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Smart Brushing for Parallel Coordinates

Richard C. Roberts, Robert S. Laramee, Gary A. Smith, Paul Brookes, Tony D’Cruze,

Abstract—The Parallel Coordinates plot is a popular tool for the visualization of high-dimensional data. One of the main challenges when
using parallel coordinates is occlusion and overplotting resulting from large data sets. Brushing is a popular approach to address these
challenges. Since its conception, limited improvements have been made to brushing both in the form of visual design and functional
interaction. We present a set of novel, smart brushing techniques that enhance the standard interactive brushing of a parallel coordinates
plot. We introduce two new interaction concepts: Higher-order, sketch-based brushing, and smart, data-driven brushing. Higher-order
brushes support interactive, flexible, n-dimensional pattern searches involving an arbitrary number of dimensions. Smart, data-driven
brushing provides interactive, real-time guidance to the user during the brushing process based on derived meta-data. In addition, we
implement a selection of novel enhancements and user options that complement the two techniques as well as enhance the exploration
and analytical ability of the user. We demonstrate the utility and evaluate the results using a case study with a large, high-dimensional,
real-world telecommunication data set and we report domain expert feedback from the data suppliers.

Index Terms—Multivariate Visualization , Parallel Coordinates, Call Center, Glyph, Brushing, Interaction Techniques.
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Fig. 1: These images demonstrate higher-order brushing for n-dimensional exploration of parallel coordinates. The left image indicates
a series of snapshots from the sketch-based interaction of brush definition from left-to-right. The right image shows smart brushing
incorporating the interval range histogram glyphs that provide interactive guidance to the user. Red dots indicate mouse-click positions.

1 INTRODUCTION

ARALLEL Coordinate plots (PCPs) are widely used to over-
P come the challenges associated with the visualization of high-
dimensional data. The n-dimensional capabilities of the PCP en-
ables complex relationships to be plotted with simplicity. However,
the parallel plot is still subject to overplotting and occlusion if
the number of polylines becomes too large. This challenge may
be addressed through brushing and filtering techniques directly
applied to the plot.

Current methods of brushing (summarized in Figure 2) enable
users to query the PCP through direct data interaction or axis
selection [1], [2] — however these methods are generally not
supported by meta-data. Our methods involve sketching flexible,
high-dimensional patterns in a chain-like sequence such that multi-
dimensional patterns in the data can more easily be explored,
discovered, and analyzed. We introduce interval range glyphs that
provide real-time feedback to the user whilst querying the data
using the sketch based interaction.

We propose a number of user interaction-based features to

integrate with PCPs in order to improve the search and discovery
of n-dimensional patterns and relationships. We present a brush
interaction which enables a smooth, more intuitive, sketch-based
interaction whilst providing context-aware feedback to guide the
user in their brush definition and placement. We define this brushing
mechanism as higher-order brushing. For a visual demonstration
of this see Figure 1 on page 1. The sketch element of the brush
freely enables brushes to be applied across multiple axes quickly
and naturally by drawing arbitrary patterns on top of the PCP. It is
more intuitive than conventional brushing because it follows the
patterns of the polylines themselves. Together with the glyph-based
feedback, these methods compliment each other to facilitate quick
and powerful exploration of large datasets.

Previous brushing techniques are limited in terms of intelli-
gence. They offer little-to-no guidance on placement and definition.
Any intelligence involved is based solely on the users own
knowledge and perception of the data. In this paper, we use
the phrase ‘Smart Brushing’ to encompass our ideas of both
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Fig. 2: This image is adapted and inspired by Raidou et al. [3] and summarizes the current State-of-the-Art brushing techniques. We
propose the next step in these brushing interactions with higher-order brushing and smart, data-guided brushing.

higher-order brushing and smart brushing. In addition to the
higher-order brushing techniques we present a modified, data-
guided, smart brush that provides real-time feedback to the user,
based on the current mouse pointer location and surrounding
data. Modified, dynamic angular histograms [4] are integrated
into brushes to display the high-frequency, n-dimensional trends
during the interaction. This may highlight the divergent points or
areas at which the data suddenly changes.

