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Abstract 

Smart tags attached to freely-roaming animals recording multiple parameters at infra-second 

rates are becoming commonplace, and are transforming our understanding of the way wild 

animals operate. However, interpretation of such data is complex and currently limits the 

ability of biologists to realise the value of their recorded information. This work presents a 

single program, FRAMEWORK 4, that uses a particular sensor constellation described in the 

‘Daily Diary’ tag (recording tri-axial acceleration, tri-axial magnetic field intensity, pressure 

and e.g. temperature and light intensity) to determine the 4 key elements considered pivotal 

within the conception of the tag. These are; animal trajectory, behaviour, energy expenditure 

and quantification of the environment in which the animal operates. The program takes the 

original data recorded by the Daily Dairy and transforms it into dead-reckoned movements, 

template-matched behaviours, dynamic body acceleration-derived energetics and position-

linked environmental data before outputting it all into a single file. Biologists are thus left 

with a single data set where animal actions and environmental conditions can be linked across 

time and space. 

 

1. Introduction 

 

The development of hardware that can be attached to animals during their everyday life 

(Ropert-Coudert and Wilson 2005) has revolutionized our understanding of the biology of 

wild animals. Indeed, this approach has allowed researchers to look at everything from the 

behaviour of whales chasing prey at depths of over 1 km underwater (Aguilar Soto, Johnson 

et al. 2008) to the physiology of geese migrating over the Himalayas (Hawkes, Balachandran 

et al. 2011). A common feature facilitating these sorts of projects has been the increase in 

numbers and types of sensors used in smart animal tags, as well as increases in the frequency 

with which they can be sampled and concomitant increases in memory capacity. Thus, our 

ability to answer critical questions in biology appears to have been driven to a large extent by 

advances in technology (Ropert-Coudert and Wilson 2005). These advances in methodology 

come under two broad areas. One relates to methods that allow tags to be physically attached 

to animals for increasing lengths of time (e.g. Wilson, Putz et al. 1997; Hooker, Baird et al. 
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2001; Rowley and Alford 2007) while minimizing animal detriment (Vandenabeele, Shepard 

et al. 2012; Vandenabeele, Wilson et al. 2013) while the other relates to the physical 

production of the complex solid-state units in smart tags (e.g. Miller, Johnson et al. 2004).  

 

The excitement at the potential inherent in sophisticated animal tags has, however, been 

tempered by a new limiting factor. This is a methodology to deal with the problem of the 

analysis of the high resolution, multiple channel (and therefore multi-dimensional) data 

acquired by the tags – in short, software (cf. Jonsen, Myers et al. 2003). To be most useful to 

the community, software to help in the analysis of smart tag-acquired data needs to be able to 

deal with large quantities of multiple sensor data and, ideally, should be able to merge 

different derived analytical outputs together into one output file so that various elements 

derived from the primary data can be interrelated. Currently, the smart tag community has 

witnessed a number of software innovations, most of which are concerned with determination 

of behaviour, i.e. from dive profile data (Halsey, Bost et al. 2007) or, most notably, from tri-

axial acceleration data (Watanabe, Izawa et al. 2005; Sakamoto, Sato et al. 2009). Analysis of 

acceleration data is particularly welcome because inspection of raw acceleration values over 

time to derive behaviours is not particularly intuitive (Shepard, Wilson et al. 2009). Thus, 

solutions for this have involved a suite of different approaches including cluster analysis 

(Sakamoto, Sato et al. 2009), support vector machine classification models (Martiskainen, 

Järvinen et al. 2009) and artificial neural networks (Nathan, Spiegel et al. 2012).  

 

In 2008, Wilson et al. (2008) put forward a concept for a particular sensor configuration 

within a tag that they called the ‘Daily Diary’ (DD), where analysis yielded value well 

beyond the simple mathematical sum of its individual parts (Wilson 2008). Specifically, the 

suggestion advocated the combination of tri-axial accelerometers, tri-axial magnetometers, 

and pressure and speed transducers together with environmental sensors such as temperature, 

light and humidity. The theory was that this constellation of sensors, sampled at infra-second 

rates, would allow tag users to be able to derive four key elements of animal ecology 

seamlessly. These are: (1) animal trajectory, and therefore position (Wilson, Liebsch et al. 

2007) (2) animal behaviour (Shepard, Wilson et al. 2008) (3) energy expenditure (Wilson, 

White et al. 2006) and (4) the environmental conditions to which the tag carrier is exposed 

(Wilson, Grémillet et al. 2002). Although this original work did indicate avenues by which 

these elements might be achieved, there was no specific suggestion of software that might 

actually do this. In short, currently, although some software is available to help determine 

some aspects of that advocated by the DD concept (e.g. Bidder, Campbell et al. 2014), there 

is nothing that binds the concepts together.  

