
QPL 2005 Preliminary Version

An Algebra of Pure Quantum Programming

Thorsten Altenkirch1 Jonathan Grattage 1

The University of Nottingham, UK

Juliana K. Vizzotto 2

Federal University of Rio Grande do Sul, Brazil

Amr Sabry 3

Indiana University, USA

Abstract

We develop a sound and complete equational theory for the functional quantum pro-
gramming language QML. The soundness and completeness of the theory are with
respect to the previously developed denotational semantics of QML. The complete-
ness proof also gives rise to a normalisation algorithm following the normalisation-
by-evaluation approach. The current work focuses on the pure fragment of QML,
omitting measurements.

Key words: denotational semantics, completeness, normalisation

1 Introduction

The functional quantum language QML was recently introduced by Altenkirch
and Grattage [AG05]. The semantics of QML is inspired by the denotational
semantics of classical reversible computations; it provides a foundation for
reasoning about quantum programs by mapping them to their denotations.

The next natural step is to develop reasoning principles on QML programs
themselves, which avoid the detour via the denotational semantics. For ex-
ample, consider the following QML definition of the Hadamard gate:

H x = if◦ x
then (false + (−1) ∗ true)
else (false + true)

1 Email: {txa,jjg}@cs.nottingham.ac.uk
2 Email: jkv@inf.ufrgs.br
3 Email: sabry@indiana.edu

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Altenkirch, Grattage, Vizzotto, and Sabry

We would like to verify that H (H x) is observationally equivalent to x ,
using a derivation such as:

H (H x) = if◦ (if◦ x
then (false + (−1) ∗ true)
else (false + true))

then (false + (−1) ∗ true)
else (false + true)

-- by commuting conversion for if◦

= if◦ x
then if◦ (false + (−1) ∗ true)

then (false + (−1) ∗ true)
else (false + true)

else if◦ (false + true)
then (false + (−1) ∗ true)
else (false + true)

-- by if◦

= if◦ x
then (false − false + true + true)
else (false + false + true − true)

-- by simplification and normalisation

= if◦ x then true else false

-- by η-rule for if◦

= x

It is relatively easy to develop some set of sound equational principles.
Inspired by equivalences on classical computations, one may hypothesise that
certain equations should hold, and simply verify that both sides of the equation
have the same denotation.

However, as QML is based on a first-order functional language with finite
types, it should be possible to also develop a complete set of equivalences that
totally capture denotational equivalence. Technically, one can prove complete-
ness of the equational semantics by “inverting” the denotational meaning-
function. The construction is subtle in parts. We present it firstly in the
context of the classical sub-language of QML, and then extend it to deal with
quantum data and control.

The paper is thus organised as follows. We begin with a quick survey
of related work followed by an informal review of QML in Section 3. In
Section 4, we present the denotational semantics of the classical sub-language
of QML, and present a system of equations which is sound with respect to the
denotational semantics. We then show that this set of equations is complete
in Section 5. Section 6 repeats the development for the quantum constructs.
Section 7 concludes.

2

Altenkirch, Grattage, Vizzotto, and Sabry

2 Related work

Selinger’s influential paper [Sel04] introduces a single-assignment (essentially
functional) quantum programming language, which is based on the separa-
tion of classical control and quantum data. This language combines high-level
classical structures with operations on quantum data, and has a clear math-
ematical semantics in the form of superoperators. Quantum data can be
manipulated by using unitary operators or by measurement, which can effect
the classical control flow.

Recently, Selinger and Valiron [SV05] have presented a functional language
based on the same classical control and quantum data paradigm. Selinger and
Valiron’s approach is in some sense complementary to ours: they use an affine
type system (no contraction), while we use a strict system (no weakening). The
lack of contraction is justified by the no-cloning property of quantum states.
However, this does not apply to our approach, since we model contraction not
by copying but by sharing — this idea is also present in the calculus of Arrighi
and Dowek [AD04].

Van Tonder [vT04,vT03] has proposed a quantum λ-calculus incorporat-
ing higher-order programs, but no measurements. He suggests an equational
theory for strict (higher-order) computations, but shows neither completeness
nor normalisation.

3 QML Syntax and Examples

The QML terms consist of those of a first-order functional language, extended
with quantum data and quantum control. The full language also includes
quantum measurement, which we do not consider in this paper. The syntax
of terms is as follows:

(Variables) x , y , ... ∈ Vars

(Prob.amplitudes) κ, ι, ... ∈ C
(Patterns) p, q ::= x | (x , y)
(Terms) t , u, e ::= x | () | (t , u)

| let p = t in u
| if◦ t then u else u ′

| false | true | −→0 | κ ∗ t | t + u

The classical sub-language consists of variables, let-expressions, unit, pairs,
booleans, and conditionals. Quantum data is modelled using the constructs
κ∗t , −→0 , and t+u. The term κ∗t , where κ is a complex number, associates the
probability amplitude κ with the term t . It is convenient to have a special con-
stant

−→
0 for terms with probability amplitude zero. The term t + u is a quan-

tum superposition of t and u. Quantum superpositions are first-class values:
when used as the first subexpression of a conditional, they turn the conditional
into a quantum control construct. For example, if◦ (true+false) then t else u
evaluates both t and u and combines their results in a quantum superposition.

3

Altenkirch, Grattage, Vizzotto, and Sabry

3.1 Examples

To provide further insight into the semantics of QML, we consider a few inter-
esting examples. In these examples, we allow the definition and use of “global”
function symbols. Adding such definitions to the formalism is possible but te-
dious, so we keep them at an informal meta-level.

The following three functions correspond to simple rotations on qubits:

qnot x = if◦ x then false else true

had x = if◦ x then ((−1) ∗ true + false) else (true + false)

z x = if◦ x then ((−1) ∗ true) else false

The first is the quantum version of boolean negation; it behaves as usual when
applied to classical values but it also applies to quantum data. Evaluating
qnot (κ ∗ false + ι ∗ true) swaps the probability amplitudes associated with
false and true. The second function represents the fundamental Hadamard
matrix, and the third represents the Pauli-Z operator.

