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ABSTRACT
We analyze a normalization function for the simply typed
λ-calculus based on hereditary substitutions, a technique de-
veloped by Pfenning et al. The normalizer is implemented
in Agda, a total language where all programs terminate. It
requires no termination proof since it is structurally recur-
sive which is recognized by Agda’s termination checker. Us-
ing Agda as an interactive theorem prover we establish that
our normalization function precisely identifies βη-equivalent
terms and hence can be used to decide βη-equality. An in-
teresting feature of this approach is that it is clear from the
construction that βη-equality is primitive recursive.

Keywords
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1. INTRODUCTION
Among the different ways to establish the decidability of
some equality for λ-calculi [], the most computational one is
to give a normalization function which computes a canoni-
cal form for any term. This approach is well-suited for an
implementation, and it thus becomes important to be able
to analyze it in order to prove, for instance, termination of
the process.

In this paper, we define a normalizer that β-reduces and
η-expands simply typed λ-terms. We use it to establish a
formal verification of the decidability of the βη-equality for
this calculus.

The normalizer and the proofs are implemented in Agda [11,
1]. Agda is a programming language with dependent types.
We exploit this property both:

• to define functions whose some properties are ensured
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by their types;

• to use Agda as an interactive theorem prover.

The source code can be found online [2]. We thus use Agda
as our metalanguage all along the paper.

The main particularities of our implementation are:

• We consider a typed syntax for λ-calculus, that is to
say we consider only well-typed terms (Section 2). It
uses De Bruijn indices, which are adapted to a formal
development since closed terms have a unique form
(Section 2.2).

• The normalizer implements hereditary substitutions
(Section 3) [13], which preserve canonical forms by
substituting and reducing the redices that can appear
from substitution at the same time. An important as-
pect of hereditary substitutions is that they can be
defined in a structurally manner; hence, they can be
implemented in total Type Theory without any termi-
nation proof. In our development, Agda’s termination
checker is able to check that the normalizer does ter-
minate (Section 3.4).

• We prove the completeness (Section 4) and the sound-
ness (Section 5) of our normalizer, in order to conclude
that it decides the βη-equivalence of two terms.

We finally discuss related works (Section 6) and conclude
(Section 7).

2. THE SIMPLY TYPED λ-CALCULUS
We start by introducing our calculus. Its particularity is
that we only define well typed terms: terms are objects of
an inductive family parameterized by types. This presen-
tation of the simply typed λ-calculus is formally described
in [6], for instance. It is very convenient to use in Agda,
which supports dependent type programming and inductive
declarations.

2.1 The calculus
The set of types (Ty) is defined by a simple inductive defi-
nition:

data Ty : Set where
◦ : Ty
⇒ : Ty→ Ty→ Ty



Inductive definitions are introduced in Agda with the key-
words data and where. Each following line defines a new
constructor of this inductive type, giving its type. Set is
Agda’s type of types, and the • notation is used to define
infix operators.

For terms, we use (typed) De Bruijn indices to represent
variables [9]. We thus need a context that maps each free
variable to a type. Since we do not have to store names, a
context (Con) can be represented as a list of types:

data Con : Set where
ε : Con
, : Con→ Ty→ Con

As explained above, the sets of variables (Var) and terms
(Tm) are objects of an inductive family indexed by types
and contexts:

data Var : Con→ Ty→ Set where
vz : forall {Γ σ} → Var (Γ, σ) σ
vs : forall {τ Γ σ} → Var Γ σ → Var (Γ, τ) σ

data Tm : Con→ Ty→ Set where
var : forall {Γ σ} → Var Γ σ → Tm Γ σ
Λ : forall {Γ σ τ } → Tm (Γ, σ) τ → Tm Γ (σ ⇒ τ)
app : forall {Γ σ τ } →