 

This paper describes the structure and functioning of a new software package (DD-

FRAMEWORK 4) that allows DD (or similar) users to calculate all four key elements 

advocated by the DD and then to bind them together into one single output file so that 

workers can subsequently geo-reference behaviours, energy expenditures and environmental 

parameters to gain a more holistic picture of how animals react to and within their 

environment. Specifically, we introduce FRAMEWORK 4, a user-friendly turnkey solution 

for the analysis of DD data. Using our system, we can seamlessly obtain animal behaviour, 

animal trajectory, energy expenditure, and environmental conditions all within one 

application and export them in one merged data file. Our solution requires no knowledge of 

the underlying processes utilised in the software, or any advanced mathematical and 

computing skill sets. Our application has been produced with the end-user in mind, utilising 

wizards and graphical user interfaces wherever possible. We hope this software will assist in 
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the understanding of wild animal ecology, providing new insights as a result of advanced 

computing knowledge.  

 

2. FRAMEWORK 4 - software implementation 

 

The software implementation is outlined before specifying each of the software features and 

the underlying methods by which they operate. 

 

Framework 4 is a desktop application for the Microsoft Windows operating system built 

using the programming language C++ with the Qt 4.8 framework library. This software has 

been implemented through a collaboration with the Bioscience and Computer Science 

departments at Swansea University and is maintained by the first author in this article. We 

selected to create a desktop application as it allows us to handle large data files directly. 

Alternatively, utilising a web application would allow access from anywhere on any platform 

with an active internet connection and a web browser, although this would entail long waiting 

times while data sets upload, resulting in a reduced ability to handle larger files. Utilising the 

desktop application, we directly communicate with the CPU for efficient data handling, and 

the GPU for visualisation purposes.  

  

2.1 Loading Data 

The software supports two file formats; comma separated values (CSV) and tabular 

delaminated formats. These are two of the standard file formats for storing tabular data in text 

format and are common outputs from commercial animal monitoring tags. The DD exports its 

data in a binary format which gets segmented into multiple files and converted to tabular 

delimitated format post-deployment. FRAMEWORK 4 loads and operates on the individual 

tabulated files. 

 

We incorporate an import wizard in the application to import CSV and tabular delimitated 

files. Here, the user can specify the names and data types of each attribute, which are used as 

a reference to them throughout the application. 

 

3. Derivation of animal trajectory 

 

3.1 Principles behind dead-reckoning 

 

The way in which animals use the environment is fundamental to understanding their 

behavioural ecology (Börger et al. 2008) and, as such, many different systems have been 

developed to examine animal movements (see e.g. Wikelski et al. 2007). A relatively recent 

addition to the field is dead-reckoning (Wilson et al. 2008), which has particular value in not 

being dependent on transmission technology and being able to resolve movement at infra-

second scales. Dead-reckoning operates on the basis that the position of an animal at any time 

‘t’ can be derived knowing the position at the animal at a previous time ‘t-1’ and the distance 

and heading taken between the two time intervals. Dead-reckoning has received little interest 

until now, partially because early systems for dead-reckoning were crude (Ioale et al., 1994; 

Wilson and Wilson, 1988; Wilson et al., 1991) but with the development of sensors and 

techniques, headings can now be computed to within 1° utilising accelerometer and 

magnetometer sensors (Caruso, 2000; Wilson et al., 2008). 

 

The earth’s magnetic field is constructed of field lines approximating a magnetic dipole. Each 

field line originates at a point near the magnetic South Pole and terminates at a point near the 
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magnetic North Pole. The relationship between magnetic north and geographic north is 

defined by a declination angle which varies across the earth’s surface and with time. This 

angle can be obtained from a reference table provided by the National Geophysical Data 

Center (http://www.ngdc.noaa.gov/geomag-web/). Measuring the strength and direction of 

the lines utilising the tri-axial magnetometer can be used to obtain a relative compass 

heading. 

 

In Framework 4, we introduce a user-friendly wizard for performing dead-reckoning on data 

with tri-axial magnetometer and tri-axial accelerometer components (Fig. 1). Dead-reckoning 

is subject to cumulative errors and, as the heading and speed are estimates, any systematic 

deviations from the actual heading and speed will lead to increasing errors. To assist in 

reducing such errors, we incorporate a hybrid GPS and dead-reckoned approach which 

utilises the GPS fixes as the actual position and forces the dead-reckoned path to go through 

these. This resets any cumulative error but does not factor in any GPS errors.. We now 

outline each of the components of the Dead-reckoning wizard which are modular so that the 

user can select which analysis steps are required. The steps are; (i) GPS import for 

synchronising GPS data with the DD data (ii) alignment correction for the accelerometer and 

magnetometer coordinate frames (iii) heading derivation from the magnetometer channels 

(iv) VeDBA for obtaining an estimate of the speed (v) constant speed options if necessary 

(vi) dead-reckoning to combine the heading and speed information to derive an animal 

trajectory and (vii) dead-reckoning correction using GPS  points to eliminate drift in the final 

dead-reckoned path. 

