C ∈ FinSet → Set is monadic, i.e. it gives rise to a
Kleisli structure, see [AR99], with

return ∈ a → C a
return a = λb → if a ≡ b then 1 else 0
(>>=) ∈ (C a) → (a → C b) → C b
v >>= f = λb → Σ a.(v a)(f a b)

We are using an approximation to Haskell here, the proper definition is a bit
more involved, since we have to take into account that a, b are finite. See
[VAS04] for a full development of superoperators as an instance of the arrow
class in Haskell.

The associated Kleisli category is the category of finite dimensional complex
vector spaces FinVec, its homsets are given by FinVec a b = a → C b,
where a, b ∈ N, and hence correspond to a× b complex matrices. Since we are
working with bit-vectors most of the time we define C2 a = C (2 → a) and
FinVec2 a b = FinVec (2 → a) (2 → b).

The cartesian product on finite sets (the numeric product on natural num-
bers) defines the tensor product on FinVec. I.e., on objects, a ⊗ b = ab; and
on morphisms, given f ∈ FinVec a b, g ∈ FinVec c d we define f ⊗ g ∈
FinVec (a ⊗ c) (b⊗ d) as f ⊗ g = λ(a, c) → λ(b, d) → (f a b)(g c d). The unit
of the tensor is I = 1, and (FinVec,⊗, I ) is a strict monoidal category. The
tensor product in FinVec2 is given by +.

For vectors v ,w ∈ C a we define their inner product 〈v|w〉 ∈ C as 〈v|w〉 =
Σa.(va)∗ (w a), where (x + yi)∗ = x − yi is the complex conjugate. The norm
of a vector ‖v‖ ∈ R+ is defined as ‖v‖ = 〈v|v〉. Two vectors are orthogonal,
v ⊥ w, if 〈v|w〉 = 0. A base of a vectorspace is orthonormal, if any two different
base vectors are orthogonal.

Given f ∈ FinVec a b the adjoint of f is given by f† = λb a → (f a b)∗,
with the defining property 〈v|fw〉 = 〈f†v|w〉. A map u ∈ FinVec a b is unitary,
if its adjoint is its inverse u ◦ u† = id, this implies that u is an isomorphism,
and hence also a = b. Unitary maps are isometric, i.e. they preserve the inner
product, 〈v|w〉 = 〈u v |u w〉. However, not all isometric maps are unitary, e.g.
the diagonal maps δa ∈ FinVec a (a ⊗ a), which are given by δ a (b, c) =
if a ≡ b & b ≡ c then 1 else 0 are isometric but not unitary.

A linear map f ∈ FinVec a a is self-adjoint, if f = f †. A self-adjoint map
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has only real eigenvalues; f v = λv implies λ ∈ R. The map is positive if all
eigenvalues are positive, that is λ > 0. The trace of a map ||f || is the sum of all
eigenvalues, which can be directly calculated as ||f || = Σ a.f a a.

4.2 Reversible and strict computations

We model a quantum state as a vector with norm 1. The probability that
a measurement will result in a is (va)∗(va) ∈ R+. The condition on the norm
guarantees that the measurements are a probability distribution. Reversible and
strict computations can be modelled as linear functions on states, while gen-
eral irreversible computations involve probabilities, and are modelled as linear
functions on density matrices, called superoperators.

We introduce the categories Q◦, to model strict, and Q' to model reversible,
computations: their objects are natural numbers which correspond to the size
of a quantum register, or the number of wires in a circuit, and the homsets
Q' a b and Q◦ a b are the linear maps u ∈ FinVec2 a b, which we require
to be isometric in the case of Q◦ and strict in the case of Q'. Since every
unitary map is also isometric, Q' is a subcategory of Q◦. Since Q' a b is only
non-empty, if a = b we abbreviate Q' a a as Q' a.

We interpret all φ ∈ FQC' a as JφK ∈ Q' a, by induction over the inductive
definition of FQC':

rotation Jrot uK = u

wires Jwires φK = f where f a b = if φ a ≡ b then 1 else 0.

sequential composition Jφ ◦ ψK = JφK ◦ JψK

parallel composition Jφ⊗ ψK = JφK⊗ JψK, here we exploit 2ab = 2a + 2b .

conditional Jφ | ψK = JφK|JψK

φ|ψ (0, a) (0, b) = φ a b
φ|ψ (1, a) (1, b) = ψ a b

Note that φ|ψ is isometric (unitary) if both φ and ψ are isometric (uni-
tary).

We note that Q' is a monoidal category and wires extends to a monoidal
functor, hence J·K respects the equality on computations. However, it certainly
does identify many more computations.

Indeed, this interpretation is full; every φ ∈ Q' a can be generated by the
appropriate reversible computation. This is a consequence of the Solovay-Kitaev
theorem.