The function:

cnot c x = if◦ c
then (true, qnot x)
else (false, x)

is the conditional-not operation, which behaves as follows: if the control
qubit c is true it negates the second qubit x ; otherwise it leaves it unchanged.
When the control qubit is in some superposition of true and false, the result is
a superposition of the two pairs resulting from the evaluation of each branch
of the conditional. For example, evaluating cnot (false + true) false produces
the entangled pair (false, false) + (true, true).

3.2 Copying and Discarding Quantum Data

To motivate the main aspects of the type system in the next section, we
examine in detail the issues related to copying and discarding quantum data.

A simple example where quantum data appears to be copied, in violation
of the no-cloning theorem [NC00], is:

let x = false + true
in (x , x)

As the formal semantics of QML clarifies, this expression does not actually
clone quantum data; rather it shares one copy of the quantum data. In
other words the expression does not evaluate to (false + true, false + true)
which would make it impossible to realise. Rather the expression evaluates to
(false, false) + (true, true) which is realisable (and easily so). With this inter-
pretation, one can freely duplicate variables bound to quantum data. When
translated to the type system, this means that the type system imposes no
restrictions on the use of the structural rule of contraction.

Discarding variables bound to quantum data, however, is problematic.
Consider the expression:

4

Altenkirch, Grattage, Vizzotto, and Sabry

let (x , y) = (false, false) + (true, true)
in x

where the quantum data bound to y is discarded. According to both the phys-
ical interpretations of quantum computation and the semantics of QML, this
corresponds to a measurement of y . Since measurement is semantically quite
complicated to deal with, we insist that it should be represented explicitly.
The language we consider in this paper lacks the explicit constructs for mea-
surement so we reject the expression above. This means that the structural
rule of weakening is never allowed in situations where information may be lost.
More precisely the only value to which weakening applies is the unit value ()
as it carries no information.

4 The Classical Sub-language

By the classical sub-language, we mean the subset of terms excluding quantum
superpositions. This also precludes the use of quantum control.

4.1 Type System

The main rôle of the type system is to control the use of variables. The typing
rules of QML are based on strict linear logic, where contractions are implicit
and weakenings are not allowed when they correspond to information loss. As
explained in the previous section, weakenings correspond to measurements,
which are not supported in the subset of the language discussed in this paper.

We use σ, τ, ρ to vary over QML types which are given by the following
grammar:

σ = Q1 | Q2 | σ ⊗ τ

where Q1 is the type of (), and Q2 is the type of qubits. As apparent from
the grammar, QML types are first-order and finite; there are no higher-order
types and no recursive types. The only types we can represent are the types
of collections of qubits.

Typing contexts (Γ, ∆) are given by:

Γ = • | Γ, x : σ

where • stands for the empty context, but is omitted if the context is non-
empty. For simplicity we assume that every variable appears at most once.
Contexts correspond to functions from a finite set of variables to types. We
introduce the operator ⊗, which maps pairs of contexts to contexts:

(Γ, x : σ)⊗ (∆, x : σ) = (Γ⊗∆), x : σ

(Γ, x : σ)⊗∆ = (Γ⊗∆), x : σ if x /∈ dom (∆)

• ⊗∆ = ∆

As explained in the typing rules, the operator allows us to share variables
appearing in a given context. This operation is partial: it is only well-defined if

5

Altenkirch, Grattage, Vizzotto, and Sabry

var
x : σ ` x : σ

Γ ` t : σ ∆, x : σ ` u : τ
let

Γ⊗∆ ` let x = t in u : τ

unit
• ` () : Q1

Γ ` t : σ ∆ ` u : τ
⊗-intro

Γ⊗∆ ` (t, u) : σ ⊗ τ

Γ ` t : σ ⊗ τ ∆, x : σ, y : τ ` u : ρ
⊗-elim

Γ⊗∆ ` let (x, y) = t in u : ρ

f-intro
• ` false : Q2

t-intro
• ` true : Q2

Γ ` c : Q2 ∆ ` t, u : σ
if◦

Γ⊗∆ ` if◦ c then t else u : σ

Γ, x : Q1 ` t : σ
wk-unit

Γ ` t : σ

Fig. 1. Typing classical terms

the two contexts do not assign different types to the same variable. Whenever
we use this operator we implicitly assume that it is well-defined.

Figure 1 presents the rules for deriving valid typing judgements Γ ` t : σ.
The only variables that may be dropped from the context are the ones of
type Q1 which, by definition, carry no information. Otherwise the type system
forces every variable in the context to be used (perhaps more than once if it
is shared).

4.2 The Category of Typed Terms

The set of typed terms can be organised in an elegant categorical structure,
which facilitates some of the proofs given later. The objects of the category are
contexts; the homset between the objects Γ and ∆, denoted Tm Γ ∆, consists
of all terms t such that Γ ` t : |∆| where |∆| views the context ∆ as a type.
This latter map is defined as follows:

| • | = Q1

|Γ, x : σ| = |Γ| ⊗ σ

For each context Γ, the identity 1Γ ∈ TmΓΓ is defined as follows:

1• = ()

1Γ,x:σ = (1Γ, x)

Given d ∈ Tm ∆ Γ and e ∈ Tm Γ Θ, the composition e ◦ d ∈ Tm ∆ Θ is given
by the term let∗ Γ = d in e. The let∗ construct is an abbreviation for iterated
let-expressions which bind each of the variables in the intermediate context:

6

Altenkirch, Grattage, Vizzotto, and Sabry

let∗ • = d in e ≡ e
let∗ Γ, x : σ = d in e ≡ let (xr, x) = d in let∗ Γ = xr in e

∆ ` d : |Γ| Γ ` e : |Θ|

∆ ` let∗ Γ = d in e : |Θ|

4.3 Semantics

The intention is to interpret every type σ and every context Γ as finite sets JσK
and JΓK, and then interpret a judgement Γ ` t : σ as a function JΓ ` t : σK ∈
JΓK → JσK. In the classical case, the type Q2 is simply the type of booleans
and ⊗ is the standard product type:

JQ1K = {0}

JQ2K = {0, 1}

Jσ ⊗ τK = JσK× JτK

We use the abbreviation JΓK for J|Γ|K.
The meaning function is defined in Figure 2 by induction over the structure

of type derivations. It uses the following auxiliary maps:

• id : S → S defined by id(a) = a

• id∗ : S → JQ1K × S and its inverse id∗ defined by id∗(a) = (0, a) and
id∗(0, a) = a

• For a ∈ S, the family of constant functions const a : JQ1K → S defined by
(const a)(0) = a.