 

 

 
Figure 1 – The Dead-reckoning wizard features a number of modular classification steps. 

These are; GPS Import, Alignment, Heading, VeDBA, Constant Speed, Dead-reckoning, and 

Dead-reckoning with GPS Correction. 

 

3.2.1 GPS Import 

FRAMEWORK 4 is set up to load data from separate GPS and DD files, although both are 

assumed time-synchronised. In this step, the user can import the GPS data and merge it back 

in to the complete data set. The same import wizard is used as in the file importer to import 

the GPS data. The user imports the data, then selects the data attributes for the available time 

fields in both the DD and GPS data sets (i.e. day, hours, minutes, and seconds). The wizard 
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matches the time index columns and inserts the GPS data fields wherever a matching data 

item with the same time stamp is found. 

  

3.2.2 Alignment  

Within the DD, the accelerometer and 

magnetometer coordinate systems are not 

necessarily aligned such that the three axes of the 

magnetometer and accelerometer in the same 

direction. Appreciation of their relative positions 

is, however, vital for computing the heading and 

this is applied using rotational information from 

the accelerometer and applying it to the 

magnetometer channels. To deal with this, the 

program asks the user to specify the orientation of 

the device. As the user selects different 

orientations, the image of the device is updated 

appropriately (Fig. 2). After the correct settings 

have been chosen, the sensors attributes are 

transposed so they align correctly with each other. 

 

 

 

3.2.3 Heading 

Deriving the heading necessitates that the data attributes be sanitised. This is done via; 

magnetometer calibration, pitch and roll computation, coordinate frame adjustments, and 

finally the heading derivation. These processes are executed in the background of the wizard 

and the user is exposed to certain parameters and results which allow them to select the 

correct attributes and associated settings for each stage in the wizard. For clarity we now 

detail the methods for each process. 

 

3.2.3.1 Ellipse fitting 

The measurements obtained by commercial magnetometer sensors are corrupted by several 

errors. Proper calibration of the magnetometer is required to obtain high accuracy heading 

measurements. Errors can are usually introduced by instrumental errors, such as scale factors, 

non-orthogonality between axes, offsets and magnetic deviations caused by perturbations and 

interference with the magnetic field lines. 

 

Magnetic measurements are subject to sources of error primarily caused by hard iron and soft 

iron deposits acting on the magnetic field. Rotating a magnetometer around 360 degrees in all 

orientations under no sources of error should produce a perfect sphere centred on the origin. 

Hard iron effects are created by objects which produce a magnetic field with a constant bias 

in the output, resulting in a sphere displaced from the origin.  Soft iron deposits are caused by 

ferrous materials which are more permissive to the magnetic field influencing the magnetic 

field as it passes through, via distortion or stretching. This distorts the sphere into an ellipse 

as hard iron errors are independent of the orientation of the device and can therefore occur 

across the sphere. Hard iron distortions are caused by metals such as nickel and iron and 

commonly have a much larger contribution towards the total error (Cai et al. 2001). 

 

Figure 2 - This image shows the 

alignment correction step. An image 

of the sensor board is updated to show 

the alignment selected. 
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We utilise the state-of-the-art error model presented by Renaudin et al. (2010) consisting of 

an ellipsoid-fitting algorithm based on an adaptive least squares estimator which calibrates 

the magnetometer readings for both instrumental errors and magnetic deviations. 
 

3.2.3.2 Pitch and Roll Computation 

In order to determine the heading of a device affixed to an animal, the magnetometer should 

ideally have an x y plane that is parallel to the earth’s surface, something that is not always 

the case. Correction for this requires a correction for tilt and this can be achieved by using the 

static acceleration by deriving a moving mean from each of the acceleration axes (Shepard et 

al. 2008). For a sample Sj, with a smoothing window of w this is given by: 
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Device pitch and roll are given by the arctangent of the relevant smoothed x, y, and z values. 
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5.2.3.3 Coordinate frame adjustment 

Once derived, device attitude via pitch and roll can be used to rotate magnetometer 

measurements. Here, magnetometer x, y, z values are rotated by the inverse of the pitch   ) 

and roll     to access the rotated column vector m
r 
using; 
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3.2.3.4 Heading derivation 

The compass heading (H) with respect to magnetic north is determined using the x and y tilt- 

and error-corrected magnetometer components utilising;  

 

  (     (      ))   
   

 
 

 

3.3.4 Using Vectorial Dynamic Body Acceleration (VeDBA) for Speed 
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VeDBA can be used for predicting speed in terrestrial animals (Bidder et al. 2012). 

