Categorical views on bottom-up tree transducers

Tarmo Uustalu joint work with Ichiro Hasuo, Bart Jacobs

Teooriapäevad Rõuges, 26–28 Jan. 2007

Three types of bottom-up tree transducers / three triangles

- Three types of bottom-up tree transducers, ordered by generality:
 - relabelling (branching-preserving) = purely synthesized attribute grammars
 - rebranching (layering-preserving)
 - 1-n relayering (= the classical notion)
- For each type, we have a triangular picture: transducers (modulo bisimilarity) are the same as (co/bi)-Kleisli maps of a comonad/distributive law and a subclass of tree functions

- *F* a fixed endofunctor on the base category *A*, *B*, *C* typical objects of the base category
- *LTree* $A =_{df} \mu Z.A \times FZ$ *A*-labelled *F*-branching trees
- $DA =_{df} LTree A$ "subtrees"; *D* is a comonad on the base category!

- We have three different constructed categories on the objects of the base category.
- The three categories are equivalent: the maps are in a 1-1 correspondence, and typing, the identities and composition agree.
- Moreover, for each of the three categories, we have an identity-on-objects inclusion functor from the base category, which preserves products (i.e., an "arrow" and more).
- The "arrows" are equivalent too: the inclusion functors agree as well.

Relabelling bottom-up tree transducers

- Relabelling bottom-up tree transducers for a fixed branching type *F* are pairs $(X, d: A \times FX \rightarrow B \times X)$ (*X* state space, *d* transition function)
- Identity on *A*:

$$(1, A \times F1 \longrightarrow A \longrightarrow A \times 1)$$

• Composition of $(X, d : A \times FX \to B \times X)$ and $(X', e : B \times FX' \to C \times X')$:

 $(X \times X', A \times F(X \times X') \twoheadrightarrow A \times FX \times FX' \twoheadrightarrow B \times X \times FX' \twoheadrightarrow C \times (X \times X'))$

BISIMILARITY OF RELABELLING BU TREE TRANS-S

• $(X_0, d_0 : A \times FX_0 \to B \times X_1)$ and $(X_1, d_1 : A \times FX_1 \to B \times X_1)$ are defined to be bisimilar, if there exist a span (R, r_0, r_1) (a bisimulation) and a map $s : A \times FR \to B \times R$ (its bisimulationhood witness) such that

• Co-Kleisli maps are maps $k : DA \rightarrow B$, the identity on A is

$$DA \xrightarrow{\varepsilon_A} A$$

the composition of $k: DA \to B, \ell: DB \to C$ is

$$DA \xrightarrow{\delta_A} D(DA) \xrightarrow{Dk} DB \xrightarrow{\ell} C$$

(by the general definition of a co-Kleisli category of a comonad)

RELABELLING BU TREE FUNCTIONS

- Tree functions are maps *f* : *LTree A* → *LTree B*, the identity and composition are taken from the base category.
- A tree function *f* is defined to be bottom-up relabelling if

• The identity tree functions are BU relabelling and the composition of two BU relabelling tree functions is BU relabelling.

REBRANCHING BU TREE FUNCTIONS

- Tree functions are maps $f : Tree G \rightarrow Tree H$, the identity and composition are taken from the base category.
- A tree function f as above is defined to be rebranching BU if there is a nat transf $(k_Y : G(Y \times Tree G) \rightarrow HY)_Y$ (its rebranching BU witness) such that

- k determines f.
- The identity tree functions are relabelling BU and the composition of two relabelling BU tree functions is relabelling BU.

CLASSICAL (1-N RELAYERING) BOTTOM-UP TREE TRANSDUCERS: THE TRIANGLE

- G, H, K typical endofunctors on the base category $Tree G =_{df} \mu Z.GZ$ — *G*-branching trees
- G[♯]Y =_{df} G(Y × Tree G) "child-position aware subtrees";
 (-)[♯] is a comonad on the endofunctor category!
- G*Y =_{df} μZ.Y + GZ G-branching trees with Y-leaves; G*Y is a monad on the base category (the free monad of G);
 (-)* is a monad on the endofunctor category!
- Tree $G \cong G^{\sharp}0$
- The comonad $(-)^{\sharp}$ distributes over the monad $()^{*}!$

1-N RELAYERING BU TREE FUNCTIONS

- As before, tree functions are maps *f* : *Tree G* → *Tree H*, the identity and composition are taken from the base category.
- A tree function f as above is defined to be 1-n relayering BU if there is a nat transf $(k_Y : G(Y \times Tree G) \to H^*Y)_Y$ (its rebranching BU witness) such that

- k determines f.
- The identity tree functions are 1-n relayering BU and the composition of two 1-n relayering BU tree functions is 1-n relayering BU.

VARIATIONS: TOP-DOWN TREE TRANSDUCERS

- The same types of tree transducers are possible, to represent top-down tree functions of these types.
 - relabelling TD TTs:

$$(X, q_I : 1 \to X, d : A \times X \to B \times (F'1 \Rightarrow X))$$

 $(F'1 \Rightarrow X$ — assignments of a state to every child of the current node in the input tree)

- rebranching TD TTs:

$$(X, q_I : 1 \to X, (d_Y : GY \times X \to H(Y \times X))_Y)$$

– 1-n relayering TD TTs:

$$(X, q_I : 1 \to X, (d_Y : GY \times X \to H^*(Y \times X))_Y)$$

VARIATIONS: RELABELLING TREE TRANSDUCERS WITH LOOKAHEAD

- Relabelling transducers can be augmented with lookahead, so they can represent functions using information from both below and above any given node.
 - relabelling BU TTs with lookahead:

$$(X, d: A \times (\mu Z.1 + A \times F'1) \times FX \to B \times X)$$

– relabelling TD TTs with lookahead:

$$(X, q_I : 1 \to X, d : LTree A \times X \to B \times (F'1 \Rightarrow X))$$