Tm Γ (σ ⇒ τ)→ Tm Γ σ → Tm Γ τ

In Agda, curly brackets surround the implicit arguments of
a constructor or a function. Usually, these arguments can
be automatically infered by Agda, so they do not have to
be given when the constructor or the function is applied.
For a matter of space, in the paper, we skip them also in
type declarations when it does not lead to any ambiguity:
we consider that any symbol appearing in the type of a con-
structor or a function that is not previously defined is an
implicit argument. For instance, the type of app would now
be written:

app : Tm Γ (σ ⇒ τ)→ Tm Γ σ → Tm Γ τ

2.2 Working with De Bruijn indices
De Bruijn indices have the nice property to give a unique
representation to any closed term, and to be suitable for a
machine. It is well-know that it is not suitable for a human
being, though. For clarity, this section gives some tools to
work with De Bruijn indices in our calculus.

2.2.1 Vocabulary
First, we use a rigid vocabulary all along the paper:

• If x: Var Γ σ, we call x an index.

• If x: Var Γ σ, we say that x is parameterized by Γ.

• We say that x and y represent the same variable if they
would have the same name in a named representation,
but are not parameterized by the same context.

For instance, the λ-term1:

λf.λz.(f) (λx.(f) x) z

is encoded in Agda by

Λ (Λ (app (var (vs vz))
(app (Λ (app (var (vs (vs vz))) (var vz))) (var vz))))

In this term, the two occurrences of var vz do not represent
the same variable (it can be x or z), whereas vs vz and
vs (vs vz) do represent the same variable (f).

2.2.2 Removal from a context
In our calculus, many constructions rely on removing an
index parameterized by a context Γ from Γ. This is made
possible by the following function:

- : {σ : Ty} → (Γ : Con)→ Var Γ σ → Con
ε - ()
(Γ, σ) - vz = Γ
(Γ, τ) - (vs x) = (Γ - x), τ

In Agda, functions are defined in a Haskell-like syntax: the
first line gives the type of the function, and the other lines
give its definition with (possibly) a case analysis. The ()
notation is useful to discriminate absurd cases: here, it is
impossible for an index to be parameterized by the empty
context ε.

2.2.3 Weakening
In a calculus with contexts and De Bruijn indices, weakening
is also a very standard construction: it often use to avoid
capture. It means adding extra-information in a context
parameterizing an index:

wkv : (x : Var Γ σ)→ Var (Γ - x) τ → Var Γ τ
wkv vz y = vs y
wkv (vs x) vz = vz
wkv (vs x) (vs y) = vs (wkv x y)

2.2.4 Treatment of variable equality
We established in section 2.2.1 that the same index can rep-
resent different variables and, conversely, the same variable
can be represented by different indices. Comparing variables
is thus non trivial.

We introduce a predicate Eq specifying if two indices param-
eterized by the same context represent the same variable or
not. Its definition relies on two properties:

1. The only way for x and y to represent the same variable
is to be equal.

2. If x and y do not represent the same variable, then
there exists an index z such that x ≡ wkv y z (≡ stands
for Leibniz equality, with the three usual functions refl,
sym and trans).

The intuition behind the second property is that if x and y
do not represent the same variable, then x “exists” in Γ - y:

1We use Krivine’s notation to write λ-terms. In applica-
tions, brackets surround the function; for instance: (f) x.
(f) x y is a shortcut for ((f) x) y.



this is the index z. x is thus the weakening of z when y is
added to the context.

As a consequence, the predicate of equality is the following
one:

data EqV : Var Γ σ → Var Γ τ → Set where
same : {x : Var Γ σ} → EqV x x
diff : (x : Var Γ σ)→ (y : Var (Γ - x) τ)→

EqV x (wkv x y)

The function eq decides EqV:

eq : (x : Var Γ σ)→ (y : Var Γ τ)→ EqV x y
eq vz vz = same
eq vz (vs x) = diff vz x
eq (vs x) vz = diff (vs x) vz
eq (vs x) (vs y) with eq x y
eq (vs x) (vs .x) | same = same
eq (vs .x) (vs . (wkv x y)) | (diff x y) = diff (vs x) (vs y)

The with construction allows pattern matching on a recur-
sively computed result. Dot patterns (.x for instance) tag
Agda terms whose construction is constrained by the value
of the predicate.