FRAMEWORK 4 calculates VeDBA using;  

 

       √    
     

     
  

 

where    ,    and    are the dynamic acceleration values derived by taking the absolute 

values of running means of the raw acceleration values of each of the 3 orthogonal 

measurement axes from the corresponding raw acceleration values. The program allows users 

to select the length of the running mean although a default of 2 s is used (Shepard et al. 

2009). Animal speed (s) can then be computed by applying a speed coefficient m and adding 

a constant c to the VeDBA value. The speed coefficient and offset is adjusted in the dead-

reckoning wizard page. In addition, we utilise a threshold t whereby, if the VeDBA falls 

below this value, the VeDBA is set to zero. 

 

   {
                             
                                                       

 

 

 

3.3.5 Constant Speed 

For volant species, the dynamic acceleration is unlikely to correspond to the speed of the 

animal, invalidating VeDBA in this context. Until a satisfactory measure of speed is derived 

(such as a pitot tube), we suggest using a constant speed, with options to correct this using the 

GPS data later. 

 

3.3.6 Dead-reckoning 

Dead-reckoning combines the speed and heading to compute a trajectory for the given data 

with calculations computed in Latitude and Longitude to compensate for the spherical nature 

of the earth. Utilising Cartesian coordinates for dead-reckoning introduces error by 

computing trajectories based on linear distances. 

 

There are a number of parameters which must be defined first by the user. These are; (i) an 

initial start position defining the point where the path starts (if GPS data is given, the start 

coordinates are taken from this), (ii) a number of speed parameters for the VeDBA threshold 

and speed coefficients (see Bidder et al. 2012, this volume) and (iii) a heading offset 

corresponding to the declination angle obtained from the NGDC website. The computed path 

is shown alongside the map so that the user can interactively adjust parameters and see the 

result on the generated path. 

 

To compute the path, the speed must be converted to radial distance in terms of the radius of 

the earth R (6.371 x10
6 
m). This is calculated as. 

 

   
 

 
 

 

The Latitude and Longitude at time Ti  (where T0 is equal to the starting point of the track ) 

can be calculated as follows. 
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The complete set of latitude and longitude points defines the trajectory of the animal 

movement. 

 

3.3.7 Dead-reckoning with GPS Correction 

The dead-reckoning solution can be subject to cumulative errors from the estimates of 

derived heading and speed. Even small, but systematic, errors in these channels will 

accumulate over time and can increase the resulting error correspondingly. To overcome 

these problems, the program utilises a dead-reckoning and GPS correction algorithm to 

correct the heading and speed of the obtained dead-reckoned trajectory using the aligned GPS 

trajectory information. This resets the accumulated error at each GPS fix. 

 

We correct the heading and speed by adjusting the length and heading of the dead-reckoned 

path such that they align to the same positions along each fix along the GPS path. For this, we 

define two equations; the heading between two points and the distance. 

 

The heading ( ) between two points (               (            is calculated as so: 

 

                     
                                              
                                                  

 

The distance (d) between two points (               (            is calculated as so: 
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)     (

    

 
)     (

     

 
)     (

     

 
)                      

 

                                √        √            
 

The headings and speed between fixes can be adjusted to those of the GPS fixes in an 

iterative manor. For two sequential GPS fixes there are usually many dead-reckoned fixes in-

between. Firstly the heading is adjusted, this consists of adding a constant heading to all the 

dead-reckoned headings between the GPS fixes. 

 

                                              
 

A speed coefficient to adjust the speed by is then computed. This consists of multiplying the 

speed values (derived from the VeDBA) between the GPS fixes.  

 

                      
           

          
  

 

The formulae for dead-reckoning are now adjusted to generate a dead-reckoned GPS-

corrected path. The speed coefficient is multiplied by the original speed coefficient, along 
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with an addition of the heading offset, specific for that section of the track to counter the 

deviations from the GPS trajectory. 

  

                                                         
 

                                                                
                      

 

The process is repeated by applying the GPS-corrected path in place of the dead-reckoned 

path utilising the previous formulae. Each iteration makes the path adhere more tightly to the 

GPS fixes as the heading and speeds are adjusted. We allow the user to repeat the adjustment 

process a set amount of times or continue until the speed and heading adjustments are under a 

specified threshold. 

 

The particular advantage of a dead-reckoned track is that it can give very fine detail in the 

route of an animal and do so without reference to external ground-truthing sources, although 

confidence in the precision of the route will inevitably decrease with increasing time between 

ground-truthed points (Bidder et al. this volume). Nonetheless, the approach has particular 

value in being able allude to trajectories where conventional tracking methods are useless 

(Fig. 3). 

