
QPL 2006

From reversible to irreversible computations

Alexander S. Green 1,2

Computer Science and IT
The University of Nottingham

Nottingham, UK

Thorsten Altenkirch 3

Computer Science and IT
The University of Nottingham

Nottingham, UK

Abstract

In this paper we study the relation between reversible and irreversible computation
applicable to different models of computation — here we are considering classical
and quantum computation.

Abstract models of computation like λ calculus or more abstractly Cartesian
closed categories are based on irreversible processes, indeed Cartesian products in-
troduce projections which are irreversible. In contrast, in Physics the more funda-
mental notions describe processes in closed systems where every action is reversible,
i.e. Newtonian Mechanics, Maxwellian electrodynamics and quantum mechanics fit
into this pattern. Open systems, which allow irreversible processes, are a derived
notion — they can be considered as a subsystem of a closed system. Indeed, an
irreversible process can be understood in terms of a reversible one with a partic-
ular assignment of boundary conditions, e.g. Feynman’s and Wheeler’s theory of
absobers [WF45].

Key words: Reversible Computation, Irreversible Computation,
Quantum Computation.

1 Introduction

Our plan is to follow the physical idea that reversibility is the fundamental no-
tion and irreversibility is a derived notion to model computation. Reversibility

1 We would like to thank Jonathan Grattage for his help and discussions on this paper,
and also the referee whose comments were very interesting and useful.
2 Email: asg@cs.nott.ac.uk
3 Email: txa@cs.nott.ac.uk

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Green and Altenkirch

has been investigated by Bennet in his classical paper [Ben73], where he shows
that reversible computation has the same power as irreversible computation.
It has also since been shown that in terms of complexity, reversible space is
the same as deterministic space [LMT97]. Recently, Abramsky investigated
the notion of reversible computation from a structural perspective [Abr01].

We build on previous work of the 2nd author with Jonathan Grattage on
compiling QML [AG05]. QML’s design is based on an analogy between classi-
cal and quantum computation. To make this precise we introduce two models
of computation: FCC for Finite Classical Computation and FQC for Finite
Quantum Computation. Both are based on a notion of reversible computation
(bijections vs. unitary operators) and introduce irreversible computations as
a derived notion by marking certain inputs as preinitialised heap and certain
outputs as garbage which is thrown away (i.e. measured in the quantum case)
at the end of the computation. We also introduce the notion of extensional
equivalence of two irreversible computations which are given by the associated
functions on finite sets in the classical case and by an embedding into the cat-
egory of superoperators on finite dimensional Hilbert spaces in the quantum
case. While the choice of extensional equality in the two examples is very nat-
ural it is not parametric in the notion of reversible computation. That is, we
would like to obtain the notion of irreversible computation as a consequence
of our choice of reversible computation.

We attempt to fix this here by introducing three laws which state which al-
gebraic properties a notion of irreversible computation derived from reversible
computation must satisfy. Both FCC and FQC satisfy these laws and we
show that they are sufficient to derive von Neumann’s measurement postulate,
which in this setting corresponds to measuring twice is the same as measuring
once. Currently, we have to leave open the question whether the three laws
exactly characterise quantum computation for definable circuits, i.e. whether
the equivalence of circuits introduced by the quantum model is on some sense
the free model of irreversible computation. This doesn’t seem to be equivalent
to the question whether the category of completely positive maps is equation-
ally definable from initialisation and measurement which is known not to be
the case [?], since we only consider definable circuits.

2 Reversible Computation

We model reversible computations by a groupoid FxCR, that is for every
morphism ψ ∈ FxCR(a, b) there is an inverse ψ−1 ∈ FxCR(b, a) such that
ψ, ψ−1 are an isomorphism. We assume that the groupoid is strict, i.e. that
any isomorphic objects are equal. This entails that FxCR(a, b) is empty, if
a 6= b, consequently we denote homsets by FxCR a = FxCR(a, a). We also
assume that FxCR has a strict monoidal structure I,⊗ which corresponds to
parallel composition of computations and a special object of Booleans,denoted
by 2. Since we are only interested in objects which can be generated from

2

Green and Altenkirch

I, 2,⊗ we can use natural numbers a ∈ N to denote the object 2a. We write
[a] = {i ∈ N | i < a} for the initial segment of N.

We characterise the morphisms, i.e. circuits, in FxCRa inductively and
also give the inverses:

wires Given a bijection on initial segments φ : [a] ' [a] we write wiresφ ∈
FxCR a for the associated rewiring. For example, the rewiring denoted
pictorially as

x0 ??
?? x1

x1

����
??