Smart, higher-order brushes can also be applied automatically
based on the most densely populated axis sections or other
properties of the data. This auto-complete feature can guide the user
in interactive placement of brushes such that the most important
high-dimensional trends can be observed. Such guidance is useful
for new users of higher-order brushing or experienced users
looking to speed up the interaction process. We also implement
a smart, data-guided axis-scaling approach that magnifies a data-
guided, user-specified interval brush range to the full height of the
respective axis when a smart brush is applied. This maximizes the
utility of the space available and is particularly valuable in dense
areas of datasets. An auto-scale feature also enables the user to
apply axis scaling such that a given number of standard deviations
is depicted automatically around the brush-axis intersections. This
provides the user more advanced n-dimensional search options
for large datasets and enables direct filtering of outlying data. To
demonstrate utility and evaluate the techniques, we undertake a
multi-stage feedback process with domain expert testing using large,
high-dimensional, real-world data from the telecommunications
industry.

In summary, the contributions of this paper include;

« A novel, sketch-based approach to support higher-order
brushing,

o Smart, data-guided brushing techniques that provide interac-
tive guidance to the user,

« Data-guided, automatic application of brushes and axis scaling
to accelerate the search for n-dimensional patterns,

e The demonstration and evaluation of the new brushing
techniques in a real-world case study with our partners from
the telecommunications industry.

In this paper we first discuss the related work on brushing in
PCPs. We describe the limited interaction and features offered by
current state-of-the-art brushing techniques. Then we present the
concept and implementation of higher-order brushing. Following
this, we describe the smart, data-guided brushing techniques with
examples of utility and then provide evaluation with domain expert
feedback involving a case study from the call center industry. We
finish with conclusions and future work directions.

2 RELATED WORK

Parallel Coordinates: Though first published in 1885 [5],
the parallel coordinates plot was popularized almost one hundred
years later by Inselberg in 1980 [6], [7]. The design addresses
n-dimensional data visualization challenges. Follow-up papers by
Inselberg [8], [9], [10] further enhance the modern version of
the visualization we use today. This n-dimensional technique has
evolved into a popular area of research in the field [11]. The PCP
approach has proved to be so popular that a book dedicated to
the topic was published in 2009 [12]. Other multivariate forms of
analysis have also been developed [13].

Gruendl et al. [14] use parallel coordinates as an alternative
to time series plots. Tory et al. present a parallel coordinates
interface for exploring volumetric datasets [15]. The span of
parallel coordinate use cases is vast. Because of this, State-of-
the-Art reports are useful to review the complete body of parallel
coordinates literature and a number of closely related surveys have
been published [1], [2], [16], [17], [18]. Most notably, Heinrich and
Weiskopf provide a unique classification of parallel coordinates
research [17].

Interactive Brushing Techniques for Parallel Coordi-
nates: Brushing was introduced for the examination and dissection
of multidimensional data on scatterplots [19]. Though the term
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was later coined by Becker and Cleveland in 1987 [20] whereby
individual data points could be selected by application of a
‘brush’ which can be used for activities such as highlighting, data
manipulation, or labeling [20], [21].

We define brushing based on interaction with a single point
as 0-order brushing. The term O-order is inspired by the orders
of approximation terminology conventionally used in science,
engineering, and mathematics. Range brushes can be applied
to individual axes [12]. We define this as a 1%*-order brushing
technique because it is based on interaction with two points.
Typically, the application of a brush creates filters by which the data
is processed [22]. The number of polylines rendered are reduced
to minimize clutter and reveal patterns in the data. Raidou et al.
present an orientation-enhanced brushing technique for PCPs [3].
In their paper, a visual description of State-of-the-Art brushing
techniques is detailed ranging from probing (0-order brushing), to
composite AND OR brushes (composite 1%'-order brushing). See
Figure 2 on page 2. Avidan and Avidan [23] define the queries
‘interval’, ‘pinch’ and ‘angle’ presented together with the use of
boolean operators to form compound queries. A more detailed
discussion of the design, motivation, and implementation is given
in chapter 10 of Inselberg and Dimsdale [10]. These queries precede
this paper.

Angular brushing enables data to be filtered based on the angle
a polyline forms when intersecting an axis [23]. In other words,
angular brushing is based on three points (and two edges). We
call this 2"4-order brushing. The higher-order brushing techniques
we introduce enable brushes to be applied using an arbitrary
number of points e.g. n > 3. Combinations of brushes using
logical operators can in theory enable n-dimensional filtering
[23], [24], [25]. We define the result of this AND operation of
brushes to be composite 1%'-order brushing. The reason for this is
because interaction with these brushes is based on manipulation
of individual points. Interacting with one point has no effect on
the others. From an interaction standpoint, they are effectively
de-coupled. As a result, such interaction is slow and error prone.
An interactive exploratory search for n-dimensional patterns using
composite, 1%t-order brushes is generally not supported.