2.3 Term weakening
Weakening is also defined for terms, if we add an index into
the De Bruijn context parameterizing them:

wkTm : (x : Var Γ σ)→ Tm (Γ - x) τ → Tm Γ τ
wkTm x (var v) = var (wkv x v)
wkTm x (Λ t) = Λ (wkTm (vs x) t)
wkTm x (app t1 t2) = app (wkTm x t1) (wkTm x t2)

2.4 The substitution function
The substitution function substitutes all occurrences of a
free variable v in some term t by another term. The type
we give to the substitution function is: (t : Tm Γ τ) →
(x : Var Γ σ) → (u : Tm (Γ - x) σ) → Tm (Γ - x) τ .
Agda’s typing ensures two fundamental properties of such a
substitution:

1. Substitution is type preserving : since x has the same
type (σ) as u, the type of t (τ) is preserved.

2. Since the result is parameterized by Γ - x, we know
that x does not appear free in it.

Variable equality defined in section 2.2.4 plays a main role
in substitution. Indeed, in the case where t is an index y, we
need to know whether x and y represent the same variable
or not.

We define the substitution for variables:

substVar : Var Γ τ → (x : Var Γ σ)→
Tm (Γ - x) σ → Tm (Γ - x) τ

substVar v x u with eq x v
substVar v .v u | same = u
substVar . (wkv v x) .v u | diff v x = var x

and for terms:

subst : Tm Γ τ → (x : Var Γ σ)→
Tm (Γ - x) σ → Tm (Γ - x) τ

subst (var v) x u = substVar v x u
subst (Λ t) x u = Λ (subst t (vs x) (wkTm vz u))
subst (app t1 t2) x u = app (subst t1 x u) (subst t2 x u)

2.5 Convertibility
The conversion relation we consider in this paper is the βη-
equivalence (βη-≡), defined as an inductive predicate:

data βη-≡ : Tm Γ σ → Tm Γ σ → Set where
brefl : {t : Tm Γ σ} → t βη-≡ t
bsym : t1 βη-≡ t2 → t2 βη-≡ t1
btrans : t1 βη-≡ t2 → t2 βη-≡ t3 → t1 βη-≡ t3
congΛ : t1 βη-≡ t2 → Λ t1 βη-≡ Λ t2
congApp : t1 βη-≡ t2 → u1 βη-≡ u2 →

app t1 u1 βη-≡ app t2 u2

beta : app (Λ t) u βη-≡ subst t vz u
eta : Λ (app (wkTm vz t) (var vz)) βη-≡ t

It is an equivalence (brefl, bsym and btrans) that is congruent
with the constructors of λ-terms (congΛ and congApp), and
that identifies terms differing from one step of β-reduction
(beta) or one step of η-expansion (eta).

3. NORMALIZATION AND HEREDITARY
SUBSTITUTIONS

We recall our goal is to show that the conversion relation
we have just defined is decidable. We are going to establish
this by normalization.

3.1 Normal forms
We first define the set of normal forms (Nf). In our context,
normal forms are:

• neutral terms (Ne, ne): variables applied to as many
arguments as their “arity”. Lists of such arguments are
called spines Sp and are parameterized by two types:

1. The first type refers to the type of the variable.

2. The second types refers to the resulting type of
the application.

Since we define long βη-normal forms a neutral term
is normal, only if its type is ◦.

