Generalizations of Hedberg’s Theorem

Nicolai Kraus!, Martin Escardé?, Thierry Coquand?® *, and Thorsten
Altenkirch® **

! University of Nottingham
2 University of Birmingham
3 University of Gothenburg

Abstract. As the groupoid interpretation by Hofmann and Streicher
shows, uniqueness of identity proofs (UIP) is not provable. Generalizing a
theorem by Hedberg, we give new characterizations of types that satisfy
UIP. It turns out to be natural in this context to consider constant
endofunctions. For such a function, we can look at the type of its fixed
points. We show that this type has at most one element, which is a
nontrivial lemma in the absence of UIP. As an application, a new notion
of anonymous existence can be defined. One further main result is that, if
every type has a constant endofunction, then all equalities are decidable.
All the proofs have been formalized in Agda.

Keywords: Hedberg’s Theorem, homotopy type theory, propositional
equality, truncation, squash types, bracket types, anonymous existence,
constant endofunctions

1 Introduction

Although the identity types in Martin-Lof type theory (MLTT) are defined by
one constructor refl and by one eliminator J that matches the constructor, the
statement that every identity type has at most one inhabitant is not provable [9].
Thus, uniqueness of identity proofs (UIP), or, equivalently, Streicher’s axiom K
are principles that have to be assumed, and have often been assumed, as addi-
tional rules of MLTT. In recent years, there is a growing interest in type theory
without these assumptions, in particular with the development of Homotopy
Type Theory (HoTT) and Univalent Foundations (UF) - see [] for a brief and
[13] for a detailed introduction. While we do not use any axioms of HoTT or
UF (other than those of standard MLTT), we make use of their notation and
intuition. For a better understanding of our arguments, is useful to think of a
type as a space, and a propositional equality proof as a path. Notation and some
basic definitions are listed in Section 2

As said above, we do not assume the principle of unique identity proofs.
However, certain types do satisfy it naturally, and such types are often called

* Supported by the ERC project 247219, and grants of The Ellentuck and The Simonyi
Fund
** Supported by the EPSRC grant EP/G03298X/1 and by a grant of the Institute for
Advanced Study

2 Kraus, Escardd, Coquand, Altenkirch

h-sets. A sufficient condition for a type to be an h-set, given by Hedberg [§], is
that it has decidable propositional equality. In Section [3] we analyze Hedberg’s
original argument, which consists of two steps:
1. A type X is an h-set iff for all ,y : X there is a constant map x =y — = = y.
2. If X has decidable equality then such constant endomaps exist.
Here, we write x = y for the identity type Idx (x, y) of an implicitly given type X.
Decidable equality means that, for all and y, we have (x = y) + (= # y).
Thus, a natural weakening is =—-separated equality,

oz =y)sr=y,

which occurs often in constructive mathematics. In this case we say that the type
X is separated. For example, going beyond MLTT, the reals and the Cantor
space in Bishop mathematics and topos theory are separated. In MLTT, the
Cantor type of functions from natural numbers to booleans is separated under
the assumption of functional extensionality,

Vig: X—=>Y, (Vo : X, fe=gx)— f=g.

We observe that under functional extensionality, a separated type X is an h-set,
because there is always a constant map r =y — z =y.

In order to obtain a further characterization of the notion of h-set, we consider
truncations (also known as bracket or squash types), written || X|| in accordance
with recent HoTT notation. The idea is to collapse all inhabitants of X so that
I X || has at most one inhabitant. We refer the reader to the technical development
for a precise definition. We observe that
. A type X is an h-set iff |z = y|| = 2 =y for all 2,y : X,
and we mention a couple of other simple, but noteworthy, connections.

While Section [3| gives properties and arguments involving path spaces (i.e.
equality types), we go beyond that in Section [4] Dealing with a path space
opens up many possibilities that are not available for a general type. For that
reason, we find it somewhat surprising that the equivalence of two of the above
mentioned properties can be translated to general spaces, though that requires
a nontrivial argument. This is done in Section

A type X satisfies || X|| — X iff it has a constant endomap.

We find this interesting, as it says that from the anonymous existence of a point
of X, that is, from the inhabitedness of | X||, one can get an inhabitant of X,
provided a constant endomap is available. It is important here (and above) that
our definition of constant function does not require X to be inhabited: we say
that a function is constant if any two of its values are equal, and this may happen
vacuously. The main technical lemma to prove this, which is noteworthy on its
own right, is our Fixed Point Lemma:

For any type X and any constant map f : X — X, the type of fixed

points of f is an h-proposition.

Here, an h-proposition is defined to be a type with at most one element. The
proof of this lemma would be trivial if UIP was assumed, but in its absence, it
is not.