Brushes are also applied such that focus is placed on a specific
point or area of interest. Instead of a discrete context rendering, a
decreasing polyline opacity value as a function of distance away
from the point of interest is used [24], [26], [27].

Hierarchical brushes that use wavelets and clustering are
sometimes used on large datasets [28], [29], [30], [31].

Axis scaling (also referred to as dimensional zooming) is often
used as a means to focus the scope of analysis by modifying the
upper and lower bounds of an axis [29], [32]. This dimensional
zooming can be used to align axes to a common base [23]. In
general these limited scaling methods offer basic, slow, manual
axis control to the user. The smart axis-scaling approaches we
describe enable fast, automatic n-dimensional axis scaling guided
by the properties of the data.

Theron develops clever brushing techniques that enable the
user to identify the variance between a selected polyline and the
remaining polylines using color [33].

Touch-based Interactions: A large body of research
explores the value of exploring visualizations on touch screen
devices. Sadana and Stasko study the effectiveness of varying
multi-touch and multi-handed gestures on standard graphs [34].
Similar research focuses more on the touch interaction than the
visualization features [31]. Kosara identifies the time consuming
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nature of applying brushes to parallel coordinates, and develops a
multi-touch interaction for PCP brushing on a tablet [35].

Most similar to our method, Nielsen et al. develop scribble
query, a touch brushing interaction for multivariate visualization
[36]. The querying tool enables the user to select patterns with their
finger and apply brushes similar to that of the pattern. Our work
extends from this by implementing complete brush translations as
well as brush component pinning. We also implement these features
for use with a standard computer without the use of a touch screen.

XmdvTool: The most notable public domain Parallel
Coordinates tool is XmdvTool. The software is used extensively
for the study of multivariate data [24], [37], [38]. The current
features enable users to explore multivariate data using a number of
visual interaction methods. Primarily, parallel coordinates are used,
however scatter-plots and glyphs can also be used to represent the
same data.

In Ward [37], the hyperbox facilitates n-dimensional brushing
through a net-like composite of individual 1%-order brushes that
are manipulated on a point-by-point basis over the plot to filter
polylines. The creation of a new hyperbox seems undefined. The
hyperbox extends over each axis and defines the range of the brush
on each axis. The upper and lower bounds of the brush ranges are
manually edited, point-by-point, to apply a specific filter to the
data. Points are dragged individually up and down on each axis.
From an interaction point of view, manually placing, updating,
an manipulation of individual points could be expedited and less
error prone. Other parallel coordinates software such as XDAT use
similar, limited methods for brushing [39].

Although the functionality of higher-order brushing is supported
through the logical AND of individual point-based brushes, from
an interaction point of view this is still 0-order. That’s because
all interaction is based on updates to individual points and edges.
Theoretically, a user could shift the entire brush upwards by a
fixed distance by editing the position of each individual point
along the brush the same given fixed distance. However, this
type of interaction is slow, cumbersome, and error prone because
the points are de-coupled. A better method would be to define
any wave pattern in parallel coordinates space with a sketch-like
interaction. The user should be able to shift the entire n-dimensional
brush around in parallel coordinates space to facilitate interactive
exploration of flexible n-dimensional patterns and relationships
quickly and easily. This is one of the benefits of higher-order
brushing.

We present a more efficient method of applying an n-
dimensional brush filter through the implementation of a sketch-
based brush that can quickly be applied and manipulated as both a
complete n-dimensional brush pattern and individual brush points.

Telecommunications Data: The case study we incorporate
for evaluation is based on real-world, n-dimensional data from the
call center industry. The dataset contains millions of phone calls.

Whilst statistical analysis is common for data of this nature,
the multidimensional aspect of the data challenges the potential for
real valuable insight [40], [41]. A large body of research focuses
on the processes involved in business operations [42], [43], [44].
Trends and patterns are observed more easily through visualization
than through numerical representation of data. Roberts et al. have
previously worked in this area by segmenting the event-based
data into temporal nodes on a treemap [45]. Some trends can be
observed through the temporal analysis, but other elements of the
meta-data are less explored. Customer satisfaction is integral to the
success of a business, and so research into the customer feedback
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is highly valuable [40], [46], [47], [48]. The previous research
generally takes a more quantitative approach without exploring
potential visual designs and other aspects.