• δ : S → (S, S) defined by δ(a) = (a, a)

• swap : S × T → T × S defined by swap(a, b) = (b, a). We will usually
implicitly use swap to avoid cluttering the figures with maps which just
re-shuffle values.

• For any two functions f ∈ S1 → T1 and g ∈ S2 → T2, the function (f × g) :
(S1 × S2) → (T1 × T2) is defined as usual:

(f × g)(a, b) = (f a, g b)

• δΓ,∆ : JΓ⊗∆K → JΓK × J∆K. This map is defined by induction on the
definition of Γ⊗∆ as follows:

δΓ,∆ =

δΓ′,∆′ × δ if Γ = Γ′, x : σ and ∆ = ∆′, x : σ

δΓ′,∆ × id if Γ = Γ′, x : σ and x 6∈ dom (∆)

id∗ if Γ = •
Intuitively, the map δΓ,∆ takes an incoming environment for an expression,
creates shared copies of the appropriate values, and rearranges them (the
shuffling is implicit and not shown in the above definition) into two envi-
ronments that are then passed to the subexpressions.

7

Altenkirch, Grattage, Vizzotto, and Sabry

J• ` () : Q1K = const 0

J• ` false : Q2K = const 0

J• ` true : Q2K = const 1

Jx : σ ` x : σK = id∗

JΓ⊗∆ ` let x = t in u : τK = g ◦ (f × id) ◦ δΓ,∆

where f = JΓ ` t : σK

g = J∆, x : σ ` u : τK

JΓ⊗∆ ` (t, u) : σ ⊗ τK = (f × g) ◦ δΓ,∆

where f = JΓ ` t : σK

g = J∆ ` u : τK

JΓ⊗∆ ` let (x, y) = t in u : ρK = g ◦ (f × id) ◦ δΓ,∆

where f = JΓ ` t : σ ⊗ τK

g = J∆, x : σ, y : τ ` u : ρK

JΓ⊗∆ ` if◦ c then t else u : σK = (g|h) ◦ (f × id) ◦ δΓ,∆

where f = JΓ ` c : Q2K

g = J∆ ` t : σK

h = J∆ ` u : σK

JΓ ` t : σK = f ◦ id∗

where f = JΓ, x : Q1 ` t : σK

Fig. 2. Meaning of classical derivations

• For any two functions f, g ∈ S → T , we define the conditional f |g ∈
(JQ2K× S) → T as follows:

(f |g) (1, a) = f a

(f |g) (0, a) = g a

4.4 Equational Theory

We present the equational theory for the classical sub-language and then show
its soundness and completeness. The equations refer to a set of syntactic values
defined as follows:

val ∈ ValC ::= x | () | false | true | (val1, val2)

Definition 4.1 The classical equations are grouped in four categories. The
equations are implicitly typed and this entails conditions on the occurrence of

8

Altenkirch, Grattage, Vizzotto, and Sabry

variables, e.g., the first commuting conversion can only be well-typed if the
variables bound in p and q do not appear in t or u.

• let-equation
let p = val in u ≡ u [val / p]

• β-equations
let (x , y) = (t , u) in e ≡ let x = t in let y = u in e
if◦ false then t else u ≡ u
if◦ true then t else u ≡ t

• η-equations
() ≡ t -- if t:Q1

let x = t in x ≡ t
let (x , y) = t in (x , y) ≡ t
if◦ t then true else false ≡ t

• Commuting conversions
let p = t in let q = u in e ≡ let q = u in let p = t in e

let p = if◦ t then u0 else u1 ≡ if◦ t
in e then let p = u0 in e

else let p = u1 in e

We write Γ ` t ≡ u : σ if Γ ` t, u : σ and the equation t ≡ u is derivable
at the type σ.

Lemma 4.2 (Soundness) The equational theory is sound: if Γ ` t ≡ u : σ
then the functions JΓ ` t : σK and JΓ ` u : σK are extensionally equal.

5 Completeness of the Classical Theory

The equational theory is complete in a strong technical sense: any equivalence
implied by the semantics is derivable in the theory. The proof technique is
based on recent work by Altenkirch with Uustalu [AU04]. The proof presented
here extends and simplifies the method presented in that work.

5.1 Proof Technique

The ultimate goal is to prove the following statement.

Proposition 5.1 (Completeness) If JΓ ` t : σK and JΓ ` u : σK are exten-
sionally equal, then we can derive Γ ` t ≡ u : σ.

In order to prove this statement, we define a function qσ
Γ which inverts

evaluation by producing a canonical syntactical representative. In fact, we
define the function qσ

Γ such that it maps a denotation JΓ ` t : σK to the normal
form of t.

Definition 5.2 If Γ ` t : σ, the normal form of t is given by nfσΓ(t) =
qσ
Γ(JΓ ` t : σK).

9

Altenkirch, Grattage, Vizzotto, and Sabry

The normal form is well-defined: given an equation Γ ` t ≡ u : σ, we
know by soundness that JΓ ` t : σK is extensionally equal JΓ ` u : σK and hence
we get that nfσΓ(t) = nfσΓ(u). If we now show that the syntactic theory can
prove that every term is equal to its normal form, then we can prove the
main completeness result. Indeed given the following lemma, we can prove
completeness.

Lemma 5.3 (Inversion) If Γ ` t : σ, the equation Γ ` nfσ
Γ (t) ≡ t : σ is

derivable.