Generalizations of Hedberg’s Theorem 3

Section[5]can, together with the just described results, be seen as the highlight
of this paper. The assumption that every type has a constant endomap has an
interesting status. It is not a constructive principle, but at the same time, it
is seemingly weaker that typical classical statements. But this is only partially
true: While we cannot make a strong conclusion for arbitrary types, such as
excluded middle, we prove that the assumption implies that all equalities are
decidable.

The just discussed section depends crucially on the Fixed Point Lemma, and
so does Section [6f We describe how the lemma gives rise to another notion of
anonymous existence, which we call populatedness. We say that X is populated,
written (X)), if every constant endofunction on X has a fixed point. Unlike || X ||,
this new notion is thus defined internally, instead of using a postulate.

In our final Section [} we discuss the relationship between the different no-
tions of existence, starting with a chain of implications:

X — | X|| — (X)) — —X.

We have formalized and proved all our statements in the dependently typed
programming language Agda [3] and presented parts on the HoTT blog [I].

2 Preliminaries

We work in a standard version of Martin-Lof Type Theory with dependent sums,
dependent function types and identity types. For the latter, we assume the elim-
inator J and, as it is standard, its computational S-rule, but not the definitional
n-law. We further do not assume the eliminator K, or the principle of unique
identity proofs. Summarized, our setting is very minimalistic. Sometimes, ad-
ditional principles (function extensionality and truncation, as introduced later)
are assumed, but this will be stated clearly.

We use standard notation whenever it is available. Regarding the identity
types, we write, for two elements a,b : A, the expression a = b for the type of
equality proofs, or paths from a to b, keeping A implicit. Other common notations
for the same thing are a =4 b, as well as Id(a,b) and Ida(a,b). If @ = b is
inhabited, it is standard to say that a and b are propositionally equal. In contrast,
definitional equality is a meta-level concept, referring to two terms, rather than
two (hypothetical) elements, with the same 8 (and, sometimes, 7 in a restricted
sense) normal form. Recently, it has become standard to use the symbol = for
definitional equality.

Propositional equality satisfies the Groupoid Laws: If we have p : « = b and
q : b = ¢, there is a canonical path p e ¢ : a = ¢ (the composition of p and q).
Further, we have p~! : b = a. There always is refl, : a = a, which behaves as a
neutral element when composed with another path. Pairs of inverses cancel each
other out when composed, and the obvious associativity law holds. In general,
these statements are valid only up to propositional equality.

An important special case of the J eliminator is substitution, for which the
name transport has been established in HoTT: If P is a family of types over A,

4 Kraus, Escardd, Coquand, Altenkirch

and there are two elements (or points) a,a’ : A, together with some p : a = @/,
then a point x : P(a) can be “transported along the path p” to get an element
of P(d'):

transport px : P(a’).

Another useful function, easily derived from the J eliminator, is the follwing: If
we have a function f: A — B and a path p:a=d’ in A, we get a path of type
f(a) = f(a’) in B:
apy p: fa) = f(a')
Our hope is that all of the notions in the following definition are as intuitive
as possible, if not already known. The only notions that are not standard are

collapsible, meaning that a type has a constant endomap, and path-collapsible,
saying that every path space over the type is collapsible.

Definition 1. We say that a type X is an h-proposition if all its inhabitants
are equal:
hpropX =Vzy : X, 2 =y.

Further, X satisfies UIP (uniqueness of identity proofs), or is an h-set, if its
path spaces are all h-propositional:

h-set X =Vzy : X, hprop(z = y).

The property of being h-propositional or an h-set are all h-propositional them-
selves, which the following properties are not.
X is decidable if it is either inhabited or empty:

decidable X = X + —X.

We therefore say that X has decidable equality, if the equality type of any two
inhabitants of X is decidable:

discrete X =V y : X, decidable(z = y).

Based on the terminology in [11], we also call a type with decidable equality
discrete.

A function (synonymously, map) f : X — Z is constant if it maps any two
elements to the same inhabitant of Y :

const f =Vzy : X, f(z) = f(y).
We call a type X collapsible if it has a constant endomap:
coll X = Y¢.x_,x const f.

Finally, X is called path-collapsible if any two points x,y of X have a collapsible
path space:
path-coll X =Vay : X, coll (z = y).

Generalizations of Hedberg’s Theorem 5

For some statements, but only if clearly indicated, we use functional exten-
stonality. This principle says that two functions f, g of the same type are equal
as soon as they are pointwise equal:

Vo, fr=gx) = f=g

An important equivalent formulation (see Voevodsky [I4]) is that the set of
h-propositions is closed under V. More precisely,

(Va : A, hprop B) — hprop (Va : A, B).

In the case of non-dependent function types, this can be read as follows: If B is
h-propositional, then so is A — B.

3 Hedberg’s Theorem

Before discussing possible generalizations, we discuss Hedberg’s Theorem.

Theorem 1 (Hedberg). Every discrete type has unique identity proofs,
discrete X — h-set X.

We shortly state Hedberg’s original proof [8], consisting of two steps.