3 CALL CENTER DATA DESCRIPTION

The dataset throughout this paper stems from our industry partner
from the telecommunications industry. The multivariate dataset is
provided by QPC Ltd., our industry partner who specialize in call
center data collection and analysis. We have been collaborating
with QPC Ltd. since 2014 and have worked on visual analytics and
information visualization projects together both academically and
industrially.

The dataset we study contains almost 5 million calls over a
period of one month. We provide new observations about the call
center behavior that have been discovered using our smart brushing
features. But first we provide the background of the data we use in
the analysis.

As the sale of products and services transitions from bricks
and mortar based locations to digital spaces, consumers spend a
decreasing amount of direct contact time with companies. Call
centers are often the first and only point of contact for customer
interactions with businesses and so it is important that the process
of contacting companies through the medium is streamlined and
efficient. The customer experience of a call center journey can
be recorded, but the process of analyzing the data presents many
challenges.

The dataset contains a number of metrics that collectively
quantify customer contact with a call center. Each call entering
the call center can be broken down into four types of events: IVR
Events, Wait Events, Hold Events, and Agent Events.

The IVR (Interactive Voice Response) is the routing system
that the user navigates when they initially make contact with the
call center. Wait events occur when the caller is placed in a queue,
normally after an IVR event. Hold events occur when the caller
is placed on hold by an agent. Agent events are instances of a
customer talking directly to an agent. Each occurrence of each
event type is recorded as well as their duration.

The estimated cost of the call is derived as well as two measures
of customer satisfaction. The first being the Customer Effort Score
(CES), a measure based on the accumulation of known detractor
events in a call such as long queue times. The second is the Net
Promoter Score (NPS), a direct customer feedback measure via
a survey reflecting customer satisfaction. Only a small number
of phone calls have the NPS metric recorded - around 8,000 of
230,000 calls in a 24 hour period. See Figure 11 a) on page 8 to
see the full number of calls rendered.

The default axes in our figures are as follows:

o Start Time of each call (¢-start)

« End Time of each call (-end)

« IVR Duration - length of the time spent in the IVR (t-IVR)

« Wait Duration - length of time spend in the queue (t-wait)

« Agent Duration - length of time speaking with agent (t-agent)

« Hold Duration - length of time placed on hold by agent (t-
hold)

« Total Call Duration - t-total

o Customer Effort Score (CES) - a derived metric of work put
in by customer

« Net Promoter Score - actual feedback given by customer

o Cost - estimated cost of call
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We use, ¢, to denote a specific time and, t, to denote a duration
of time throughout this paper. We use this real-world dataset to
demonstrate the utility of our proposed visual designs as opposed
to using synthetic data in an optimum use case to attest the utility
of the visual design. Each figure that exemplifies the smart brushing
features uses this dataset.

Whilst the dataset we use is large, the software is capable
of handling the data on commodity machines.We developed the
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Fig. 3: Higher-Order Brush Definition: Each brush-axis intersection
is placed with a single click whereby the interval range of the brush
can be adjusted with the mouse wheel. In this figure, the brush-
axis intersections are placed from left-to-right and a connecting
line is drawn between each intersection point automatically to
show the pattern represented by the higher-order brush. The
entire n-dimensional brush can be moved around the PCP space
interactively, as a unit, to enable fast exploration of arbitrary multi-
dimensional patterns. Red dots indicate mouse-click positions.
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Fig. 4: Image a) shows a the parallel coordinates over-plotted with
data. Image b) shows the higher-order brush applied to the plot,
whereby abandoned calls are explored through the brushing of very
low agent durations.



JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

t-Start t-End

t-IVR t-Wait
2250:5 6400 0 ivs0s

S min 00hrs 36 min

tAgent
i

t-Hold

t-Total CES NPS
00hrs 15 min s 4s 10

smn 120
‘ I
\ \
t / \

00:00:00 0
o =]

Fig. 5: Rigid brush translation in the PCP. Four connected brush
components are translated both upwards, and across one axis whilst
maintaining the brush pattern. Individual brush points can also
be translated if the user wishes to adjust the pattern’s shape. This
example of two different higher-order brushes shows the same
pattern identifying both high #-wait with low agent duration calls,
as well as low #-wait and high agent duration calls. This contrast
shows the effect each pattern has on both the CES and NPS scoring
metrics.

software in Qt C++ using OpenGL for the implementation. The
primary desktop PC used for the development featured 12GB RAM,
a 6th Gen i7, and a GTX 1070.