 

 

 
 

Fig. 3 – Dead-reckoned track of a European badger (Meles meles) in Northern Ireland 

leaving its sleeping quarters (red dashed circle) and moving through the underground sett to 

emerge at the entrance (yellow circle). The vertical axis representing depth is shown as the 

pressure difference between the surface and any time underground. The reconstruction 

assumes that animal speed is directly proportional to VeDBA (Bidder et al. 2012) 

underground in the same way it is on the surface. If this is not the case, the derived distances 

will be affected accordingly. 

 

4. Derivation of animal behaviour 

 

4.1 Problems with traditional Machine Learning Techniques 
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Extracting animal behaviour from the raw DD data is a time-consuming and cognitively 

demanding process for human analysis. Machine learning classification processes can be 

applied to identify and label behaviour by executing algorithms which learn from data to 

discover previously unknown properties (Esling et al. 2012) The learning aspect is typically 

split into two categories, supervised, and unsupervised learning. Supervised learning 

algorithms are trained on labelled data to generalize relationships between input and output 

samples. Conversely, unsupervised learning algorithms operate on unlabelled data to find 

previously unknown structure, and domain knowledge can then be applied to match found 

structure to a behaviour.  

 

Supervised techniques build a model from labelled data which generates predictions in 

response to new data. Traditionally, K-nearest neighbour (K-NN), support vector machines 

(SVM), and random forests have all been applied to accelerometer data. K-NN is a ‘lazy’ 

learning method which predicts class membership based on the k closest training examples in 

the feature space (e.g. Bidder et al. 2014). The SVM algorithm finds a hyperplane which 

separates the feature space into the classes defined in the training set. Unseen data is assigned 

to a class based on the hyperplane region under which it falls (e.g. Gao et al. 2013). Random 

forests are the current state-of-the-art classification method in the data-mining community 

(e.g. Ellis et al 2014). Random forests construct many decision trees, each modelling the 

training set, with each tree voting for the resulting classification. A data item is assigned to 

the class with the most votes. 

 

Cluster analysis is an unsupervised learning technique for exploratory analysis to find natural 

groupings of data. The most common clustering method used is K-Means. Data is partitioned 

into k clusters based on the distance to the nearest mean. The disadvantage of k-means is the 

need to specify how many partitions are in the data prior to clustering. Hierarchical clustering 

does not require any input parameters, instead grouping data over a variety of different scales 

to form a cluster tree, often visualized as a dendrogram. The user can choose the level most 

appropriate to their needs. However, this method is computationally expensive (order N
2
). 

 

Supervised learning algorithms require extensively labelled instances of behaviours. 

Obtaining this data is time consuming, requires domain expertise, and the undertaking of 

field studies to gather video-synchronised data. It is obviously not possible to obtain all such 

data in all cases due to environmental constraints. Secondly, the choice of algorithm and 

parameters provides its own class of problems. Typically, in this process, the data 

dimensionality is reduced to a few parameters which contain the relevant information to 

perform classification; feature extraction. Good classification results rely heavily on the 

features chosen, however, extracting a desirable feature set is considered more of an art than 

a science and takes a great amount of skill along with trial and error (Smith 1997). Once the 

data is classified, if the accuracy is less than desired, decisions must be made as to whether it 

is useful to invest more time creating additional training input, modify the parameters, or use 

a different learning algorithm. It is not obvious what the next best step to take is without 

sufficient knowledge of the underlying algorithms. 

 

4.2 FRAMEWORK 4 approach to behavioural identification. 

Unlike the previous methods, our method for identifying animal behaviour can use just one 

positive example and does not require large extensively labelled collections of behaviours 

(Walker et al. 2015 – Submitted to The Euro Graphics Conference on Visualization). 

Complicated parameters are avoided by utilising interactive visual interfaces which draw 

from the domain expertise when selecting matching behaviours in the input signal. A 
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feedback loop is incorporated such that the precision and recall can be boosted by applying 

the user’s subject knowledge. These features overcome the disadvantages of machine 

learning and provide a working solution that can cope with large complex data sets, a vital 

element given the rates at which DDs record (e.g. 10 channels, each at 40 Hz). The result is a 

system which supports the manual labelling of animal behaviour complimented with a user-

driven approach for the semi-automatic classification of animal behaviour, requiring one 

instance of behaviour for the matching process to take place. 

  

The user interface is split into three components (see Fig. 4 for overview). This consists of 

the data view at the top, being composed of the data in a stacked time-series graph format. 