• λ-abstractions (λn).

mutual
data Nf : Con→ Ty→ Set where
λn : Nf (Γ, σ) τ → Nf Γ (σ ⇒ τ)
ne :Ne Γ ◦ → Nf Γ ◦

data Ne : Con→ Ty→ Set where
, : Var Γ σ → Sp Γ σ τ → Ne Γ τ

data Sp : Con→ Ty→ Ty→ Set where
ε : Sp Γ σ σ
, : Nf Γ τ → Sp Γ σ ρ→ Sp Γ (τ ⇒ σ) ρ

Here, the set of normal forms is not defined as a subset of the
set of terms. However, it can be easily seen as such through
the canonical injection (d e):



mutual
d e : Nf Γ σ → Tm Γ σ
d λn n e = Λ d n e
d ne n e = embNe n

embNe : Ne Γ σ → Tm Γ σ
embNe (v, s) = embSp s (var v)

embSp : Sp Γ σ τ → Tm Γ σ → Tm Γ τ
embSp ε acc = acc
embSp (n, s) acc = embSp s (app acc d n e)

Note that the function embSp, that maps spines into terms,
is defined using an accumulator.

We are now going to define a normalization function nf :
Tm Γ σ → Nf Γ σ that should satisfy the following proper-
ties:

1. Terms are convertible to their normal forms (we call it
completeness):

completeness : (t : Tm Γ σ)→ d nf t e βη-≡ t

2. Normalization maps convertible terms to identical nor-
mal forms (we call it soundness):

soundness : {t u : Tm Γ σ} →
t βη-≡ u→ nf t ≡ nf u

A consequence of these two properties is that convertibility
is exactly reflected by having the same normal forms:

{t u : Tm Γ σ} → t βη-≡ u↔ nf t ≡ nf u

Since the equality of normal forms is obviously decidable (by
simple inductions on types, contexts and normal forms), it
follows that convertibility is decidable.

3.2 Auxiliary functions
We quickly present some auxiliary functions on normal forms
and spines.

First, as for indices (see Section 2.2.3) and terms (see Sec-
tion 2.3), we often need to weaken the context under which
a normal form or a spine is typed. We hence have two func-
tions to perform this weakening, whose definitions are direct
adaptations of wkTm (so we do not give them here):

mutual
wkNf : (x : Var Γ σ)→ Nf (Γ - x) τ → Nf Γ τ
wkSp : (x : Var Γ σ)→ Sp (Γ - x) τ ρ→ Sp Γ τ ρ

Spines are lists of normal forms; so while it is immediate to
add a normal form at the beginning of a spine, we have to
define a function that adds an element at the end of a spine:

appSp : Sp Γ ρ (σ ⇒ τ)→ Nf Γ σ → Sp Γ ρ τ
appSp ε u = (u, ε)
appSp (t, ts) u = (t, appSp ts u)

3.3 The normalization function
We now define a normalizer as an Agda function that trans-
forms a term into a normal form of the same type. This nor-
malizer implements hereditary substitutions [13]. The idea
behind these substitutions is to perform a syntactical sub-
stitution and normalize a term at the same time.

The normalization function is defined with the aid of two
auxiliary functions that perform η-expansion, and four aux-
iliary functions that perform β-reduction.

3.3.1 η-expansion
Variables and neutral terms are η-expanded as much as pos-
sible depending on their types:

mutual
nvar : Var Γ σ → Nf Γ σ
nvar x = ne2nf (x, ε)

ne2nf : forall {σ} → Ne Γ σ → Nf Γ σ
ne2nf {◦} xns = ne xns
ne2nf {σ ⇒ τ } (x, ns) =
λn (ne2nf (vs x, appSp (wkSp vz ns) (nvar vz)))

3.3.2 β-reduction
Four functions perform the β-reduction:

• The function [ := ] substitutes a variable by a nor-
mal form inside a normal form.

• The function < := > substitutes a variable by a nor-
mal form inside a spine.

• The function 3 applies a normal form to a spine.