4 HIGHER-ORDER BRUSHING
4.1 Sketch-Based Brushing

Higher-order brushes enhance standard brushing by enabling the
user to sketch arbitrary, multi-dimensional patterns with a natural
sketch interaction. Previous high-dimensional brushes are used as
a tool to filter and search for n-dimensional patterns in multivariate
data. However, the application of these brushes is time consuming,
inaccurate, and non-intuitive. This is because the interaction is
based on individual points (0-order). Also the interaction with
previous brushes based on points is generally based on click-and-
drag operations moving up and down on the axis. This is non-
intuitive because the brush pattern is orthogonal to the orientation
of the polylines themselves. From an interaction point of view,
the user should be able to interrogate the n-dimensional data by
stating, “I would like to see all the multivariate patterns that look
like this.” At which point they sketch a polyline, typically from left
to right, that represents the pattern for which they are searching.
We have developed a sketch-based brush that can easily be applied
using an arbitrary n-dimensional click interaction and manipulated
with precision so that the user can maximize their exploration and
analysis of the data.

The sketch-based brush is applied using a sequence of con-
nected mouse clicks across the PCP on each axis at the desired
brush-axis intersection location resulting in a flexible n-dimensional
filtering pattern. The interval range on each axis is applied
automatically. We use the term ‘brush interval range’ to describe
the upper and lower boundaries of the brush as it intersects each
individual axis in the PCP. Scrolling the mouse wheel adjusts the
brush range interval, or boundaries which define how far from the
polyline-axis intersection point is considered in focus. See Figure 3
on page 4. Each box frame in Figure 3 represents an instance of time
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during the interaction. During the interaction and before a brush-
axis intersection point is placed, a preview outline of the brush size
is rendered at the mouse point to inform the user how large the next
interval range is. Once the brush-axis intersection point is placed,
the data outside the range of the brush is filtered and rendered
as context. This enables the user to more intelligently define the
n-dimensional brush through a natural sketch-based interaction. We
use focus + context rendering methods so that polylines outside
the n-dimensional brush boundaries are still viewed as context. A
user option can turn this off such that out of focus polylines are not
rendered. This is useful in cases where the context of polylines is
so large that it does not contribute to user understanding.

Example 1: Abandoned Call Identification: We demon-
strate the utility of the higher-order brushing feature in Figure 4
on page 4. In this example we identify and explore a new category
of abandoned calls in the call center by applying the higher-order
brush to very low agent duration, whereby any callers would not
have spoken to an agent for long enough to solve any problem they
might have (t<10 seconds). Previously QPC Ltd. only identified
abandoned calls that never reached an agent (t==0). Each call
associated with the call center is represented by a polyline in
the PCP. The left image shows the completely occluded parallel
coordinates image contrasted against the right image which shows
the higher-order brush applied to a range of axes. The z-start and
t-end axes select the peak times in which calls are made, the t-IVR
brush is placed to cover the main distribution of calls, and the t-wait
brush selects higher wait time callers. The final brush covers very
low r-agent (t-agent), selecting abandoned calls. The result of this
shows a subset of calls that typically would be considered negative
due to the high wait times and abandoned agent interactions. The
IVR and start/end time brush components filter out anomalous
polylines so that all data in focus is representative of typical
abandoned callers. In this example, calls are quickly identified out
of over 200,000 as a new category if abandoned caller.

4.2 Interactive Translation

After the initial n-dimensional brush is defined by the user, the
whole group or the individual brush points can be updated through
a simple click-and-drag translation. A user option enables a natural,
click-and-drag interaction to translate the entire n-dimensional
brush in any direction as a rigid object, maintaining shape
consistency in the brush pattern sketched. The translation works
across axes which means that the exact n-dimensional pattern can
be applied to any combination of axes. See Figure 5 on page 5. This
rigid n-dimensional brush translation, exploration and interaction
mode enables precise n-dimensional patterns to be explored and
analyzed in the PCP in an easy and fast way. Minor adjustments
can be made to the placement of the brushes updating individual
points, or as complete n-dimensional polylines.