Proof of Proposition 5.1 (Completeness) We have:

Γ ` t ≡ qσ
ΓJΓ ` t : σK : σ by inversion

Γ ` qσ
ΓJΓ ` t : σK ≡ qσ

ΓJΓ ` u : σK : σ by assumption

Γ ` qσ
ΓJΓ ` u : σK ≡ u : σ by inversion

2

In summary, we can establish completeness by defining a function qσ
Γ that

inverts evaluation and that satisfies Lemma 5.3.

5.2 Adequacy

We begin by defining a family of functions qσ (quote) which invert the eval-
uation of closed terms and prove a special case of the inversion lemma for
closed terms called adequacy. These functions and the adequacy result are
then used in the next section to invert the evaluation of open terms and prove
the general inversion lemma.

Definition 5.4 The syntactic representation of denotations is given by:

qσ ∈ JσK → ValCσ

defined by induction over σ:

qQ1 0 = ()

qQ2 0 = false

qQ2 1 = true

qσ⊗τ (a, b) = (qσ a, qτ b)

The instance of the inversion lemma for closed terms is called adequacy.
It guarantees that the equational theory is rich enough to equate every closed
term with its final observable value.

Lemma 5.5 (Adequacy) The equation ` qσ(J ` t : σK 0) ≡ t : σ is deriv-
able.

Proof sketch. During the proof of such a statement we encounter open terms
that must be closed before they are “quoted.” So in fact the statement to prove

10

Altenkirch, Grattage, Vizzotto, and Sabry

by induction over typing derivations is the following:

If g ∈ JΓK then ` qσ(JΓ ` t : σK g) ≡ let∗ Γ = qΓ (g) in t : σ

2

5.3 Inverting Evaluation

As explained earlier, the main ingredient of the proof of completeness is the
function qσ

Γ which inverts evaluation. To understand the basic idea of how the
inverse of evaluation is defined, consider the following example. Let Γ be the
environment x : (Q2⊗Q2), y : Q2 and let f ∈ JΓK → JQ2K. To find a syntactic
term corresponding to f , we proceed as follows:

• Flatten all the products by introducing intermediate names which produces
an updated environment Γ′ = x1 : Q2, x2 : Q2, y : Q2, and an updated
semantic function f ′ such that:

f ′ ((((), x1), x2), y) = f (((), (x1, x2)), y)

• Enumerate all possible values for the variables, and apply f ′ to each enu-
meration to produce a result in the set JQ2K. For example, it could be
the case that f (((), (1, 1)), 1) = 0. The result of each enumeration can be
inverted to a syntactic term using qσ from Definition 5.4.

• Put things together using nested conditions representing all the possible
values for the input variables. In the example we are considering, we get:

let (x1 , x2) = x
in if◦ x1

then if◦ x2
then if◦ y then false

else ...
else ...

else ...

The idea is formalised in the following definition.

Definition 5.6 The function

qσ
Γ ∈ (JΓK → JσK) → Tm Γ σ

for inverting evaluation is defined by analysing the context:

qσ
• (f) = qσ (f (0))

qσ
Γ,x:Q1

(f) = qσ
Γ (h) where h(g) = f(g, 0)

qσ
Γ,x:Q2

(f) = (if◦ x then qσ
Γ (h1) else qσ

Γ (h0))

where hi(g) = f(g, i) for i ∈ {0, 1}

qσ
Γ,x:(τ1⊗τ2)(f) = (let (x1, x2) = x in qσ

Γ,x1:τ1,x2:τ2
(h)

where h(g, x1, x2) = f(g, (x1, x2))

11

Altenkirch, Grattage, Vizzotto, and Sabry

z-intro
• ` −→0 : σ

Γ ` t : σ
prob

Γ ` κ ∗ t : σ

Γ ` t, u : σ
sup

Γ ` t + u : σ

Fig. 3. Typing quantum data (I)

The base case is straightforward: the evaluation produces a closed value
which can be inverted using the quote function of Definition 5.4. If the context
includes a variable x of type Q1, then we supply the only possible value for
that variable (0), and inductively construct the term with the variable x bound
to (). The result is of the correct type because we can add or drop bindings of
variables of type Q1 to the environment. If the context includes a variable x of
type Q2, then we supply the two possible values for that variable 0 and 1. A
conditional is then used to select the correct branch depending on the actual
value of x. Finally, if the context includes a variable of type τ1 ⊗ τ2 then
we simply flatten the product and proceed inductively. The function qσ

Γ does
indeed satisfy the inversion lemma 5.3.

6 Quantum Data and Control

We develop the typing rules and semantics of the quantum fragment of QML
in two stages. First we extend the judgements Γ ` t : σ and the semantics
of Section 4 to handle quantum data in a straightforward manner. However,
this simple treatment is only an intermediate step in the development, as it
admits quantum programs that are not realisable in a pure quantum system
without measurement. We then refine both the type system and the semantics
to identify exactly the realisable quantum programs.

6.1 The Category Vec

As a first approximation to a type system for QML programs, we consider the
type system of Figure 1 extended with the rules in Figure 3.

Unlike the classical case, a judgement Γ ` t : σ is not interpreted as
a function in JΓK → JσK. Rather, because we now have superpositions of
terms with complex probability amplitudes, we interpret such judgements as
functions in JΓK → JσKQ where JσKQ represents the complex vectors over the
base set JσK. In other words, JσKQ is defined to be JσK → C which is sometimes
denoted V JσK. All functions in the space must be linear which means that if
f ∈ V A → V B, α ∈ C, and v, v1, v2 ∈ V A, then f(v1 + v2) = f(v1) + f(v2)
and f(αv) = α(f v). We call the structure described above the category Vec.

This change requires that we revisit the semantics of the classical terms
given in Figure 2 so that each denotation returns a complex vector. For
example, we now have:

J• ` false : Q2KQ = const v where v 0 = 1.0 and v 1 = 0.0

Instead of mapping the value representing the empty context to the denotation

12

Altenkirch, Grattage, Vizzotto, and Sabry

J• ` −→0 : σKQ = const v where ∀a ∈ JσK. v a = 0.0

JΓ ` κ ∗ t : σKQ = g where ∀r ∈ JΓK, a ∈ JσK. g r a = κ ∗ (f r a)

f = JΓ ` t : σKQ

JΓ ` t + u : σKQ = h where ∀r ∈ JΓK, a ∈ JσK. h r a = 1√
2
(f r a + g r a)

f = JΓ ` t : σKQ

g = JΓ ` u : σKQ

Fig. 4. Meaning function for quantum data

of false, we now return a vector v which associates the denotation of false
with probability amplitude 1.0 and the denotation of true with probability
amplitude 0.0.