Lemma 1. If a type has decidable equality, it is path-collapsible:
discrete X — path-coll X.

Proof. Given inhabitants z and y of X, the assumptions provide an inhabitant
of decidable(x = y) = (z = y) + ~(x = y). If it is an inhabitant of z = y, we
construct the required constant map (z = y) — (x = y) by mapping everything
to this path. If it is an inhabitant of —(z = y), there is only a unique such map
which is constant automatically. a

Lemma 2. If a type is path-collapsible, it has unique identity proofs:
path-coll X — h-set X.

Proof. Assume f is a parametrized constant endofunction on the path spaces. Let
p be a path from z to y. We claim that p = (f p) e (f refl,) . Using the equality
eliminator on (z,y,p), we only have to give a proof for the triple (x,z,refl,),
which is one of the groupoid laws that equality satisfies. Using the fact f is
constant on every path space, the right-hand side expression is independent of
p, and in particular, equal to any other path of the same type. a

Hedberg’s proof [§] is just the concatenation of the two lemmas. A slightly more
direct proof can be found in a post on the HoTT blog [10], and in the HoTT Coq
repository [I2]. The first of the two lemmas uses the rather strong assumption of
decidable equality. In contrast, the assumption of the second lemma is equivalent
its conclusion, which means that we cannot do much there. We include a proof
of this simple claim in Theorem [2[below and concentrate on weakening the
assumption of the first lemma. Let us first introduce the notions of stability and
separatedness.

6 Kraus, Escardd, Coquand, Altenkirch

Definition 2. For any type X, define
stable X = =X — X,
separated X =Vzy : X, stable(z = y).

We can see stable X as a classical condition, similar to decidable X = X + —X,
but strictly weaker. Indeed, we get a first strengthening of Hedberg’s Theorem
as follows:

Lemma 3. If functional extensionality holds, any separated type has unique
identity proofs,
separated X — h-set X.

Proof. There is, for any x,y : X, a canonical map (z = y) —» -—(z = y). Com-
posing this map with the proof that X is separated yields an endofunction on the
path spaces. With functional extensionality, the first map has an h-propositional
codomain, which implies that the endofunction is constant, fulfilling the require-
ments of lemma 2 O

We remark that full functional extensionality is actually not needed here.
Instead, a weaker version that only works with the empty type is sufficient.
Similar statements hold true for all further applications of extensionality in this
paper. Details can be found in the Agda file [3].

In a constructive setting, the question how to express that “there exists
something” in a type X is very subtle. One possibility is to ask for an inhabitant
of X, but in many cases, this is stronger than one can hope. A second possibility,
which corresponds to our above definition of separated, is to ask for a proof of
——=X. Then again, this is very weak, and often too weak, as one can in general
only prove negative statements from double-negated assumptions.

This fact has inspired the introduction of squash types (the Nuprl book
[6]), and similar, bracket types (Awodey and Bauer [5]). These lie in between
of the two extremes mentioned above. In our intensional setting, we talk of h-
propositional truncations: For any type X, we postulate that there is a type
|| X that is an h-proposition, representing the statement that X is inhabited.
The rules are that if we have a proof of X, we can, of course, get a proof of || X||,
and from || X||, we can conclude the same statements as we can conclude from
X, but only if the actual representative of X does not matter:

Definition 3. For a given type X : Type, we postulate the existence of a type
IX|| : Type, satisfying the following properties:

1. n: X = | X]

2. hprop(| X))

3. YP : Type, hpropP — (X — P) — | X| — P.

We say that X is h-inhabited if || X is inhabited.

Note that this amounts to saying that the operator || - || is left adjoint to the
inclusion of the subcategory of h-propositions into the category of all types.
Therefore, it can be seen as the h-propositional reflection.

There is a type expression that is equivalent to h-inhabtedness:

Generalizations of Hedberg’s Theorem 7

Proposition 1. For any given X : Type, we have
IX|| +— VP : Type, hpropP — (X — P) — P.

The trouble with the expression on the right-hand side is that it is not living in
universe Type. This size issue is really the only thing that is disturbing here, as
the expression satisfies all the properties of the above definition, at least under
the assumption of functional extensionality. Voevodsky [14] uses resizing rules
to get rid of the problem.

Proof. The direction “—” of the statement is not more than a rearrangement of
the assumptions of property (3). For the other direction, we only need to instan-
tiate P with || X || and observe that the properties (1) and (2) in the definition
of || X are exactly what is needed. O

With this definition at hand, we can provide an even stronger variant of
Hedberg’s Theorem. Completely analogous to the notions of stability and sepa-
ratedness, we define h-stable and h-separated:

Definition 4. For any type X, define

h-stable X = || X|| = X,
h-separated X =Vzy : X, |[c =y = (z =y).