Users can apply the sequence of brush sketches in any order
they wish. The advantage of this is that prioritized axes can be
filtered first. Subsequent axes can be chosen based on the feedback
of the previous filter. The user can also skip over any axis they
would not like to include in their filter. Applying higher-order
brushes to multiple axes creates a cluster-like filtering of the
relational patterns being explored. The features we implement
enhance the data selection, filtering, and exploration process such
that subsets of the data can be highlighted for further analysis and
pattern recognition.
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Fig. 6: Higher-order vertical translation. The left image shows a sketch brush placement exploring very low agent ¢ calls. We pin
this brush component in place and then translate the rest of the brush components vertically to explore the rest of the dataset whilst

maintaining a low agent ¢ (middle and right image).
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Fig. 7: Horizontal higher-order brush translation feature. In this example, the three images show a sketch brush translated from left to

right, exploring a pattern across multiple dimensions.

The user can also pin individual brushes in place so that the
rigid brush feature can be used whilst maintaining one or more
constant brush points.

Example 2: Abandoned Call Exploration: Figure 6
on page 6 demonstrates the higher-order brush being translated
vertically. The three images show higher-order brushes placed on
the r-start, f-end, t-IVR, and t-agent axes with the intention of
exploring abandoned calls - very low t-agent. We translate the
complete brush upwards, exploring the higher ranges within the
axis, however, as we indented to explore abandoned calls, the rigid
brush translation moves the agent duration brush placement out
of the intended range. Because of this, we use the brush pinning
feature which enables the user to pin individual brush components
in place whilst translating the remaining sketches. Because of
this, we can explore the full range of the data whilst maintaining
the anchor on abandoned calls. We observe that as the wait time
decreases, callers are less likely to be placed on hold as well as an
increasing Net Promoter Score.

Example 3: Identifying Outlier Calls: Additionally we
demonstrate horizontal translation in Figure 7on page 6 to explore
outlying calls. We place two brushes on the #-start and 7-end axes
covering the operationally busy hours. Then we place a high brush
point on the t-IVR axis and low brush points on the t-wait and
t-agent axes. Values are distributed generally around zero, any large
values are considered outliers. The first image shows outlying calls
from high t-IVR. We then place a pin in the #-start and #-end axis
brushes and translate the others one axis to the right, (middle image)
showing outlying calls from high z-wait. Finally, we translate the
rigid brush right again to highlight outlying calls on the t-agent
axes. Horizontal translation might not always be considered useful
if the axes have different units, however, this can be addressed by

simply normalizing the range of values for each dimension.

4.3 Logical OR of n-Dimensional Brushes

Multiple n-dimensional brushes can be applied and combined on
the PCP. This feature enables the user to define two or more
patterns that can be used in two modes of operation. Previously,
the OR operator is applied to independent brushes on separate axes.
This application of the OR operator is applied to multiple higher-
order brushes on each individual axis. The composite, higher-order

Fig. 8: Logical OR brushing in action. Image a) shows multiple
brush points on an individual axes used as edge markers for the
brush. Images b), ¢), and d) show the logical OR feature in use
where the priority rendering feature has selected different axes. See
section 8.6 for a full description of the feature. Polylines can pass
through either of the brushes to remain in context.
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Fig. 9: Dynamic brush interval range glyph — exploring the inverse relationship between t-hold and t-wait. This brush interval range
glyph enable easy identification of crossover intervals. Image a) shows the unbrushed PCP. Images b), c), and d) show the dynamic brush
glyph applied to different points on the axis. Image c) shows the brush glyph at the center point where the relationships between the

t-wait axis and 7-hold axis crossover.

brush points can be combined to form an OR operator filter which
displays data records that fall into either brush interval range
along the higher-order brush polyline. The two brush positions can
alternatively define the upper and lower bounds of the composite,
higher-order brush. Thus utilizing each higher-order brush to define
the edge of the brush ranges. See Figure 8 on page 6. This enables
the user to identify complex patterns in the data that previously
would not have been observed by a single n-dimensional brush
intersecting n-axes.