• The function napp launches the β-reduction.

mutual
[ := ] : Nf Γ τ → (x : Var Γ σ)→
Nf (Γ - x) σ → Nf (Γ - x) τ

(λn t) [x := u] = λn (t [(vs x) := (wkNf vz u)])
(ne (y, ts)) [x := u] with eq x y
(ne (x, ts)) [ .x := u] | same = u 3 (ts < x := u >)
(ne (. (wkv x y’), ts)) [ .x := u] | diff x y’ =

ne (y’, ts < x := u >)

< := > : Sp Γ τ ρ→ (x : Var Γ σ)→
Nf (Γ - x) σ → Sp (Γ - x) τ ρ

ε < x := u > = ε
(t, ts) < x := u > = (t [x := u]), (ts < x := u >)

3 : Nf Γ σ → Sp Γ σ τ → Nf Γ τ
t 3 (u, us) = (napp t u) 3 us
t 3 ε = t

napp : Nf Γ (σ ⇒ τ)→ Nf Γ σ → Nf Γ τ
napp (λn t) u = t [vz := u]

We now describe the mechanism behind these functions.

t [x := u]:



1. syntactically substitutes x by u in t; and

2. normalizes the result

at the same time: it is the essence of hereditary substitu-
tions. Its definition is a case analysis on t:

• If t is λn t’, then substitute x by u in t’ (x and u have
to be weakened to avoid capture).

• If t is ne (x, ts), then apply u to ts’, where ts’ is ts where
x is substituted by u. This application is the role of
the 3 function.

• If t is ne (y, ts) where y does not represent the same
variable as x, then y is unchanged and the substitution
carries on in ts.

ts < x := u > substitutes x by u in all the normal forms
appearing in ts. It is a simple case analysis on ts.

t 3 ts successively applies t to each element of ts, by a simple
case analysis on ts.

napp t u β-reduces the application of a normal form t to a
normal form u, by a call to [ := ]. As t has a functional
type, the typing ensures that it is a λ-abstraction.

3.3.3 The normalization function
The definition of the normalization function is now very
straightforward: variables are η-expanded, applications are
β-reduced, and λs are normalized under the λ:

nf : Tm Γ σ → Nf Γ σ
nf (var x) = nvar x
nf (Λ t) = λn (nf t)
nf (app t u) = napp (nf t) (nf u)

We notice that Agda’s type system ensures that normaliza-
tion is type preserving: the type of the output normal
form is the same as the type of the input term.

3.4 Termination of the normalizer
For soundness reasons, Agda is a total language: only ter-
minating programs can be written. It automatically checks
termination using a variant of the termination checker of
foetus [3]: it computes the completed call graph of the func-
tions and the corresponding call matrices. This process can
only search for structural arguments to establish termina-
tion. One major interest of hereditary substitutions is to be
structurally recursive, which is recognized by Agda.

The first two functions nvar and ne2nf are decreasing on
the type of their arguments; their termination is thus very
simple to establish.

We detail how Agda’s termination checker establishes ter-
mination for the four functions [ := ], < := >, 3 and
napp. For an obvious matter of intelligibility, we are not go-
ing to give all the call matrices2, but only the call graph with

2The call matrices can be obtained by compiling our source
file hsubst.agda with the option -v 5, for instance.

Function t1 [x1
σ1 := u1 ] ts2 < x2

σ2 := u2 >
Measure (σ1,t1) (σ2,ts2)

Function t3
σ3 3 ts3 napp t4

σ4 u4

Measure (σ3) (σ4)

Table 1: Decreasing measures in hereditary substi-
tutions
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Figure 1: Call-graph in hereditary substitutions

the relevant call matrices. For a different formalization, [4]
gives a proof of the termination of hereditary substitutions
using sized typed.

Table 1 associates a lexicographical combination of struc-
tural orders to each function. We have written the types
that are involved in the termination argument à la Church
to make things clearer. Figure 1 represents the call graph
of the four functions:

• Each node corresponds to a function. We recall the
lexicographical orders described in Table 1 under the
name of each function.

• Each edge corresponds to a possible call of a function
by another function. It is labelled with a summary of
the corresponding call matrix (when a function calls
itself, we add a prime symbol to the call arguments).
In any circuit in the graph with starting and ending
vertex s, the measure associated to s decreases for the
lexicographical order. It ensures that these mutual
definitions terminate.

3.5 Analyzing the normalizer
Once the definitions established, the remaining of our de-
velopment consists in an analysis of the normalizer in or-
der to prove completeness and soundness (see Section 3.1).
The next two sections give some hints how to perform these
proofs, with few details. One can report to the source code
for a higher level of details.