In fact, h-separated X is a strictly weaker condition than separated X. Not
only can we conclude h-set X from h-separated X, but even the converse. We
also include the simple, but until here unmentioned fact that path-collapsibility
is also equivalent to these statements:

Theorem 2. For a type X in MLTT with h-propositional truncation, the fol-
lowing are equivalent:
(i) X is an h-set.
(i) X is path-collapsible.
(iii) X is h-separated.

Proof. (ii) = (i) is just Lemma [2]

(i) = (iii) uses simply the the definition of the h-propositional truncation:
Given z,y : X, the fact that X is an h-set tells us exactly that x = y is h-
propositional, implying that we have a map |z = y|| — (z = y).

Concerning (4ii) = (i), it is enough to observe that the composition of
n:(x=y) = ||z = y|| and the map ||z = y|| — (x = y), provided by the fact
that X is h-separated, is a parametrized constant endofunction. a

As a conclusion of this part of the paper, we observe that h-propositional
truncation has some kind of extensionality built-in: In Lemma [3] we have given
a proof for the simple statement that separated types are h-sets in the context
of functional extensionality. This is not true in pure MLTT. Let us now drop
functional extensionality and assume instead that h-propositional truncation is
available. Every separated type is h-separated - more generally, we have

(A —= A) = A — A

8 Kraus, Escardd, Coquand, Altenkirch

for any type A -, and every h-separated space is an h-set. Notice that the mere
availability of h-propositional truncation suffices to solve a gap that functional
extensionality would usually fill.

4 Collapsibility implies H-Stability

If we unfold the definitions in the statements of Theorem [2| they all involve the
path spaces over some type X:
(i) Vzy : X, hprop(z = y)

(ii) Yoy : X, coll(z = y)

(iii) Vzy : X, h-stable(z = y).
We have proved that these statements are logically equivalent. It is a natural
question to ask whether the properties of path spaces are required. The possi-
bilities that path spaces offer are very powerful and we have used them heavily.
Indeed, if we formulate the above properties for an arbitrary type A instead of
path types

(i") hprop(A)

(ii’) coll (A)

(iii”) h-stable A,
we notice immediately that (i) is significantly and strictly stronger than the
other two properties. (i’) says that A has at most one inhabitant, (ii’) says
that there is a constant endofunction on A, and (iii’) gives us a possibility to
get an explicit inhabitant of A from the proposition that A has an anonymous
inhabitant. An h-propositional type has the other two properties trivially, while
the converse is not true. In fact, as soon as we know an inhabitant a : A, we
can very easily construct proofs of (ii’) and (iii’), while it does not help at all
with (i%).

The implication (¢4i") = (i) is also simple: If we have h : ||A|| — A, the
composition hon: A — A is constant, as for any a,b : A, we have n(a) = n(b)
and therefore h(n(a)) = h(n(b)).

In summary, we have (i') = (i#i’) = (4#i’) and we know that the first implica-
tion cannot be reversed. What is less clear is the reversibility of the second im-
plication: If we have a constant endofunction on A, can we get a map ||A|| — A?
Put differently, what does it take to get out of ||A||? Of course, a proof that A is
h-stable is fine for that, but does a constant endomap on A also suffice? Surpris-
ingly, the answer is positive, and there are interesting applications (Section @
The main ingredient of our proof, and of much of the rest of the paper, is the
following crucial lemma about fixed points:

Lemma 4 (Fixed Point Lemma). Given a constant endomap f on a type X,
the type of fixed points is h-propositional, where this type is defined by

fix f=Y,xz=f(x).

Before we can give the proof, we first need to formulate two observations. Both
of them are simple on their own, but important insights for the Fixed Point
Lemma. Let X and Y be two types.

Generalizations of Hedberg’s Theorem 9

Proposition 2. Assume h,k : X — Y are two functions and t : x =y as well
as p : h(z) = k(x) are paths. Then, substituting along t into p can be expressed
as a composition of paths:

(transport tp) = ((aph t)"" e p e (ap, t)) .

Proof. This is immediate if ¢ is the trivial reflexivity path, i.e. if (x,y,t) is
just (z,z,refl,), and for all other cases, it follows as a direct application of the
equality eliminator J. O

Even if the latter proof is trivial, the statement is essential. In the proof of
Lemma [} we need a special case, were z and y are the same. However, this
special version cannot be proved directly. We consider the second observation
the key insight for the Fixed Point Lemmas:

Proposition 3. If f: X — Y is constant and x : X some point, then ap; maps
every path between x and x to refly(,), up to propositional equality.

Proof. Tt is not possible to prove this directly. Instead, we state a slight gen-
eralization: If ¢ is the proof of const f, then ap; maps a path p : z =y

to (czz) ' o cay. This is easily seen to be correct for (z,,refl,), which is
enough to apply the eliminator. As the expression is independent of p, but
only depends on its endpoints, it is for p : z = z equal to refly(,), as claimed.
Note that the proposition can also be stated as: For all z and y, the function
apy zy: (r =y) — (fr = fy) is constant. O

With these lemmas at hand, the rest is fairly simple:

Proof (of the Fized Point Lemma). Assume f : X — X is a function and c :
const f is a proof that it is constant. For any two pairs (z,p) and (2/,p") : fix f,
we need to construct a path connection them.