Given z ∈ C2 h we use ⊗z ∈ FinVec2 a (a⊗h) for the map which initialises
the 2nd part of the product. We note that it is isometric; ⊗z ∈ Q◦ a (a ⊗ h).
To any (h, φ) ∈ FQC◦ a b with φ ∈ FQC' (a⊗h) b, we assign Jh, φK ∈ Q◦ a b
by Jh, φK = φ (⊗0h), where 0h ∈ C2 h is the constant zero vector.
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For orthogonal maps, that is f , g ∈ Q◦ a b such that for all ~a ∈ C2 a we
have f ⊥ g we can define another form of the conditional f |◦g ∈ Q◦ (Q2 ⊗ a) b
as

f |◦g (0, a) b = f a b
f |◦g (1, a) b = g a b

Clearly, we have f |g = 0⊗ f |◦1⊗ g .

4.3 Irreversible computations

To interpret irreversible computations we have to model mixed states, which
arise as the result of a measurement. A mixed state of size a is represented as
a positive map ρ ∈ FinVec2 a a, such that ||ρ|| = 1. This is called a density
matrix. The idea is that the probability that ρ is in state v is λ, if ρ v = λv ,
i.e. v is an eigenvector with eigenvalue λ, and 0 otherwise. The trace condition
ensures that this is a probability distribution on the vectors in any orthonormal
base.

A linear map f ∈ FinVec2 (a⊗a) (b⊗ b) can be interpreted as an operator
on density matrices by using that FinVec2 a a ' C2 (a ⊗ a) 2 . We say that
such an operator is positive if it preserves positivity. It is completely positive
if f ⊗ (c ⊗ c) ∈ FinVec2 ((a ⊗ c) ⊗ (a ⊗ c)) ((b ⊗ c) ⊗ (b ⊗ c)), is positive
for any c ∈ N. It is a superoperator if it is completely positive, and trace-
preserving. We define Q as the category of superoperators, i.e. its objects
are natural numbers and its morphisms are superoperators, that is Q a b is
given by f ∈ FinVec2 (a ⊗ a) (b ⊗ b), which are completely positive and
norm-preserving. The tensor product on super operators is given by the tensor
product of the underlying vector space.

Isometric maps give rise to superoperators. Given f ∈ Q◦ a b, we define
f ∈ Q a b as follows: given a density matrix ρ ∈ FinVec2 a a, we construct
f ρ = f ◦ρ◦(f †) ∈ FinVec2 b b, using the isomorphism FinVec a a ' C (a⊗a).
This gives rise to f ∈ FinVec2 (a⊗a) (b⊗ b), which is completely positive and
trace preserving.

We interpret measurements as partial trace, defining Trab ∈ Q (a ⊗ b) a as
Trab ∈ FinVec2 ((a ⊗ b)⊗ (a ⊗ b)) (a ⊗ a)
Trab = λ(a, b) (a ′, b′) → if b ≡ b′

then return (a, a ′)
else λ( , ) → 0

It can be verified that Trab is completely positive and norm preserving.
Given the above, we can interpret (h, g , φ) ∈ FQC a b as J(h, g , φ)KFQC ∈

Q a b using J(h, φ)K◦ ∈ Q◦ a (b ⊗ g), which can be embedded in FQC:
(Jh, φK◦FQC) ∈ Q a (b ⊗ g) and finally using the partial trace, we obtain

J(h, g , φ)KFQC ∈ Q a b

J(h, g , φ)KFQC = Trbg ((J(h, φ)K))

2Correct would be C2 (a⊥ ⊗ a), but since our objects are natural numbers, this doesn’t
really matter.
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We can use Kraus’ representation theorem to show that this interpretation is
full, i.e. all superoperators can be realised by an FQC-morphism.

To see that J·KFQC is actually functorial, we have to show that the compo-
sition in FQC as defined in section 3.2 is preserved by J·K.

Proposition 1 J·K ∈ FQC → Q is a strict monoidal functor, that is

1. JidK = id

2. Jf ◦ gK = Jf K ◦ JgK

3. Jf ⊗ gK = Jf K⊗ JgK

Proof: Both 1. and 3. follow directly from monoidal identities. The only
interesting case is 2. which follows from the fact that the following diagram
commutes:

a⊗ hf ⊗ hg

φf⊗hg // b⊗ gf ⊗ hg

φg⊗gf //

trgf

��7
77

77
77

77
77

77
77

c⊗ gf ⊗ gg

trgf gg

""EEEEEEEE

trgg

��

a

zf⊗zg

<<xxxxxxxx

zf ""FFFFFFFF c

a⊗ hf
φf

//

zg

OO

b⊗ gf
trgf

//

zg

CC���������������
b zg

// b⊗ hg
φg

// c⊗ gg

trgg

<<yyyyyyyy

�
By combining the operational semantics and the denotational semantics of

computations we obtain an interpretation of derivations as isometric maps or
superoperators, that is given a derivation of d

Γ`t:σ we get JdK ∈ Q Γ σ by
JdK = JJdKopKFQC and given d

Γ`◦t:σ we get JdK◦ ∈ Q◦ Γ σ by JdK = JJdK◦opK◦FQC.