In our context, the proofs in Agda mainly rely on two tech-
niques, that we call generalization and the introduction of



commutation lemmas. Only one proof presented in Section
5 needs special care.

3.5.1 Generalization
As all the functions are inductively defined, it is natural to
conduct the proofs by induction as well. As a consequence,
in order to prove a statement, we very often need to gener-
alize over some variables appearing in it; otherwise, some of
the induction cases are not provable.

For instance, we want to prove

congSubst’ : (t : Tm (Γ, σ) τ)→ u1 βη-≡ u2 →
subst t vz u1 βη-≡ subst t vz u2

by induction over t. The variable and application cases do
not pose any problem, but in the abstraction case, we would
have to prove:

subst t (vs vz) (wkTm vz u1) βη-≡
subst t (vs vz) (wkTm vz u2)

which does not ensue from the induction hypothesis. To
make it work, we have to generalize over vz into:

congSubst : (t : Tm Γ τ)→ (x : Var Γ σ)→
u1 βη-≡ u2 → subst t x u1 βη-≡ subst t x u2

3.5.2 Commutation lemmas
Most of the intermediary results we introduce are commu-
tation lemmas. Informally, these are statements of the form
f (g x) ∼ g (f x) where ∼ is either βη-≡ or ≡. For instance,
in order to prove completeness (Section 4), we introduce the
following lemma:

compApp : (t1 : Nf Γ (σ ⇒ τ))→ (t2 : Nf Γ σ)→
d napp t1 t2 e βη-≡ app d t1 e d t2 e

that states that embedding (d e) and application (napp and
app) commute.

4. PROOF OF COMPLETENESS
Completeness states that any term is βη-equivalent to its
normal form. To show this property, we have to establish it
for all the auxiliary functions that define nf in Section 3.3: all
these functions have to return a term that is βη-equivalent
to their argument.

For the two functions that perform η-expansion, we have to
prove the following properties:

Lemma 1 The η-expansion of a term t is βη-equivalent to
t:

mutual
compNe : (n : Ne Γ σ)→ d ne2nf n e βη-≡ embNe n
compVar : (v : Var Γ σ)→ d nvar v e βη-≡ var v

Proof. The two properties are proved by a mutual in-
duction:

• over σ for compNe;

• using compNe for compVar.

For the four functions that perform β-reduction, we have
to prove commutation lemmas between the functions that
define hereditary substitutions ( [ := ], < := >, 3 and
napp) and the functions that define the embedding from nor-
mal forms to terms (d e and embSp):

Lemma 2 Hereditary substitutions and embeddings commute:

mutual
substEmbSp : (ts : Sp Γ τ ρ)→ (x : Var Γ σ)→

(t : Nf (Γ - x) σ)→ (acc : Tm Γ τ)→
embSp (ts < x := t >) (subst acc x d t e) βη-≡

subst (embSp ts acc) x d t e

appNfEmbSp : (u : Nf Γ σ)→ (ts : Sp Γ σ ◦)→
d u 3 ts e βη-≡ embSp ts d u e

substNfSubst : (t : Nf Γ τ)→ (x : Var Γ σ)→
(u : Nf (Γ - x) σ)→
d t [x := u] e βη-≡ subst d t e x d u e

compApp : (t1 : Nf Γ (σ ⇒ τ))→ (t2 : Nf Γ σ)→
d napp t1 t2 e βη-≡ app d t1 e d t2 e

Proof. The four properties are proven by a mutual in-
duction:

• over ts for substEmbSp;

• over ts for appNfEmbSp;

• over t for substNfSubst;

• over t1 for compApp.

We are now able to establish our main theorem:

Theorem 1 (Completeness) Terms are convertible to their
normal forms:

completeness : (t : Tm Γ σ)→ d nf t e βη-≡ t

Proof. By induction over t using compVar (Lemma 1)
and compApp (Lemma 2).