First, we simplify the situation by showing that we can assume that x and
z' are the same: By composing p : z = fx with cxx’ : fz = f2’ and (p’)_1 :
fx' = 1x', we get a path p”’ : x = a/. A path between two pairs corresponds
to two paths: One path between the first components, and one between the
second, where a substitution along the first path is needed. We therefore now
get that (z,transport (p”)71 p’) and (2,p’) are propositionally equal: p” is a
path between the first components, which makes the second component trivial.
Write ¢ for the term transport (p”)_lp’.

We are now in the (nicer) situation that we have to construct a path between
(x,p) and (z,q) : fix f. Again, such a path has to consist of two paths, for the
two components. Let us assume that we use some path ¢t : z = x for the first
component. We then have to show that transport ¢ p equals ¢. In the situation
with (z,p) and (2/,p’), it might have been tempting to use p”’ as a path between
the first components, and that would correspond to choosing refl,, for ¢. However,
one quickly convinces oneself that this cannot work in the general case.

10 Kraus, Escardd, Coquand, Altenkirch

By Proposition [2] with the identity for h and f for k, the first of the two
terms, i.e. transport ¢p, corresponds to t™1 e p e apy t. With Proposition
that term can be further simplified to t~! e p. What we have to prove is now
just (til . p) = ¢, so let us just choose ¢ ® p~! for ¢, thereby making it into a
straight-forward application of the standard lemmas. a

We are now finally in the position to prove the statement that is announced
in Section

Theorem 3. A type A is collapsible, i.e. has a constant endomap, iff it is h-
stable in the sense that ||A]| — A.

Proof. As already mentioned in Section earlier, the “if-part” is simple: If there is
amap ||A|| = A, we just need to compose it with n: A — || A|| to get a constant
endomap on A.

For the other direction, let ¢ be the proof that f is constant, just as before.
Observe that we have A — fix f by mapping a on (fa,ca (f a)). As fix f is an h-
proposition by the previous lemma, we get a map ||A|| — fix f by the elimination
rule for h-propositional truncation. That map can be composed with the first
projection of type fix f — A, yielding a function ||A|| — A as required. O

Looking at the just proved theorem, it makes sense to ask the following
question: Given a constant function f : A — B, is it possible to construct a
function f : ||A|| — B? We can do that if B is an h-set. For the general case, we
have evidence that the answer is likely to be negative.

5 Global Collapsibility implies Decidable Equality

If X is some type, having a proof of || X|| is, intuitively, much weaker than a
proof of X. While the latter consists of a concrete element of X, the first is
given by an anonymous inhabitant of X. This is actually nothing more than the
intention of the truncation: | X|| allows us to make the statement that “there
exists something in X7, without giving away a concrete element. It is therefore
unreasonable to suppose that

VX : Type, | X| = X,

can be proved, but it is interesting to consider what it would imply. Using The-
orem [3] the above type is logically equivalent to the statement

Every type has a constant endomap.

From a constructive type of view, this is an interesting statement. It clearly
follows from the Principle of Fxcluded Middle, VX : Type, X + -X: If we
know an inhabitant of a type, we can immediately construct a constant endomap,
and for the empty type, considering the identity function is sufficient. Thus, we
understand “Fuvery type has a constant endomap” as a weak form of the excluded

Generalizations of Hedberg’s Theorem 11

middle: It seems to use that every type is either empty or inhabited, but there is
no way of knowing in which case we are. We are unable to show that it implies
excluded middle.

However, what we can conclude is excluded middle for all path spaces. We
can prove the following statement in basic MLTT, without h-propositional trun-
cation, without extensionality, and even without a universe:

Lemma 5. Let A be a type and ag,ay : A two points. If for all x : A the type
(ap =) + (a1 = x) is collapsible, then ag = a; is decidable.

Before giving the proof, we state an immediate corollary:

Theorem 4. If every type has a constant endomap (equivalently, is h-stable),
then every type has decidable equality.

Proof (of Lemmal5). Let us define E, = (z = ag) + (z = a;). The assumption
says that we have a family of endomaps f, : F, — E,, together with proofs
of their constancy c, : const f,. We show that the identity map on X,. fix f,
factorizes pointwise through Bool. Note that an element of X;.4 fix f, is a pair
of an z : A and a point in fix f,; and such a point consists itself of a pair (c, p),
where ¢: E, and p : ¢ = f,(c). There is a canonical inhabitant of fix f,,, given by
fao (inlrefly,) for the first component, and ¢, (inl(refly,)) (fq, (inl(refly,)) for the
second. We call it kg, and analogously, we write k1 for the canonical inhabitant
of fix f,,.

r: X4 fix f — Bool s:Bool — X,. 4 fix f,
(z, (inlg, p)) — true, true — (ag, ko),
(z, (inr g, p)) — false, false — (a1, k1).