Coloured segments overlaid on the graph indicate classified animal behaviour. A search panel 

is located in the bottom left, within which the user can perform searches on the data utilizing 

the template search wizard. Results are shown in this panel for the user to test, reject or 

accept results before moving to the appropriate classification in the bottom right panel, where 

the classification widget is situated. Classified behaviours are shown to the user in this 

tabulated panel. Each tab represents a separate behaviour and contains visualizations of the 

corresponding set of classified instances. The colours assigned to each tab correspond to 

those overlaid transparently on the time-series graph. 

 

 
 

Figure 4 – An image of an overview of the user interface provided in FRAMEWORK4. In the 

top there is a stacked time-series graph with labelled behaviours overlaid as transparent 

windows. The search widget (bottom left), allows the user to search for behaviours and filter 

through found instances by accepting and rejecting. Accepted results are moved into the 
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classification widget (bottom right). This view encapsulates the behaviour groups and 

associated classified instances. 

 

The components of our system and each of the processes towards classifying animal 

behaviour are split into five steps; (1) the user must select a behaviour to find in the data set, 

(2) matching is performed to find the similarity across the series, (3) A classification wizard 

allows the user to apply their knowledge to extract matches, (4) Extracted behaviours are 

presented to the user, (5) The user can improve the accuracy of their results by applying a 

feedback loop, (6) The classified results are displayed. 

  

4.2.1 Behaviour Selection  

The first step in our system is for the user to select a behaviour to classify in the data. There 

are two methods for this in the application. Firstly, query-by-example, and secondly selecting 

previously saved behaviour instances from the template database.  

 

Query-by-example allows the direct selection of animal behaviour by drawing a window 

across the time-series encapsulating a subset of data exemplifying the behaviour the user 

wishes to search for. After selection, a dialog is then displayed where the user can select the 

data attributes to utilize for the template. Any data attribute can be used for searching 

throughout the system (not just the accelerometer component). For example, the 

magnetometer attribute is useful for finding thermalling cycles in condors, while the pressure 

component can indicate diving cycles in aquatic species.  

 

Behaviour templates used in the system are stored in a database back-end for future use. This 

is particularly useful because assigned behaviours can be used to search other files. The 

database can be set up to deal with behaviour templates assigned to classes of animals. The 

user can query for all patterns present for a specific animal or select an existing behaviour 

template previously saved in the database by navigating to the animal of interest and then 

selecting the appropriate behaviour template. 

 

The signal may be resampled to capture events at different frequencies as some behaviours 

occur at different speeds, for example running. To capture these events independently of the 

time duration, we can store and search for the signal at different time-intervals using 

resampling. Re-sampling is used by specifying an irrational factor consisting of an 

interpolation factor (amount to up-sample by) and a decimation factor (amount to down-

sample by)e.g. resampling by 1 / 2 will half the sampling rate, while resampling by 2 / 1 will 

double the duration. 

 

4.2.2 Template Matching 

Supervised machine learning techniques rely on large bodies of labelled data. Such 

extensively labelled data sets do not exist in our application area. An alternative solution for 

classification is to use template matching, a process for determining the presence of a known 

waveform in a larger dataset. In essence, this works by sliding the specified template across 

the data set, computing the similarity of the template at each position in the data series 

corresponding to the concordance in fit between template and the sample at the position. The 

result is a similarity value at each position in the time-series. This allows the user to select a 

single positive example of a behaviour and search for all occurrences of it in the data. 

 

A distance measure is used to determine a quantitative value corresponding to similarity or 

dissimilarity between time-series. Correlation is the optimal technique for detecting a known 
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waveform in random noise (Smith 1997). In signal processing, it is well known that 

Correlation has a linear complexity frequency space. We utilise correlation and a new fast 

normalized cross-correlation method for template matching in order to obtain results within 

real time (seconds) which maintains an interactive implementation. Standard cross-

correlation performs matching, taking into account amplitude information, while normalized 

cross-correlation normalizes the template signal and current area under the template such that 

amplitude shifts are not taken into account. This is important when performing matching over 

regions where the represented waveform may be present at different orientations. Re-

sampling the signal allows us to introduce time axis distortion to extract behaviours occurring 

at different durations. 

 

4.2.3 Classification Wizard 

Once the template matching algorithm has been executed, the user is presented with the 

pattern-matching results in the classification wizard. The classification wizard is used to 

guide the user through refining a similarity threshold to verify matched signals. The user 

interactively modifies the threshold value which corresponds to the similarity of extracted 

matches. Matches are depicted to the user in an intuitive format with interaction to modify the 

result set according to the user’s domain knowledge. 

 

The classification wizard (Figure 5) is used to find all instances of the specified behaviour in 

the data series.  The aim is to then obtain an appropriate threshold value through the 

interaction and inspection of visualization which maximizes the number of instances found, 

while minimizing the number of misclassifications. The similarity threshold is represented as 

a percentage of the match, with one hundred percent similarity representing an exact match, 

while zero represents no matching features. The user needs to find an appropriate estimate 

value using their expert knowledge of behavioural patterns and their occurrences in the data 

set. 