5. PROOF OF SOUNDNESS
Soundness states that the normalization function identifies
two βη-equivalent terms. We are going to prove it by induc-
tion over the proof of βη-equivalence of the two terms.

This proof of soundness is longer than the proof of complete-
ness, which is not really surprising since we have to provide
a proof of equality, which is a relation more restrictive than
the βη-equivalence. But we are also stuck by the generaliza-
tion of one lemma, that makes us introduce a new predicate



to be able to formulate it. We now explain the intuition
about the reasons of the introduction of this predicate.

In order to prove soundness is the case where t βη-≡ u is the
rule eta, we would like to show that, if u is a normal form,
then the η-expansion of u is equal to u:

etaEq : (u : Nf Γ (σ ⇒ τ))→
λn (napp (wkNf vz u) (nvar vz)) ≡ u

As u is a normal form which has a functional type, it is a λ-
abstraction λn t for a certain normal form t. So this lemma
is equivalent to proving the following proposition:

Proposition 1

(t : Nf Γ τ)→ wkNf (vs vz) t [vz := nvar vz] ≡ t

As explained in Section 3.5.1, this proof must be performed
by induction over t; and to be able to conclude in the in-
ductive case where t is an abstraction, we have to generalize
over vz.

However, here, it is not as simple as in the example above:
we are possibly misled by De Bruijn indices once more. We
recall that the type of the function [x := u] (described in
section 3.3) states that if x is typed in a context Γ, then u is
typed in Γ - x. It means that in Proposition 1, the two
occurrences of vz do not represent the same variable.
In fact, they represent two consecutive variables in one
context.

Hence, to generalize Proposition 1, it is necessary to gen-
eralize the two occurrences of vz with two different names.
But it is important to take into account the fact that they
are consecutive, otherwise the lemma would not be correct.
This is why we introduce a new predicate onediff that pre-
cisely identifies consecutive indices in one context.

5.1 The predicate onediff
This predicate is very simple to define by induction: vz and
vs vz follow one another; and if x and y follow one another,
then vs x and vs y too.

data onediff : Var Γ σ → Var Γ τ → Set where
odz : onediff {(Γ, σ), τ } vz (vs vz)
ods : (x : Var Γ σ)→ (y : Var Γ τ)→ onediff x y
→ onediff (vs x) (vs y)

It is important to notice that onediff satisfies the following
property:

Lemma 3 If j and i follow one another in Γ, then Γ - i and
Γ - j are equal:

onediffMinus : (i j : Var Γ σ)→ onediff j i→
Γ - i ≡ Γ - j

Proof. By induction over onediff j i.

since it allows us to transform a variable, a term or a normal
form u typed in the context Γ - i into the same object typed
in Γ - j for some Γ, i and j.

If p : Γ ≡ ∆ and u is parameterized by Γ, then ! p > u is u pa-
rameterized by ∆. So, in the example above, if p: onediff j i,
then the result of the transformation is ! onediffMinus i j p > u.

5.2 The η-equality for normal forms
The predicate defined in the previous section now allows us
to generalize Proposition 1 that way:

Lemma 4

substNfEq : (i : Var Γ τ)→ (t : Nf (Γ - i) σ)→
(j : Var Γ τ)→ (k : Var (Γ - j) τ)→ (p : onediff j i)
→ wkv i (! sym (onediffMinus i j p) > k) ≡ j→
(wkNf i t) [ j := (nvar k)] ≡ ! onediffMinus i j p > t

This intuition behind this lemma is that we generalize in
Proposition 1 all the indices that appear:

(wkNf i t) [ j := (nvar k)]

and add the two constraints:

• onediff j i: j and i are two consecutive indices;

• wkv i (! sym (onediffMinus i j p) > k) ≡ j: j and
wkv i (! sym (onediffMinus i j p) > k) represent the
same variable.

These two conditions are sufficient to establish Lemma 4,
and are verified by Proposition 1. Its proof only requires
techniques presented in Section 3.5.