We claim that any pair (z,k) is equal to s o r(z, k). An equality of pairs corre-
sponds to a pair of equalities. As the second component is, by the Fixed Point
Lemma, an equality over an h-propositional type, it is enough to show that x
equals the first component of s o r(x, k). Let k be (¢,p). We can now perform
case analysis on c¢: If ¢ is of the form inl g, we need to prove x = ag; but this is
shown by gq. If ¢ is inr ¢, we proceed analogously. Therefore, equality of any two
such pairs is decidable, as we just have to check whether r maps them to the
same value in Bool.

Again because fix f, is an h-proposition, the pairs (ag, ko) and (a1,k1) are
equal iff ag = a1, and, therefore, ag = a; is decidable. a

6 Populatedness

In this section we discuss a notion of anonymous existence, similar, but weaker
(see Section than h-propositional truncation. It crucially depends on the
Fixed Point Lemma [4] Let us start by discussing another perspective of what
we have explained in the previous section.

Trivially, for any type X, we can prove the statement

X[= (X = X) = X. 1)

12 Kraus, Escardd, Coquand, Altenkirch

By Lemma [3] this is equivalent to
I X|| = col X — X, (2)

which can be read as: If we have a constant endomap on X and we wish to get
an inhabitant of X (or, equivalently, a fixed point of the endomap), then || X|| is
sufficient to do so. Now, we can ask whether it is also necessary: Can we replace
the first assumption || X || by something weaker? Looking at formula (1} it would
be natural to conjecture that this is not the case, but it is. In this section, we
discuss by what it can be replaced, and in Section we give a proof that it is
indeed weaker.

For answering the question what is needed to get from h-stable A to A, let
us define the following notion:

Definition 5 (populatedness). For a given type X, we say that X is popu-
lated, written (X)), if every constant endomap on X has a fized point:

(X)=Vf:X — X, const f — fix f,
where fix f is the type of fized points, defined as in Lemmal[)

This definition allows us to comment on the question risen above. If (X)) is
inhabited and X is collapsible, then X has an inhabitant, as such an inhabitant
can be extracted from the type of fixed points by projection. Hence, (X)) instead
of || X in [2] would be sufficient as well (we discuss in Section 7| whether it is
weaker). Therefore,

(X = (JIX] = X) - X.

Next we draw a parallel between populatedness and h-inhabitedness.

Theorem 5. For any given X : Type, the following holds:
(X)) +— VP : Type, hpropP - (P - X) = (X - P) > P.

This statement can be read as “X is populated iff every h-proposition logically
equivalent to X is inhabited.” Note that the only difference to the type expression
in Proposition [1| is that we only quantify over sub-propositions of X, i.e. over
those that satisfy P — X, while we quantify over all propositions in the case
of || X||. Therefore, | X|| is clearly at least as strong as ((X)).

Proof. Let us first prove the direction “—”. Assume an h-propositional P is
given, together with functions X — P and P — X. Composition of these gives
us a constant endomap on X, exactly as in the proof of Theorem [2| But then
(X)) makes sure that this constant endomap has a fixed point, which is (or
allows us to extract) an inhabitant of X. Using X — P again, we get P.

For the direction “+”, assume we have a constant endomap f. We need to
construct an inhabitant of fix f. In the expression on the right-hand side, choose
P to be fix f. By the Fixed Point Lemma, this is an h-proposition. Further, P
and X are logically equivalent (i.e. there are maps in both directions), where the
non-trivial direction makes use of Theorem [3] Then, the right-handed expression
shows P, which is just the required fix f. O

Generalizations of Hedberg’s Theorem 13

This proof uses the Fixed Point Lemma twice: Once, as we needed P to be an
h-proposition, and once hidden, as we used Theorem [3]

The similarities between || X || and (X)) do not stop here. The following state-
ment, together with the direction “—” of the theorem that we have just proved,
is worth to be compared to the definition of || X|| (that is, Definition [3):

Proposition 4. For any type X, the type (X)) has the following properties:
(1) X = (X))
(2) hprop({X)) (if functional extensionality holds).

The proof is fairly simple, and, of course, again an application of the Fixed
Point Lemma.

Proof. Regarding (1), given z : X and a constant endomap f, we need to prove
that f has a fixed point. We just take fx and use the fact that fx is proposi-
tionally equal to f(f x), by constancy of f.

For (2), we need to use that fix f is an h-proposition, by Lemma {4 By
functional extensionality, a (dependent) function type is h-propositional if the
codomain is (see Section [2)) and we are done. O

7 Taboos and Counter-Models

In this final section we look at the differences between the various notions of
(anonymous) inhabitedness we have encountered. We have, for any type X, the
following chain of implications:

X — | X|| — (X)) — —X.