This change can be done fairly systematically by using a monad whose
unit and lift operations are defined below:

return :: S → V S

return a (b) = 1.0 if a = b and 0.0 otherwise

(.∗) :: (S → V T) → (V S → V T)

f ∗(v)(b) = Σa.(v a) ∗ (f a b)

More precisely, the changes to Figure 2 consist of:

• Every result is explicitly tagged with the monadic return . This turns every
function of type S → T to a function of type S → V T and hence all the
composition operators on functions must be lifted to account for the fact
that the result type is monadic.

• The composition g ◦ f becomes g∗ ◦ f

• The composition f ×g uses the tensor product on the vectors instead of the
classical product, i.e.: (f × g)(a, b)(x, y) = f a x ∗ g b y

• The composition f |g requires non-trivial changes as explained in Section 6.3

The updated meaning function of Figure 2 together with the new cases in
Figure 4 give the complete definition of the meaning function for QML.

6.2 Orthogonality

The type system presented so far correctly tracks the uses of variables and
prevents variables from being weakened, yet the situation is more subtle. It
turns out that the type system accepts terms which implicitly perform mea-
surements and as a consequence accepts programs which are not realisable as
pure quantum computations.

13

Altenkirch, Grattage, Vizzotto, and Sabry

Γ `◦ c : Q2 ∆ `◦ t, u : σ t ⊥ u
if◦

Γ⊗∆ `◦ if◦ c then t else u : σ

Γ `◦ t, u : σ t ⊥ u |λ|2 + |κ|2 = 1
sup◦

Γ `◦ λ ∗ t + κ ∗ u : σ

Γ `◦ t : σ Γ ` t ≡ u : σ
subst

Γ `◦ u : σ

Fig. 5. Typing quantum data (II)

Consider the expression if◦ x then true else true. This expression ap-
pears to use x , syntactically at least. However given the semantics of if◦,
which returns a superposition of the branches, the expression happens to re-
turn true without really using any information about x , i.e., it effectively
forgets or measures x . In order to maintain the invariant that all measure-
ments are explicit, the type system should therefore reject such an expression.

More precisely, the expression if◦ x then t else u should only be accepted
if t and u are orthogonal quantum values (t ⊥ u). This notion intuitively
ensures that the conditional operator does not implicitly discard any infor-
mation about x during the evaluation. Indeed the incoming value of x is a
superposition of the two orthogonal basis vectors representing false and true.
If we require that the result of the if◦ expression is another superposition of
orthogonal values, then it essentially becomes a rotation. Because of a similar
concern, the two branches of a superposition should also be orthogonal.

We therefore introduce a new typing judgement Γ `◦ t : σ which is similar
to the judgement Γ ` t : σ except that it uses modified rules for conditionals
and superpositions which require that the relevant subexpressions are orthog-
onal. The modified rules are given in Figure 5. The modification also achieves
that programs are normalised, i.e., the sum of the probabilities of a superpo-
sition add up to 1. The judgement `◦ is not automatically closed under the
equality judgement, hence we add the rule (subst). Our philosophy is that we
allow equivalent representations of QML programs which do not satisfy the
orthogonality criteria locally, as long as the program as a whole is equivalent
to one which does satisfy the criteria.

It remains to define the syntactic orthogonality judgement t ⊥ u. Se-
mantically the vectors vt and vu representing the values of the terms t and
u are orthogonal if their inner product 〈vt|vu〉 is 0. We provide a syntactic
approximation of the inner product in Figure 6: the syntactic version assigns
to any pair of terms Γ ` t, u : σ a value 〈t|u〉 ∈ C ∪ {?} where ? is a “don’t
know” answer. In the figure λ is the conjugate of the complex number λ. We
extend multiplication to this domain by 0 ∗ x = x ∗ 0 for any x ∈ C∪ {?} and
x ∗? =?∗ x=? for x 6= 0. Addition is also extended by x +? =?+ x=?. The
approximation is sound but clearly incomplete.

14

Altenkirch, Grattage, Vizzotto, and Sabry

〈t|t〉 = 1 if t 6= −→0

〈false|true〉 = 0

〈true|false〉 = 0

〈−→0 |true〉 = 0 = 〈true|−→0 〉

〈−→0 |false〉 = 0 = 〈false|−→0 〉

〈−→0 |x〉 = 0 = 〈x|−→0 〉

〈(t, t′) | (u, u′)〉 = 〈t|u〉 ∗ 〈t′|u′〉

〈λ ∗ t + λ′ ∗ t′ | u〉 = λ ∗ 〈t|u〉+ λ′ ∗ 〈t′|u〉

〈t | κ ∗ u + κ′ ∗ u′〉 = κ ∗ 〈t|u〉+ κ′ ∗ 〈t|u′〉

〈λ ∗ t|u〉 = λ〈t|u〉

〈t|λ ∗ u〉 = λ ∗ 〈t|u〉

〈t + t′|u〉 = 〈t|u〉+ 〈t′|u〉

〈t|u + u′〉 = 〈t|u〉+ 〈t|u′〉

〈t|u〉 = ? otherwise

Fig. 6. Inner products and orthogonality

6.3 The Category Q◦

The restriction of the set of typable terms requires a similar semantic restric-
tion. We require that all the functions preserve the inner products of vectors,
i.e., that they are isometries. A function f ∈ V A → V B is an isometry if
for all v1, v2 ∈ V A, we have that 〈v1|v2〉 = 〈f v1|f v2〉. Intuitively such func-
tions can never “forget” any information which is consistent with our desire
to prevent situations which would accidently measure a value.