5 Conclusions and further work

We have introduced a language for finite quantum programs which features
quantum control and quantum data. We have identified the fact that weaken-
ings affect the behaviour of a quantum program as one of the main structural
differences between quantum and classical programming, and consequently use
a strict linear type system where weakenings are explicit. The fact that for-
getting information may affect other parts of the computation also necessitates
the orthogonality judgement, which witnesses the fact that our quantum control
operator case◦ does not irreversibly disposes information.

We have given an operational semantics of the language in terms of reversible
quantum circuits. These circuits can model irreversible computation by having
access to initialised heap registers at the start of the computation, which disopse
unusued data at the end. The operational semantics has been implemented by
Grattage in Haskell, [GA05].
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We also present a denotational semantics by interpreting the circuits arising
from the operational semantics by superoperators — here we draw heavily on
Selinger’s work on QPL [Sel04].

The present paper is an extended version of our conference submission
[AG04]. We also have tried to improve and reorganise the presentation by
clearly separating operational and denotational semantics: While in [AG04] we
collapsed morphisms in FQC upto extensional equality, we now only identify
computations upto monoidal identities (upto isomorphic circuit diagrams), and
leave the extensional equality to the denotational model, i.e. to the category Q.

Much remains to be done, which we have left out of the current paper for
reasons of space and time: to show the denotational semantics is derivation
independent, i.e. different typing derivations of the same term do not affect its
interpretation upto extensional equality; and is also compositional, i.e. replacing
extensionally equivalent subterms results in extensionally equivalent programs.

To show derivation independence, we observe that most of the rules are
structural with the exception of (emb) and (⊕−elim◦). (emb) doesn’t cause
any problems since it is interpreted by FQC◦ a b ⊆ FQC a b in the operational
semantics. (⊕−elim◦) is more interesting: we need to show that the interpre-
tation of t ⊥ u is semantically correct, i.e. that the interpretation of the terms
can be obtained by composing the corresponding component of the orthogo-
nality judgement with the unitary map ψ; that JtK = ψ−1 ◦ (qtrue ⊗ l) and
JuK = ψ−1 ◦ (qfalse ⊗ r). We can use this to show that the interpretation of
(⊕−elim◦) does not depend on the derivation of orthogonality.

To show compositionality, it seems that the best way is to directly give an
intepretation of QML programs in Q and then show that this interpretation
factors through the operational semantics. This denotational semantics can be
effectively computed, we plan to use the material in [VAS04] to implement the
semantics in Haskell. In many cases compositionality follows from proposition 1
and the observation that we only use horizontal (◦) and vertical (⊗) composition
to define the interpretation of terms from their components. The only exceptions
are the elimination rules for ⊕: In the case of (⊕−elim◦) we have to show that
f |◦g comutes with initialisations. (⊕−elim) is slightly more involved since we
also have to commute the partial traces. Indeed, this only works because we
measure the qbit we are branching over.

More tentative is the extension of QML to higher types, and being able to
incorporate infinite data structures.

Q doesn’t seem to have a closed structure which would allow us to interpret
higher order programs (see [?] for a discussion). However, this is not really
necessary since we are only running higher order programs once they are fully
applied. Semantically, this observation can be exploited by interpreting higher
order programs in the presheaf category over Q, which has a tensor product
by Day’s construction and is automatically closed with respect to this tensor
product. There is no clear candidate for ⊕, and, since it is not at all obvious
how a coproduct of higher order quantum functions may be implemented, the
best choice may be not to allow this, but to limit ⊕ to first order types.

Infinite data structures could be interpreted in infinite-dimensional vector
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spaces using the standard approaches from mathematical physics. An alterna-
tive, which is closer to potential implementations of quantum programs, is to
allow quantum programs to be indexed by classical structures in a way akin
to Dependent ML (DML) [?]. DML is a language with dependent types where
index expressions and actual programs are clearly separated. In the case of
DML, this separation is needed to deal with impurities in the actual programs,
such as non-termination. In a dependently typed version of QML, the same
approach would be used to separate the classical structure of the computation
from quantum effects.

Finally, having a high level language with a clear semantics should lead to
reasoning principles which could be expressed as an algebra of quantum pro-
gramming. This algebra should enable us to give mathematically clear, formal
correctness proofs of quantum programs. This algebra is related to Tonders
quantum λ calculus, [vT03b], but we would aim to include measurements and
justify the equations by showing that they are sound and complete with respect
to the denotational semantics in Q.
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