The η-equality for normal forms is now a direct consequence
of subsNfEq:

Lemma 5 The η-equality stands for normal forms:

etaEq : (u : Nf Γ (σ ⇒ τ))→
λn (napp (wkNf vz u) (nvar vz)) ≡ u

etaEq (λn u) =
reflλn (substNfEq (vs vz) u vz vz odz refl)

5.3 The β-equality for normal forms
Similarly to completeness, to prove soundness in the case
where βη-≡ is beta, we have to prove the following commu-
tation lemma:

Lemma 6 Normalization and substitution commute:

nfSubstNf : (t : Tm Γ τ)→ (x : Var Γ σ)→
(u : Tm (Γ - x) σ)→ (nf t) [x := (nf u)] ≡

nf (subst t x u)

The proof is a rather technical but uses techniques presented
in Section 3.5.



5.4 Proof of soundness
We are now able to establish our main theorem:

Theorem 2 (Soundness) The normal forms of two con-
vertible terms are equal:

soundness : {t u : Tm Γ σ} → t βη-≡ u→
nf t ≡ nf u

Proof. By induction over t βη-≡ u, using etaEq (Lemma
5) in the eta case and and nfSubstNf (Lemma 6) in the beta
case. The other cases are trivial.

Conclusion of Sections 4 and 5: The reverse
of Theorem 2 (soundness) is a direct consequence of The-
orem 1 (completeness):

Consequence 1 Two terms whose normal forms are equal
are convertible.

convertnf : (t u : Tm Γ σ)→ nf t ≡ nf u→ t βη-≡ u

It follows that two terms are βη-equivalent if and only if
their normal forms are equal. As equality on normal forms is
obviously decidable, we can conclude that βη-equivalence
is decidable.

Moreover, our algorithm that decides equivalence (normalize
and check the equality of normal forms) is primitive recur-
sive, which makes clear that βη-equivalence is primitive
recursive.

6. RELATED WORK
Hereditary substitutions were first introduced by [13] et
al. to define a normalizer for the Concurrent Logical Frame-
work. Their property to preserve canonical forms during
substitution makes them a nice approach to an implemen-
tation of substitutions for Logical Frameworks [10, 7] and
Higher-Order Abstract Syntax [12]. Abel [4] already noticed
that the fact that hereditary substitutions are structurally
recursive makes it easy to automatically check the termi-
nation of the algorithm they provide. We exploit the two
properties:

• The fact that canonical forms are preserved by hered-
itary substitutions ensures the correct typing given to
the substitution function.

• The fact that it is structurally recursive allows us to
implement it in Agda without any need of an explicit
termination proof.

One major contribution of this paper is to adapt hereditary
substitutions to De Bruijn indices (with the drawbacks we
know, but with advantage that due to the fact that closed
terms have a unique representation) and to implement it in
an interactive theorem prover based on Type Theory.

Also related is David’s work on arithmetical proofs of nor-
malisation results, e.g. see [8]. [5] use big step normalisation
to show decidability of a substitution calculus - this work has
also been formalized in Agda.

7. CONCLUSION
This paper implements in Agda a normalizer for the sim-
ply typed λ-calculus, and proves that this normalizer can
be used to decide the βη-equality over terms. It exploits
some aspects of Agda and, more generally, of programming
languages with dependent types:

• Dependent types are not only used to express theo-
rems’ statements, but also serve to define particular
sets. Here, the parameterization of variables, terms
and normal forms by contexts and types is a useful
and natural way to define only the subset of λ-terms we
are interested in. It is important to notice that Agda’s
implementation of dependent types makes it straight-
forward to manipulate such objects. Agda’s dependant
typing also ensures properties about functions just “by
definition”.

• Agda’s termination checker is powerful enough to ana-
lyze non trivial mutually inductive definitions.

• Conversely, hereditary substitutions give a nice way to
define a normalizer within total Type Theory, without
constructing a proof of termination of a partial func-
tion. This could be extended to more complex type
systems, for instance with polymorphism [4].
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