It is fairly straightforward to show that all the functions introduced by the
denotational semantics are isometries except of course for the cases of super-
positions and if◦ which require side-conditions on their inputs as motivated
in the previous section. Semantically the syntactic condition of orthogonality
translates to the following requirement on the corresponding meaning func-
tions. These functions must map arbitrary input environments to orthogonal
vectors. We say that two morphisms f, g in V A → V B are orthogonal is for
any two vectors v1, v2 ∈ V A, we have that 〈f v1|g v2〉 = 0. To explain this
semantic restriction, we consider the case of superpositions in detail; the case
for if◦ is similar. Looking at the semantic definition in Figure 4, we would
like to guarantee that h∗ is an isometry given that both f ∗ and g∗ are both
isometries. We calculate as follows. Let r1 and r2 be vectors in V Γ, then
using some fairly simple but tedious calculations we get:

〈h∗r1|h∗r2〉 = 1
2
(〈f ∗r1|f ∗r2〉+ 〈g∗r1|g∗r2〉+ 〈f ∗r1|g∗r2〉+ 〈g∗r1|f ∗r2〉)

= 〈r1|r2〉+ 1
2
(〈f ∗r1|g∗r2〉+ 〈g∗r1|f ∗r2〉)

= 〈r1|r2〉

The first step is because f ∗ and g∗ are both isometries that preserve the inner
product. The second step is because of the additional requirement that f ∗ is
orthogonal g∗.

15

Altenkirch, Grattage, Vizzotto, and Sabry

We call the resulting category of vectors and isometries the category of
strict quantum computations, Q◦. The homset of morphisms in JΓK → JσKQ is
called Q◦ JΓK JσKQ. The meaning function is given as before but with the maps
interpreted in the category Q◦, i.e., the meaning of a derivation Γ ` t : σ is a
morphism JΓ ` t : σKQ ∈ Q◦ JΓK JσKQ. As explained above, the requirement for
orthogonality in the type system is reflected semantically: the superposition
is an isometry if the two components are orthogonal; similarly, the conditional
f |g is an isometry if f and g are orthogonal.

6.4 Quantum Equational Theory

The equational theory for the quantum language inherits all the equations
for the classical case. This can be informally verified by noting that the
meaning function in the case of the quantum language is essentially identical
to the classical case. Formally, the proof technique explained in Section 4
applies equally well to the quantum case and yields the same equations for
the classical core plus additional equations to deal with quantum data.

Definition 6.1 The quantum equations are:

(if◦)
if◦ (λ ∗ t0 + κ ∗ t1) then u0 else u1

≡ λ ∗ (if◦ t0 then u0 else u1) + κ ∗ (if◦ t1 then u0 else u1)

(superpositions)
t + u ≡ u + t

t +
−→
0 ≡ t

t + (u + v) ≡ (t + u) + v
λ ∗ (t + u) ≡ λ ∗ t + λ ∗ u
λ ∗ t + κ ∗ t ≡ (λ + κ) ∗ t

0 ∗ t ≡ −→
0

Lemma 6.2 (Soundness) The equational theory is sound. Given Γ ` t ≡
u : σ then the isometries JΓ ` t : σKQ and JΓ ` u : σKQ are extensionally equal.

The additional equations are used to prove equality between different quan-
tum values. Semantically, two quantum values are the same if they denote the
same vector, which is the case if the sum of the paths to each classical value
is the same. For example, to find a simplified quantum value equivalent to:

(false + true) + (false + (−1) ∗ true)

we first normalise to:

(1 /
√

2) ∗ ((1 /
√

2) ∗ false + (1 /
√

2) ∗ true) +

(1 /
√

2) ∗ ((1 /
√

2) ∗ false + (−1 /
√

2) ∗ true)

This term has two paths to false; along each of them the product of the
amplitudes is (1 /

√
2) ∗ (1 /

√
2) which is 1 / 2. The sum of all the paths

to false is 1, and the sum of all the paths to true is 0. In other words, the
entire term is equivalent to simply false. The above calculation proves that

16

Altenkirch, Grattage, Vizzotto, and Sabry

the Hadamard operation is self-inverse, as discussed in the introduction.

6.5 Quoting quantum values

We will now adapt the techniques developed in section 4 to the quantum case.
A classical value v ∈ ValCσ is simply a term representing an element in JσK.
A quantum value represents a vector in V JσKQ, hence we have to close values
under superpositions. We define ValQ σ ⊆ Tm σ inductively as a subset of
closed terms of type σ:

v ∈ ValC σ

val v ∈ ValQ σ
0 ∈ ValQ σ

v, w ∈ ValQ σ

v + w ∈ ValQ σ

v ∈ ValQ σ

κ ∗ v ∈ ValQ σ

We write ValQ◦ σ for isometric quantum values which satisfy the restrictions
introduced in Figure 5.

We have already seen that there is a monadic structure on V A = A → C.
Correspondingly, we have a Kleisli structure on ValQ. The return is val ∈
ValCσ → ValQσ, and bind is defined as: given v ∈ ValQσ and f ∈ ValCσ →
ValQτ , we define v >>= f ∈ ValQ τ by induction over v:

(val x) >>= f = f x
0 >>= f = 0
v + w >>= f = (v >>= f) + (w >>= f)
κ ∗ v >>= f = κ ∗ (v >>= f)

Lemma 6.3 (ValC, ValQ, val, (>>=)) is a Kleisli structure, i.e. it satisfies the
following equations:

(i) val x >>= f ≡ f x

(ii) v >>= λx .val x ≡ v

(iii) v >>= λx .(f x) >>= g ≡ (v >>= f) >>= g

Proof. Case (i) follows from the definition. Cases (ii) and (iii) can be shown
by induction over the structure of v. 2

While the classical definition of qσ (def. 5.4) was straightforward, its quan-
tum counterpart is a bit more subtle, in particular in the case of tensor prod-
ucts. As a special case consider qQ2⊗Q2 . Given an element