  

The classification wizard features two views. On the left (Figure 5 (b)) are visualisations to 

show where matches occur in the data series, while on the right (Figure 5 (c)), all of the 

extracted matches are overlaid on top of each other to show the variance between matches. 

The visualisations are updated as the threshold value is refined by adjusting a slider 

corresponding to the threshold percentage (Figure 5 (a)).   
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Figure 5 - This figure shows the classification wizard. (a) Illustrates our wizard parameters 

for dynamically adjusting the threshold. (b) Shows our density based visualizations to gain 

an understanding of where matches occur in the data series. (c) Shows our overlaid signals 

visualization of all the extracted matches in a stacked graph format, with one graph for each 

attribute of the template. The template signal is overlaid in red to show a direct comparison. 

A yellow to blue color scheme is used, yellow representing low similarity matches, while blue 

encodes high similarity matches 

 

The positions where matches occur in the series are depicted using three graphical views 

(Figure 5 (b)), all of which are aligned with a time-series graph of the data series (Figure 5 

(b1)). The confidence of a match visualization (Figure 5 (b2)) depicts a heatmap showing an 

overview of the pattern matching results to encode where high (blue) and low (yellow) 

similarity matches occur in the data series. The extracted matches view (Figure 5 (b3)) 

depicts where the extracted matches occur in the series and is updated as the similarity 

threshold is adjusted. Finally, a distribution of extracted matches (Figure 5 (b4)) which 

utilises a histogram, shows the number of matches at each position. The user may refine the 

result set by rejecting results by clipping rectangular regions of matching results from the 

data series to reject. This allows the user to reject results based on their knowledge of where 

they expect results to be present in the data series and the temporal trends expected. 

 

All of the extracted matched signals are overlaid in a stacked time-series graph format, one 

graph for each data attribute of the pattern (Figure 5 (c)). The user can gain an overview of 

the general shape of the extracted signals from the graphs. This allows the verification of the 

shape of extracted matches as most outliers stand out immediately, not fitting into the general 

shape of the extracted results. The same colour-encoding scheme as the position of matches is 
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used to encode the strength of a match. As the user adjusts the threshold, results are added or 

removed. The user can directly see the cause and effect of modifying the threshold on the 

general shape of matched signals in comparison to the template signal overlaid in red. Results 

can be rejected in this view by manual selection of lines on the time-series graphs. All results 

falling within the selection are removed from the result set. This allows the user to filter 

results that should not be present manually. The user continues adjusting the similarity 

threshold and rejecting results in the synchronised graphical views until they are satisfied 

with the results being extracted. The user clicks ‘finish’ and the wizard closes.  

 

4.2.4 Results 

After the user has concluded with a good threshold value, the results are extracted and added 

to the results widget in the bottom left of Figure 5. The user can further inspect the results 

using our two views. Firstly the sparkline (embedded time-series) display, this puts the 

classifications in a table format, with each row corresponding to an identified instance of a 

behaviour visualized using a sparkline. The user can accept or reject results by selecting 

rows. Secondly, the overlaid plot view overlays the classified instances in a time-series graph. 

The user can accept or reject results by selection on the time-series. The overlaid plot view is 

useful where the signals shape is similar amongst results. Conversely, the sparkline display is 

useful where the behaviour signal varies. Matches displayed in the results view are also 

shown in the data view overlaid on top of the time-series graph in grey. 

 

4.2.5 Improving Precision and Recall 

The variability and inconsistency of animal behaviour makes the automatic labelling of 

behaviour a challenging task. It is widely accepted in the machine learning community that 

achieving 100% precision and recall is a difficult, if not impossible, task. From a movement 

ecology viewpoint, we aspire to close to perfect labelling of behaviour. We incorporate a 

feedback loop which draws from domain expertise to enhance results. Firstly, the user can 

provide secondary examples of a behaviour to find more behaviour instances. Secondly, the 

user can directly manipulate the result set to accept and reject matches. Finally, the user can 

manually classify behaviour. 

 

Where the user believes the number of found instances to be low, boosting can be used to 

retrieve more instances. More examples of a behaviour are utilised in the template for 

searching. This, in effect, widens the search span to find patterns related to the secondary 

retrieved patterns but may not be directly related to the initial search pattern.  

 

The results panel provides an effective means to inspect the newly found behaviour 

classifications. Results are accepted by moving them to an appropriate classification tab in 

the classification widget, or rejected by clicking the reject button. The reject button removes 

the result from the panel. The user should aim to keep accepting / rejecting results until this 

panel is empty.  