Example 4: Clustering Customer Journeys: Figure 8
(on page 6) demonstrates how multiple brush combinations on a
single axes can be used for advanced analysis. Image a) uses the
two brush points as boundaries whereby the user can move the
upper or lower edge of the axis brush range with precision. The

A
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¥

Fig. 10: Brush Interval Range Glyph: This shows the angular his-
togram glyph displaying a histogram of polyline-axis intersections
distributed along the brush range. The three stacked images show
the same brush translated along an axis at different times during the
interaction. The angle and color of the bars update automatically
to represent the average angle of the polylines intersecting the axis
within the histogram bar range.

two higher-order brushes have been positioned on the t-IVR, t-wait,
t-agent, and t-hold axes. The lower brush sits along the bottom of
each axis, covering the lower ranges of data. The upper brush runs
parallel to the lower brush in the higher ranges of the data. Images
b), ¢), and d) show the logcal OR feature enabled so that polylines
can pass through either brush point on an axis. Using the priority
rendering feature, we focus on the upper brush points revealing
the path by which those calls take on the PCP. Each group of
polylines follow distinct paths and do not intersect, i.e. no polyline
travels from the high t-IVR to high t-wait, or from high t-wait to
high t-agent. These features reveal separate clusters of callers with
shared experiences. The priority rendering also enables the user to
see how these clusters are distributed over time of day by looking
at the first to axes. e.g. b) shows high t-wait at specific times of
day, wheres a) and c) are more evenly distributed throughout.

5 SMART, DATA-GUIDED BRUSHING

Smart brushing guides the user during the interaction by reflecting
the properties of the data at run time and encoding the meta-data in
the brush itself. As an extension of the sketch-based interaction and
application of n-dimensional PCP brushes, we implement a series
of data-guided features that inform the user in both their creation
and sketching of new brushes and in their analysis of the data.

The inspiration behind smart, data-guided brushing is natural.
For a new user or a user who is unfamiliar with the data they
are exploring, they may be interested in some guidance or help
during the higher-order (or any) brushing interaction. A user may
need assistance when deciding on an n-dimensional pattern to
search for. They may not know where to start in their multi-
dimensional relationship search process. This is precisely what
smart, data-guided brushing offers. It does so by deriving meta-
data and conveying the meta-data to the user during the interaction.
Some examples of meta-data include the number or density of
polylines intersecting an axis, the proportion of polylines above
or below a brush boundary interval, the average angle of polylines
intersecting an axis at a given interval, the most dense pattern of
polylines in the PCP space, standard deviations from the mean
value along a parallel coordinates axis, and distribution patterns of
polylines.
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Fig. 11: Smart Axis Scaling and Priority Rendering: a) shows the parallel plot drawn by default, color mapped to t-agent. Due to the
large number of polylines it is difficult to see the trends on the t-agent axis (3¢ axis). b) If we apply priority rendering to the upper
range of this axis we can now see those polyline occluded in the PCP. ¢) Here we scale the agent duration axis from an upper range of 2
hours and 30 minutes to just an hour. Glyphs on the scaled axis show the user that the axis has been scaled. In addition to this, the
focus + context lines show the out of focus, out of axis range polylines rendering upwards out of the screen border. We can see these
out-of-range polylines for the total call duration, and Customer Effort Score axes also. This informs the user as to what proportion of

data is within focus.

Previous brushing techniques offer little guidance to the user.

One way of formulating this lack of guidance is that the brushes
lack intelligence. Previously, all of the knowledge or intelligence
required for brushing comes from the user and the user’s prior
knowledge of the data.

5.1 Dynamic Brush Interval Range Glyph

Interactive Angular Histogram:: In order to provide the
user with real-time feedback and guidance whilst applying the
interval range sketch-based brush, we use interval range glyphs to

represent characteristics of the underlying and surrounding data.

The gylph is made up of angular histograms, adapted from the work
of Geng et al. [4], whereby angular histograms replace the PCP
polylines completely. Our software overlays the angular histogram
as a means of providing feedback to the user about the underlying
data. The interval range glyph displays a frequency-based angular
histogram that summarizes the dense polylines passing through
the brush range. See Figure 10 on page 7. These glyphs provide
information about the distribution of polylines in an interval brush

Fig. 12: This figure demonstrates the the dynamic polyline edge that
changes thickness when the user is hovering the mouse pointer over
an axis. This image shows four different edges that increase in size
as the data density increases. When the PCP is occluded, the density
and distribution of data can be difficult to accurately observe. This
feature addresses that challenge by providing real-time visual cues
to the user.

range. The angle of each histogram bar is defined by the average
angle of polylines intersecting the axis within the bar range. This
is particularly valuable when the polylines are very dense or
overplotted and can direct the user to apply the next brush in
the same direction as or against the data trend.

When the user interactively adjusts the position of a brush, the
angular histogram smoothly animates its update in position and
data. See Figure 10. With the addition of these brush interval range
glyphs, the user is given real-time feedback about whether the
data that falls within selected brush ranges is part of a trend or is
considered an outlier. Combining this with the higher-order sketch-
based brush we can discover clustered groups of data records of
any number or density. The number of bins in the glyph histogram
depends on the range of the brush interval. The amount of meta-
data detail increases and is reflected by the glyph when brushing
with longer ranges.