−→v ∈ JQ2 ⊗Q2KQ = JQ2K× JQ2K → C
we have to construct a value qQ2⊗Q2 −→v ∈ ValQQ2 ⊗Q2. This can be done by
calculating the probabilities that the first qubit is i, fst−→v i ∈ R+, given by

fst−→v i =
√
|−→v (i, 0)|2 + |−→v (i, 1)|2

17

Altenkirch, Grattage, Vizzotto, and Sabry

fst v 0

ttiiiiiiiiiiiiiiiiii
fst v 1

**UUUUUUUUUUUUUUUUUU

v(0,0)
fst v 0

{{xxx
xx

xx
xx v(0,1)

fst v 0

##FF
FF

FF
FF

F
v(1,0)
fst v 1

{{xxx
xx

xx
xx v(1,1)

fst v 1

##FF
FF

FF
FF

F

(0,0) (0,1) (1,0) (1,1)

Fig. 7. Value tree for Q2 ⊗Q2

creating the first level of the value as a tree, and then for the second level
normalising the amplitudes with respect to the probabilities of the previous
level (see figure 7 for the corresponding tree.) We write JσKP = JσK → R+

for the set of probability distributions; obviously we have JσKP ⊆ JσKQ. We
observe that fst−→v ∈ JσKP. Generalising the idea given above we arrive at the
following definition of the “quote” function.

Definition 6.4 The syntactic representations of denotations is given by:

qσ ∈ JσKQ → ValQ σ

which is defined by induction over σ:

qQ1 −→v = (−→v 0) ∗ val ()

qQ2 −→v = (−→v 1) ∗ val true + (−→v 0) ∗ val false

qσ⊗τ −→v = qσ(fst−→v)

>>=λx ∈ ValCσ.(1/(fst−→v) x) ∗ qτ (λy ∈ ValCσ.−→v (x, y))

>>=λy ∈ ValCσ.val (x, y)

where:

fst ∈ Jσ ⊗ τKQ → JσKP

fst−→v x =
√

Σy.|−→v (x, y)|2

1/− ∈ JσKP → JσKP

1/−→v x = λx .if −→v x ≡ 0 then 0 else 1/(−→v x)

To show adequacy we have to establish a number of properties of qσ. We
have to show that it is linear and isometric, and that it preserves tensor
products. This is summarised in the following proposition:

Proposition 6.5

(i) qσ (κ ∗ −→v) ≡ κ ∗ (qσ −→v)

(ii) qσ (−→v +−→w) ≡ (qσ −→v) + (qσ −→w)

(iii) 〈−→v |−→w 〉 = 〈qσ −→v |qσ −→w 〉
(iv) qσ⊗τ (−→v ⊗−→w) ≡ (qσ −→v , qτ −→w)

18

Altenkirch, Grattage, Vizzotto, and Sabry

The proof of the above proposition again isn’t completely straightforward,
as linearity cannot just be proven by induction over σ. It is essential that
we first establish some properties of re-normalising a vector with respect to a
probability distribution. We define the product of a probability distribution
p ∈ JσKP and a vector −→v ∈ JσKQ as:

p ∗ −→v ∈ JσKQ

p ∗ −→v = λx ∈ JσK.(px) ∗ (−→v x)

Now we see that an analogous operation can be defined on values, given v ∈
ValQ σ and p ∈ JσKP as above, we define:

p ∗ v ∈ ValQ σ

p ∗ v = v >>= λx ∈ JσK.(px) ∗ (val x)

The key property we establish is the following.

Lemma 6.6 Given p ∈ JσKP and −→v ∈ JσKQ

p ∗ (qσ −→v) ≡ qσ (p ∗ −→v)

The lemma can be verified by induction over σ, and observing that while
1/− isn’t a proper inverse, it nevertheless satisfies the following property:

1/(p + q) ∗ (p + q) = (1/p) ∗ p

Using the fact that qσ is isometric we can show that it produces values
satisfying the orthogonality constraints.

Proposition 6.7 Given v ∈ JσKQ

`◦ qσ v : σ

6.6 Adequacy

We define a syntactic counterpart to δΓ,∆ ∈ Q◦ JΓ⊗∆K (JΓKQ⊗ J∆KQ). which
denoted by:

δ̂Γ,∆ ∈ Tm (Γ⊗∆) (|Γ| ⊗ |∆|)
This term is defined as follows:

δ̂Γ,∆ =

let (g , d) = δΓ′,∆′in ((g , x), (d , x)) if Γ = Γ′, x : σ

and ∆ = ∆′, x : σ

let (g , d) = δΓ′,∆in ((g , x), d) if Γ = Γ′, x : σ

and x 6∈ dom ∆

1∆ if Γ = •

To establish that qσ commutes with the context operations we have to show
by induction on σ that contraction corresponds to δ ∈ Q◦ JσK (JσKQ ⊗ JσKQ).

19

Altenkirch, Grattage, Vizzotto, and Sabry

Lemma 6.8 Given v ∈ JσKQ we have let x = qσ v in (x , x) ≡ qσ⊗σ v.

Exploiting this property we can show that the context operations commute
with “quote”.

Lemma 6.9 Given −→v ∈ JΓ⊗∆KQ, we have:

q|Γ|⊗|∆| (δΓ,∆
−→v) ≡ δ̂Γ,∆ q|Γ⊗∆|−→v

Theorem 6.10 If Γ ` t : σ and g ∈ JΓKQ then:

` qσ(JΓ ` t : σKQg) ≡ let∗ Γ = qΓ g in t : σ.

Proof. By induction over the derivation of Γ ` t : σ, as an example consider
the case for let:

qρ (JΓ⊗∆ ` let x = t in u : ρKQ)

≡ {definition of J. . .KQ}

qρ (JuKQ ◦ (JtKQ ⊗ id) ◦ δΓ,∆)

≡ {induction hypothesis for u and t}

u ◦ (t ◦ qΓ ⊗ q∆) ◦ δΓ,∆)

≡ { Lemma 6.9 }

u ◦ (t⊗ id) ◦ δ̂Γ,∆ ◦ q|Γ⊗∆|

≡ (let x = t in u) ◦ q|Γ⊗∆|

The other cases use the same style of reasoning to deal with the structural
properties and exploit proposition 6.5. Note that the case for if◦ can be
reduced to linearity. 2

Corollary 6.11 (Adequacy) If ` t : σ then ` qσ(J ` t : σKQ) ≡ t : σ

6.7 Completeness and Normalisation

The development here follows closely the one in the classical case as presented
in Section 5.3.