?? x2
x2

���� x0
would have φ = [1, 2, 0]. The existence of wires follows from the strict
monoidal structure, with the identity (ida) being a special case of wires.

sequential composition combines two circuits of equal size (ie. with the
same number of wires) in sequence. That is, given ψ, φ ∈ FxCRa we con-
struct φ ◦ ψ ∈ FxCRa.

ψ φ
_ _ _ _�

�

�

�_ _ _ _
we can construct the inverse using φ−1 and ψ−1 to give ψ−1 ◦ φ−1.

φ−1 ψ−1

_ _ _ _ _ _ _�

�

�

�_ _ _ _ _ _ _

parallel composition combines any two circuits in parallel, and can be
thought of as the tensor product. The size of the new circuit constructed
is equal to the sum of the sizes of the original two circuits. That is, given
ψ ∈ FxCRa and φ ∈ FxCRb we can construct ψ ⊗ φ ∈ FxCR(a+ b).

ψ

φ

_ _�
�
�
�

�
�
�
�

_ _

again we can construct the inverse using ψ−1 and φ−1, this time to give
ψ−1 ⊗ φ−1.

ψ−1

φ−1

_ _ _�
�
�
�
�

�
�
�
�
�

_ _ _
rotations count as any 1 “bit” operations. That is a rotation is any element

of FxCR1, and in the case of classical reversible circuits the only rotation
available is the Not operation. So we have ¬ ∈ FxCR1 with ¬−1 = ¬. In
the quantum case this would obviously be any single qubit rotation.(i.e. a
unitary operation in U(2))

conditionals use a control wire to decide whether a computation should be
performed. That is, given φ ∈ FxCRa we can construct ida | φ ∈ FxCR(1+
a).

•
φ

3

Green and Altenkirch

the inverse is again constructed using φ−1 giving ida | φ−1.

•

φ−1

For ease of notation we shall also introduce the conditional that acts when
the control wire is set to true. This conditional can be constructed from the
conditional already given, and the Not operation (or rotation) as follows:

����	
�
φ

≡ Not • Not

φ

which for φ ∈ FxCRa can be denoted φ | ida ∈ FxCR(1+a). This naturally
leads us to a choice operator, such that given two computations of the same
size, the value of the control wire is used to govern which computation is
done. That is, given ψ, φ ∈ FxCRa we can construct ψ | φ ∈ FxCR(1 + a),
as follow:

����	
� •

ψ φ

_ _ _ _�
�
�
�

�
�
�
�

_ _ _ _

the inverse is once again given by ψ−1 and φ−1, and constructed as ψ−1 | φ−1:

����	
� •

ψ−1 φ−1

_ _ _ _ _ _ _�
�
�
�

�
�
�
�

_ _ _ _ _ _ _

The laws governing wires, sequential composition and parallel composition
follow from the categorical infrastructure. Additionally, we assume that the
following equalities hold for conditionals:

Firstly we have for f, g, h ∈ FxCRa that (f | g) ◦ (2 ⊗ h) = f ◦ h | g ◦ h
pictorially this can be shown as:

����	
� •

h f g

_ _ _ _�
�
�
�

�
�
�
�

_ _ _ _

= ����	
� •

h f h g

_ _ _ _ _ _ _ _ _ _ _ _ _ _�
�
�
�
�

�
�
�
�
�_ _ _ _ _ _ _ _ _ _ _ _ _ _

Secondly we have for f, g, h ∈ FxCRa that (2 ⊗ h) ◦ (f | g) = h ◦ f | h ◦ g
pictorially this can be shown as:

����	
� •

f g h

_ _ _ _�
�
�
�

�
�
�
�

_ _ _ _

= ����	
� •

f h g h

_ _ _ _ _ _ _ _ _ _ _ _ _ _�
�
�
�
�

�
�
�
�
�

_ _ _ _ _ _ _ _ _ _ _ _ _ _

and thirdly we have that for f, f ′, g, g′ ∈ FxCRa that (f | g) ◦ (f ′ | g′) =

4

Green and Altenkirch

(f ◦ f ′) | (g ◦ g′) again the pictorial representation for this would be:

����	
� • ����	
� •

f ′ g′ f g

_ _ _ _ _�
�
�
�

�
�
�
�_ _ _ _ _

_ _ _ _�
�
�
�

�
�
�
�_ _ _ _

= ����	
� •

f ′ f g′ g

_ _ _ _ _ _ _ _ _ _ _ _ _ _�
�
�
�
�

�
�
�
�
�_ _ _ _ _ _ _ _ _ _ _ _ _ _

using this last axiom it is possible to simplify the first two to just be that Alex:
Check
this
is
true!