The first implication is trivial and the second has already been mentioned after
Theorem [} Maybe somewhat surprisingly, the last implication does not require
functional extensionality, as we do not need to prove that ——X is h-propositional:
To show

(X) = X,

let us assume f : = X. But then, f can be composed with the unique function
from the empty type into X, yielding a constant endomap on X, and obviously,
this function does not have a fixed point. Therefore, the assumption of (X))
would lead to a contradiction, as required.

Intuitively, none of the implications should be reversible. To make that pre-
cise, we use two techniques: Taboos, showing that the provability of a statement
would imply the provability of another, better understood statement, that is
known to be not provable. As the second technique, we use HoTT models.

1. Theorem {|shows that, if the first implication can be reversed, then all types
have decidable equality. Using Hedberg’s Theorem, this immediately implies
that every type is an h-set, and thus, it is inconsistent with the Univalence
Axiom of HoTT. But the conclusion that every type is an h-set can be derived

14 Kraus, Escardd, Coquand, Altenkirch

much more directly: If we assume || X|| — X for all types X, we have this in
particular for all path spaces. Then, by Theorem 2] every type is an h-set.
As an alternative argument, if every type is h-stable, a form of choice that
does not belong to type theory is implied.

2. It would be wonderful if the second implication could be reversed, as this
would imply that h-propositional truncation is definable in MLTT. However,
this is equivalent to a certain h-propositional axiom of choice discussed below,
which is not provable but holds under excluded middle.

3. If the last implication can be reversed, excluded middle for h-propositions
holds (a constructive taboo, which is not valid in recursive models).

7.1 Inhabited and H-Inhabited

The question whether the first implication in the chain above can be reversed has
already been analyzed in Section [bl This cannot be possible as long as equality is
not globally decidable. Here, we want to state another noteworthy consequence
of

VX : Type, | X|| = X.

In [2], we show that this assumption allows us to show that any relation has
a functional subrelation with the same domain. This is a form of the axiom of
choice that does not pertain to intuitionistic type theory. Here, we only sketch
the proof. Given a binary relation A on the type X. Define

Am = Ey:X A(I, y)? F(‘T7y) = Ea:A(w,y) (yaa) = kx(yv a’)?

where k, : A, — A, is the constant map induced by the hypothesis ||A;| — Az.
By the Fixed Point Lemma, F(z,y) is an h-proposition. If (a,p) : F(z,y) and
(a',p") : F(z,y'), then

(y,0) = ka(y,a) = ka(y',d') = (v, @)

because k, is constant and hence y = 1/, and so F' is single-valued. But in fact,
with a subtler argument, it is single-valued in the stronger sense that F} is an
h-proposition. Moreover, F' has the same domain as A in the sense that F) is
inhabited iff A, is inhabited.

7.2 H-Inhabited and Populated

Assume that the second implication can be reversed, meaning that we have
VX : Type, (X)) — [X]|.

Repeated use of the Fixed Point Lemma leads to a couple of interesting equiv-
alent statements. We discuss one that is particularly interesting: Every popu-
lated type is h-inhabited iff for every type, the statement that it is h-stable is
h-inhabited.

In the previous subsection, we have discussed that we cannot prove the state-
ment that every type is h-stable. However, we can always populate it:

Generalizations of Hedberg’s Theorem 15

Lemma 6. VX : Type, (|| X|| — X)).

Proof. Assume we are given a constant endomap f on h-stable X. We need to
construct a fixed point of that endomap, which amounts to construction an
inhabitant of h-stable X. By the Fixed Point Lemma, a constant endomap g :
X — X is enough for this. From f, we can construct g easily: Given z : X, we
get a canonical inhabitant of h-stable X. We apply f on this inhabitant, and we
apply the result on n(z), yielding an inhabitant of X. We define gz to be this
inhabitant. It is easy to see that ¢ is constant. a

An alternative proof is available in the Agda file.

Theorem 6. The implication || X|| — (X)) can always be reversed iff the state-
ment that that a type is h-stable can always be h-inhabited:

(VX : Type, (X)) = [X])) «— (VX : Type, ||| X] = X]).

Proof. The direction “—” is an immediate application of Lemma [above. The
other direction is slightly trickier: If we knew h-stable X, we would have a con-
stant endomap on X, and with the assumption (X)), this constant endomap
would have a fixed point. Hence, we would have an inhabitant of X, and there-
fore and inhabitant of || X||. We observe that ||X|| is h-propositional, so, by
definition, we do not necessarily need h-stable X, but | h-stable X|| is enough,
and that completes the proof. a

It is also easy to see (cf. our Agda file [3]) that
(XD = X = X[= 1,

which gives an alternative route to the above theorem. Moreover, the statement
VX : Type, ||| X] — X|| is equivalent to the h-propositional axiom of choice:
For every h-proposition P and any family Y : P — Type,

(Vp : P [[Ypl) = [Vp : P, Ypl,

which clearly holds under h-propositional excluded middle. When Yp is a set
with exactly two elements for every p : P, this amounts to the world’s simplest
aziom of choice [7], which fails in some toposes. Thus, by the above theorem,
VX : Type, (X)) — || X|| is not provable.