Definition 6.12 The function qσ
Γ ∈ Q◦ JΓK JσKQ → Tm Γ σ for inverting eval-

uation is defined by analysing the context:

qσ
• (f) = qσ (f (return 0))

qσ
Γ,x:Q1

(f) = φ−1
Γ,x:Q1

◦ (qρ
Γ) ◦ ΦΓ,x:Q1

qσ
Γ,x:Q2

(f) = φ−1
Γ,x:Q2

◦ (qσ
Γ × qσ

Γ) ◦ ΦΓ,x:Q2

qσ
Γ,x:(τ1⊗τ2)(f) = φ−1

Γ,x:τ1⊗τ2
◦ qσ

Γ,x1:τ1,x2:τ2
◦ ΦΓ,x:τ1⊗τ2

20

Altenkirch, Grattage, Vizzotto, and Sabry

The auxiliary isomorphisms are defined as follows:

φΓ,x:Q1 ∈ Tm (Γ, x : Q1) σ → Tm Γ σ

φΓ,x:Q1t = let x = () in t

φΓt = t

φΓ,x:Q2 ∈ Tm (Γ, x : Q2 σ) → {(t0, t1) ∈ (Tm Γ σ)2 | t0 ⊥ t1}

φx:Q2 t = (let x = false in t, let x = true in t)

φ−1
Γ,x:Q2

(t, u) = if◦ x then t else u

φΓ,x:τ1⊗τ2 ∈ Tm (Γ, x : τ1 ⊗ τ2) ρ → Tm (Γ, x1 : τ1, x2 : τ2)

φΓ,x:τ1⊗τ2 t = let x = (x1, x2) in t

φ−1
Γ,x:τ1⊗τ2

(t) = let (x1, x2) = x in t

Since the isomorphisms φ are defined as an operation on terms, we have corre-
sponding isomorphisms in the semantic category (Q◦) which we denote by Φ.

For the inversion proof we only need the provability of one side of the
isomorphisms which follows from the η-equalities.

Lemma 6.13 The family of equalities φ−1
Γ (φΓt) ≡ t is derivable.

Definition 6.14 The normal form of t is given by nfσΓ(t) = qσ
Γ(JΓ ` t : σKQ).

Lemma 6.15 (Inversion) The equation Γ ` nfσ
Γ (t) ≡ t is derivable.

Proof. By induction over the definition of qσ
Γ. In the case of Γ = • the result

follows from adequacy, Corollary 6.11. In all the other cases we exploit Lemma
6.13. 2

Since all our definitions are effective nf indeed gives rise to a normalisation
algorithm. As a consequence, our equational theory is decidable, modulo
deciding equalities of the complex number terms which occur in our programs.
We also note that as in the classical case, our theory is complete.

Proposition 6.16 (Completeness) If JΓ ` t : σKQ and JΓ ` u : σKQ are ex-
tensionally equal, then we can derive Γ ` t ≡ u : σ.

7 Conclusions and Further Work

We have developed a sound and complete equational theory for a functional
quantum programming language, while at the same time providing a nor-
malisation algorithm. The construction is a modular extension of a classical
theory; indeed the quantum theory inherits not just all the equations and term

21

Altenkirch, Grattage, Vizzotto, and Sabry

formers, it is also possible to generalise our proof technique to the quantum
case. The quantum theory introduces additional constructs corresponding to
superpositions and equations relating them.

The obvious next step is to generalise this approach to the full language
QML including measurements. The equational theory is already a challenge,
since a measurement can have non-local effects on shared data. Semantically,
we will use superoperators to model programs with measurements. Clearly,
we have to extend our quote operator to work on density matrices.

Another interesting direction would be to consider higher-order quantum
programs and develop a complete equational theory and normalisation al-
gorithm for this calculus. A likely semantic domain is given by presheaves,
here the tensor product can be modelled using Day’s construction, which is
automatically closed, i.e., provides an interpretation for higher types.

References

[AD04] P. Arrighi and G. Dowek. Operational semantics for a formal tensorial
calculus. In Proceedings of the 2nd International Workshop on Quantum
Programming Languages, 2004.

[AG05] Thorsten Altenkirch and Jonathan Grattage. A functional quantum
programming language. In Prakash Panangaden, editor, Proceedings of the
Twentieth Annual IEEE Symp. on Logic in Computer Science, LICS 2005,
pages 249–258. IEEE Computer Society Press, June 2005.

[AU04] T. Altenkirch and T. Uustalu. Normalization by evaluation for λ→2. In
Functional and Logic Programming, number 2998 in LNCS, pages 260 –
275. Springer-Verlag, 2004.

[NC00] M. Nielsen and I. Chuang. Quantum Computation and Quantum
Information. Cambridge University Press, Cambridge, 2000.

[Sel04] P. Selinger. Towards a quantum programming language. Mathematical
Structures in Computer Science, 14(4):527–586, 2004.

[SV05] P. Selinger and B. Valiron. A lambda calculus for quantum computation
with classical control. In Proceedings of the Seventh International
Conference on Typed Lambda Calculi and Applications (TLCA), Springer-
Verlag, LNCS 3461, pages 354–368, 2005.

[vT03] A. van Tonder. Quantum computation, categorical semantics and linear
logic. Available as quant-ph/0312174, 2003.

[vT04] A. van Tonder. A lambda calculus for quantum computation. SIAM Journal
on Computing, 33(5):1109–1135, 2004.

22

	Introduction
	Related work
	QML Syntax and Examples
	Examples
	Copying and Discarding Quantum Data

	The Classical Sub-language
	Type System
	The Category of Typed Terms
	Semantics
	Equational Theory

	Completeness of the Classical Theory
	Proof Technique
	Adequacy
	Inverting Evaluation

	Quantum Data and Control
	The Category Vec
	Orthogonality
	The Category Q
	Quantum Equational Theory
	Quoting quantum values
	Adequacy
	Completeness and Normalisation

	Conclusions and Further Work
	References