 

We appreciate that some instances will never be identified by machine learning and may only 

be able to be extracted by the domain expert, be that because of a low number of instances of 

the behaviour, or because of the variability of the animal behaviour. We enable manual 

labelling in our system so that the user can manually select and classify behaviour regions. To 

classify a behaviour region in the data manually, the user cuts the time-series graph up into 

segments. Each cut contains a start and end boundary defined by that of a behaviour instance. 

Once a behaviour region is cut in the time-series graph, the user drags and drops the time-
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series segment into the appropriate classification tab. The cutting and dragging of data 

samples is similar to that used in video-editing software. 

 

4.2.6 Classified Results 

Classified behaviours are shown in two views. Firstly, the classification widget which 

displays classified behaviour in a corresponding tabulated view. Secondly, classified 

instances are aligned and overlaid on top of time-series graphs as coloured rectangular 

regions identifying where in the data a match for the behaviour has occurred. Each behaviour 

is identified by a unique colour assigned to each classification tab in the classification widget.  

 

A typical output of this process is that, not only can animal behaviour be classified with 

respect to time, but that the occurrence of different behaviours can be represented on GPS-

enabled dead-reckoned animal tracks in an obvious colour scheme (Fig. 6). 

 

 
 

Fig 6. The dead-reckoned trajectory of a cow (Bos taurus) in a field in Northern Ireland over 

2 h, colour-coded according to different activities – green = grazing, black = walking, red = 

lying down. 

 

 

5. Derivation of animal energy expenditure 

 

5.1 Proxies for energy expenditure. 

Since the suggestion by Wilson et al. (2006) that dynamic body acceleration could be used as 

a proxy for VO2, there have been a number of studies that have confirmed its utility in species 

ranging from shellfish, through fish, amphibia and reptiles to birds and mammals (see Halsey 

et al. 2011 for review). Two measures have been used, Overall Dynamic Body Acceleration 

(ODBA) and Vectorial Dynamic Body Acceleration (VeDBA), which are essentially 

equivalent in terms of their power to predict VO2 (Qasem et al. 2012) although VeDBA has 

more utility for predicting speed (Bidder et al. 2012). FRAMEWORK 4 uses VeDBA (see 

section 3.3.4 for calculation) as a proxy for VO2 (Halsey et al. 2009) and so that plots of 

animal trajectory can be colour coded accordingly (Fig. 7). 
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Fig. 7 –  The dead-reckoned trajectory of a sheep (Ovis aries) in Argentina over 14 h 

showing how VeDBA, a metric that correlates linearly with metabolic rate, (ranging from 

pale green [low values] through yellow to red [high values] varies with location and track 

tortuosity. Note how higher track tortuosity is generally linked to lower VeDBA. 

  

 

6. Derivation of the physical characteristics of the environment 

 

Many animals modulate their behaviour in the environment according to its physical 

characteristics. For instance, reptiles may associate with areas of high temperature or 

insolation to warm up (Chelazzi and Calzolai 1986) while many bird species are limited in 

their foraging capacities by light (e.g. Wanless et al. 1999). Thus, the ability to resolve the 

geographic position of animals in tandem with environmental variables can help explain the 

incidence or emergence of particular behaviours (e.g. Wilson et al. 1993). Thus, the particular 

value of FRAMEWORK4 is that it allows the physical attributes of the environment to be 

allocated to space (and time) and to be associated with identified behaviours (Fig. 8). 
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Fig. 8 – Track made by an Andean condor (Vultur gryphus) in Argentina during ascent in a 

thermal. The track is colour coded according to the potential temperature (a useful 

metereological metric). 

 

 

7. Merged file output 

The derived analytical attributes from the software can be outputted together into one data 

file. Exporting data is supported via navigation to the ‘Export’ option in the ‘File’ menu on 

the main tool bar. Export is undertaken in CSV format where derived attributes are appended 

as an additional column in the data file alongside the existing data channels. Each behaviour 

is assigned a unique numerical value where, if a data item falls within a labelled region, it is 

assigned this value. 

 

8. Obtaining Software 

The software is freely available for download from the following web address. The website 

features instructional videos and documentation on using the software. As the website 

evolves there will become more documentation and features available. We hope this will be 

the foundation of a variety of software techniques for animal movement analysis. 

 

http://www.framework4.co.uk 

 

We ask if you utilise the software in a publication that you reference this paper appropriately. 

 

9. Conclusion 
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This is a first attempt to create a single program that explicitly links space use, movement, 

behaviour, and energy expenditure in free-living animals together with environmental 

conditions, doing so using an accessible column-separated format for ASCII-type data. 

Although there is appreciable room for improvement in many facets of the program at the 

moment, the aspiration is to progress and refine it to make it as powerful as possible and 

thereby provide a methodology which will enhance our understanding of the processes that 

affect the way that animals move within their environment. 
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