7.3 Populated and Non-Empty
If we can reverse the last implication of the chain, we have
VX : Type, X — (X)).

To show that this is not provable, we prove that it is a taboo from the point of
view of constructive mathematics, in the sense that it implies Excluded Middle
for h-propositions,

hprop-EM = VP, hprop P — P + —P.

16 Kraus, Escardd, Coquand, Altenkirch

Lemma 7. With functional extensionality, the following implication holds:
(VX : Type, ~—X — (X))) — hprop-EM.

Proof. Assume P is an h-proposition. Then so is the type P + =P (where we
require functional extensionality to show that —P is an h-proposition). Hence,
the identity function on P + —P is constant.

On the other hand, it is straightforward to construct a proof of == (P + —P).
By the assumption, this means that P + —P is populated, i.e. every constant
endomap on it has a fixed point. Therefore, we can construct a fixed point of
the identity function, which is equivalent to proving P + —P. a

Acknowledgments. The first-named author would like to thank Paolo Capri-
otti, Ambrus Kaposi, Nuo Li and especially Christian Sattler for interesting
discussions and technical assistance.

References

1. T. Altenkirch, T. Coquand, M. Escardé, and N. Kraus. On h-propositional reflec-
tion and hedbergs theorem, November 2012. Blog post at homotopytypetheory.org.

2. T. Altenkirch, T. Coquand, M. Escardé, and N. Kraus. Constant choice (Agda
file), 2012/2013. |Available at the third-named author’s institutional webpage!

3. T. Altenkirch, T. Coquand, M. Escardd, and N. Kraus. Generalizations of Hed-
berg’s theorem (Agda file), 2012/2013. |Available at the third-named author’s
institutional webpage.

4. S. Awodey. Type theory and homotopy. Technical report, 2010.

5. S. Awodey and A. Bauer. Propositions as [types]. Journal of Logic and Computa-
tion, 14(4):447-471, 2004.

6. R. L. Constable, S. F. Allen, H. M. Bromley, W. R.. Cleaveland, J. F. Cremer, R. W.
Harper, D. J. Howe, T. B. Knoblock, N. P. Mendler, P. Panangaden, J. T. Sasaki,
and S. F. Smith. Implementing Mathematics with the Nurpl Proof Development
System. Prentice-Hall, NJ, 1986.

7. M. P. Fourman and A. S¢edrov. The “world’s simplest axiom of choice” fails.
Manuscripta Math., 38(3):325-332, 1982.

8. M. Hedberg. A coherence theorem for Martin-Lof’s type theory. J. Functional
Programming, pages 413-436, 1998.

9. M. Hofmann and T. Streicher. The groupoid interpretation of type theory. In
Venice Festschrift, pages 83-111. Oxford University Press, 1996.

10. N. Kraus. A direct proof of Hedberg’s theorem, March 2012. Blog post at homo-
topytypetheory.orgl

11. R. Mines, F. Richman, and W. Ruitenberg. A Course in constructive algebra.
Universitext. Springer-verlag, New York, 1988.

12. The HoTT and UF community. HoTT github repository. Available online.

13. Univalent Foundations Program, IAS. Homotopy Type Theory: Univalent Founda-
tions of Mathematics. 2013.

14. V. Voevodsky. Coq library. Availabe at the author’s institutional webpage.

http://homotopytypetheory.org/2012/11/27/on-h-propositional-reflection-and-hedbergs-theorem
http://www.cs.bham.ac.uk/~mhe/GeneralizedHedberg/ConstantChoice/ConstantChoice.htm
http://www.cs.bham.ac.uk/~mhe/GeneralizedHedberg/html/GeneralizedHedberg.html
http://www.cs.bham.ac.uk/~mhe/GeneralizedHedberg/html/GeneralizedHedberg.html
http://homotopytypetheory.org/2012/03/30/a-direct-proof-of-hedbergs-theorem/
http://homotopytypetheory.org/2012/03/30/a-direct-proof-of-hedbergs-theorem/
https://github.com/HoTT
http://www.math.ias.edu/~vladimir/Foundations_library/toc.html

	Generalizations of Hedberg's Theorem
	Introduction
	Preliminaries
	Hedberg's Theorem
	Collapsibility implies H-Stability
	Global Collapsibility implies Decidable Equality
	Populatedness
	Taboos and Counter-Models
	Inhabited and H-Inhabited
	H-Inhabited and Populated
	Populated and Non-Empty