(h | h) = (id1 ⊗ h) or pictorially:

����	
� •

h h

=

h

We also have distributivity over ⊗ and |, such that given f, g ∈ FxCRa
and h ∈ FxCRb we have that (f | g)⊗ h = (f ⊗ h) | (g ⊗ h). This can again
be given pictorially.

����	
� •

f g

h

_ _ _ _ _ _�
�
�
�

�
�
�
�

_ _ _ _ _ _

= ����	
� •

f g

h h

Instead of considering only powers of 2 we could have modelled arbitrary
sized computations by introducing a strict bimonoidal structure (as defined
by Laplaza in [?]) with Z,⊕. Defining 2 = I ⊕ I the conditionals and their
laws are derivable from the bimonoidal structure. ¬ then becomes a witness
of the fact that the additive structure is symmetric. We can also derive for
f, g ∈ FxCRa that (¬ ⊗ ida) ◦ (f | g) = (g | f) ◦ (¬ ⊗ ida), or pictorially that
would be: ����	
� • Not

f g

_ _ _ _�
�
�
�

�
�
�
�_ _ _ _

= Not ����	
� •

g f

_ _ _ _�
�
�
�

�
�
�
�

_ _ _ _

Examples of FxCR categories

There are two obvious examples that can be given of FxCR categories, firstly
there is the FCCR category of classical reversible circuits, and secondly there
is the FQCR of quantum circuits. The difference mainly being in the rotations
that are available. Interestingly we have that FCCR ↪→ FQCR and therefore
that to show equality in FCCR it is enough to show equality (for the same
circuit) in FQCR (and vice versa).

3 Irreversible computations

We derive a notion of irreversible computations from the given notion of re-
versible computation by defining the category FxCir, where every morphism

5

Green and Altenkirch

of the category represents an irreversible computation, but is in fact of the
form ψ′ = (h, g, ψ) where h is a set of heap inputs, g is a set of garbage
outputs, and ψ is the underlying reversible computation. So a morphism in
FxCir(a, b) can be given as a morphism in FxCR((a ⊗ h), (b ⊗ g)) with the
requirement that (a⊗h) = (b⊗g). Pictorially we can represent an irreversible
computation (h, g, ψ) as the reversible computation ψ where we mark heap
and garbage explicitely:

a
ψ

b

h
� g�

We also have that for any ψ ∈ FxCRa there is an equivalent circuit ψ̂ ∈
FxCir(a, a), more precisely this is given by the predicate:

ψ ∈ FxCRa

ψ̂ ∈ FxCir(a, a)

such that ψ̂ = (0, 0, ψ), i.e. there is no heap or garbage.

We note that we can define sequential composition for irreversible com-
putations, i.e. given α = (hα, gα, φα) ∈ FxCir(a, b) and β = (hβ, gβ, φβ) ∈
FxCir(b, c) we define β ◦ α ∈ FxCir(a, c) as:

a
φα φβ

c

hα
�

::
:: gβ

�

hβ
�

���� gα
�

The identity can be obtained by lifting the reversible identity idFxCir

a =
̂idFxCR

a . It is straightforward to verify that FxCir thus constructed is a cate-
gory by using the monoidal indentities in the underlying category of reversible
computations. Moreover, FxCir inherits the monoidal structure from FxCR,
e.g. given α = (hα, gα, φα) ∈ FxCir(a, b) and β = (hβ, gβ, φβ) ∈ FxCir(c, d),
we obtain α⊗ β ∈ FxCir(a⊗ c, b⊗ d) as:

a
φα

b
c

77
77

77
77 d

hα
�

����
φβ

���� gα
�

hβ
� gβ

�

The neutral element of the tensor, i.e. the empty circuit, can be obtained by

lifting IFxCir
= ÎFxCR

.

Examples of FxCir categories

We can now extend our two example FxCR categories to FxCir categories.
We shall call these FCC for the category of finite classical computations, and
FQC for finite quantum computations. We have informally that FCC '
Finite Sets, and that FQC ' Superoperators.

6

Green and Altenkirch

4 Equivalence

In the reversible case the equality of definable circuits is the same in the
classical case and in the quantum case, but this doesn’t hold for irreversible
computations. E.g. in the classical case the following two circuits would be
equivalent:

•
�

Not
�

≡

However, this equivalence does not hold when we move into the category of
finite quantum computations (FQC). This is because, in quantum computa-
tion, the control wire (or qubit) can become entangled with the target wire
(qubit). All is not lost though as there is another similar equivalence that
holds in FQC that is (von Neumann’s measurement postulate):

• •
�

Not
�

�
Not

�

≡ •
�

Not
�

so, how now can we characterise the equivalences which should always hold?

We have come up with three laws to try and characterise these equivalences,
that hold in both FCC and FQC. The first law is that of garbage collection,
and it is states that if a circuit can be reduced into two smaller circuits such
that one part of the circuit only acts on heap inputs, and on garbage outputs,
then that part of the circuit can be removed.

A f B

H
� g G

�

_ _�
�
�
�

�
�
�
�

_ _

≡ A f B

The second law is of the uselessness of garbage processing, and states that
if a circuit can be reduced into two smaller circuits such that one part of the
circuit only has an effect on garbage outputs, then that can be removed.

A
f

B

H
� g G

�
≡ A f B

H
�

G
�

this can be alternately stated as saying that if the only outputs of (part of) a
circuit are garbage outputs, then this is equivalent to just having garbage.

g � ≡ �

and similarly we can now simplify the first law to state that a wire that simply
connects the heap to the garbage is equivalent to having nothing.

� � ≡ •
7

Green and Altenkirch

The third law is of the uselessness of heap preprocessing, and states that
if a circuit can be reduced into two smaller circuits such that one part of the
circuit only has effect on heap inputs, and the effect on the zero vector is the
identity, then that part can be removed.
if h0 = 0 then

A
f

B

H
�

h G
�

≡ A f B
H

�
G

�

the alternate notation for this would again be to state that if (part of) a circuit
only has heap inputs, and its effect on the zero vector is the identity, then this
is equivalent to just having a heap.
if h0 = 0 then

�
h ≡ �

We can already use these laws to give a proof of the measurement postulate.
The first step is to show the equivalence of

• •
Not

Not

≡ •
• Not •

Not Not

this is simple as you will notice there is no heap or garbage, so we know that
the circuits are in FQCR, and in fact only use the elements from FCCR and
thus equivalence follows from looking at the truth tables, which are the same.

The third controlled not is eliminated using the second law.

•
� • Not • �

�
Not Not

�

_ _ _ _ _ _ _ _�
�
�
�
�

�
�
�
�
�_ _ _ _ _ _ _ _

_ _ _�
�
�
�

�
�
�
�_ _ _

≡ •
� • Not

�

�
Not

�

The controlled Not’s preserve the zero vector so we can eliminate the first
one using our third law.

•
� • Not

�

�
Not

�

_ _ _�
�
�

�
�
�_ _ _

_ _ _�
�
�
�

�
�
�
�_ _ _

≡ •
�

Not
�

� �

Finally the bottom wire can be removed by use of our first law.

•
�

Not
�

� �

_ _ _ _�
�
�
�

�
�
�
�

_ _ _ __ _ _ _ _ _�� ��_ _ _ _ _ _

≡ •
�

Not
�

8

Green and Altenkirch

5 Further Work

We are investigating whether we could state the whole development more
abstractly using only symmetric strictly bimonoidal categories as the base for
the notion of reversible computations. A problem in our current formulation
is the last law on heap preprocessing which introduces the precondition that a
circuit is 0-preserving. It is not clear how to state this condition abstractly. An
alternative would be to drop this condition and to assume that a computation
can be carried out provided a correct initialisation. Interestingly our laws
would then be symmetric.

Finally, we would like to answer the question whether our laws are complete
for quantum computation, i.e. whether we can characterise the equality of
definable quantum circuits just by our three laws.

References

[1] S. Abramsky. A structural approach to reversible computation, 2001.

[2] Thorsten Altenkirch and Jonathan Grattage. A functional quantum
programming language. In 20th Annual IEEE Symposium on Logic in Computer
Science, 2005.

[3] C. H. Bennett. Logical reversibility of computation. IBM Journal of Research
and Development, 17(6):525–532, 1973.

[4] Klaus-Jorn Lange, Pierre McKenzie, and Alain Tapp. Reversible space equals
deterministic space. In IEEE Conference on Computational Complexity, pages
45–50, 1997.

[5] M. Laplaza. Coherence for distributivity. Lecture Notes in Mathematics, 281:29–
72, 1972.

[6] Peter Selinger. Dagger compact closed categories and completely positive maps.
In Peter Selinger, editor, Proceedings of the 3rd International Workshop on
Quantum Programming Languages, Electronic Notes in Theoretical Computer
Science. Elsevier Science, 2005.

[7] John Archibald Wheeler and Richard Phillips Feynman. Interaction with the
absorber as the mechanism of radiation. Rev. Mod. Phys., 17(2-3):157–181, Apr
1945.

9

	Introduction
	Reversible Computation
	Irreversible computations
	Equivalence
	Further Work
	References