Interactive Data-Guided Arrow Glyphs:: To comple-
ment these features, we provide the user additional feedback about
the underlying data being explored. When the mouse is held over
an axis, the brush interval range is shown on screen as well as
upward and downward arrow glyphs reflecting how many polylines
intersect that given axis above and below the boundaries of the
brush interval range. See Figures 10 on page 10, Figure 9 on page
7, Figure 12 on page 8, and Figure 15 on page 11. This provides
guidance to the user in their brush placement and is especially
helpful for big data when overplotting is a challenge. The user is
then informed about how many polylines intersect the given axis
above and below the current brush interval boundaries.

Smart Brush Edges:: When the user is in mid-sketch
creating a higher-order brush, a dynamic edge is drawn from the
previous axis interaction brush point to the current mouse point.
Whilst the user is hovering over an axis, the thickness of this
edge changes according to the proportion of polylines passing
through that point on the axis, as shown in Figure 12 on page 8.
Both the color and thickness of the edge dynamically reflect how
dense the underlying data in the area on the axis is with polyline
intersections. This real-time feedback guides the user towards the
main relational trends in the data or to outliers - whichever the
user may be interested in. This interactive, data-guided feedback
mechanism creates an easy to use environment for users who
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wish for some guidance when defining a higher-order brush or in
order to analyze the data at a deeper level. The dynamic nature
of this feature necessitates viewing the supplementary video for a
demonstration.
Example 5: Exploring relationships between axes::

Figure 9 on page 7 illustrates the Brush Glyph’s ability to reveal
inverse relationships between data dimensions as well as the
crossover point in these relationships. The left image shows the
overplotted PCP, where color is mapped to t-wait axis. If we place
a brush glyph at the bottom of the t-wait axis, we can see that
the right side angular histogram bars are all pointing upwards
towards a higher t-hold. The next image shows the same brush
glyph translated upwards towards the top edge of the axis. Here the
angular histogram bars are all pointing downwards. If we translate
the brush to the middle of the axis we can see the histogram bars
tend inwards towards the middle of the brush. The center bar is at a
right angle to the axis, revealing the crossover point in the inverse
relationship between t-wait and t-hold.

5.2 Smart Axis Scaling

Dimensional Zooming:: We observe that many datasets,
especially in our case study, exhibit polylines clustered in one
region on an axis. Inspired by this common occurrence, we
implement a data-guided dimensional zooming feature that offers
guidance to the user when selecting the upper and lower range of
any axis. Through a combination of both higher-order brushes and
axis scaling we can change the focus of a set of polylines from
millions to just a few data record quickly and easily. See Figure 11
on page 8.

The user can automatically change an axis scale by fixing the
range to be a multiplier of the standard deviation. This enables the
user to view the majority of the data and automatically drill down
into an area of interest with more detail. Manual axis scaling can
also be activated through a click-and-drag interaction to the desired
new range on an axis whilst the shift key is held.

To convey a smooth transition between the old and new scales,
we implement an animated transition whereby two arrow glyphs
slide along the axis towards the new interval range boundaries
where the scale is applied and then smoothly updates to the upper
and lower bounds of the axis. See Figure 11 on page 8. These
glyphs remain in position at the edges of the axis until the user
resets the scaling. This helps orient the user when navigating the
data by keeping them informed as to which axes have been scaled.

Context Polyline Rendering:: In order to provide feed-
back to the user about the context data that is no longer inside
the magnified axis range, we implement a feature that renders the
context polylines that fall out of the magnified axis range. We
do this by extrapolating the current axis scale, and rendering the
context polylines off-screen at their position on the extended axis.
The user is still informed about how much data falls outside of
the magnified axis range. See Figure 11 on page 8. This is also
demonstrated in the accompanying video.

Polyline Data Distribution:: In big, dense, relational
datasets, overplotting and occlusion often make observation of
the data distribution challenging. It may be difficult to gauge where
on an axis the data is most or least dense. This limits the user in
both the placement of brushes, and in their potential exploration
and analysis of the data.

To overcome this, we have implemented data distribution plots
surrounding each axis. These plots span outwards from the center

t-Wait
01 brs 30 min

t-Agent CES NPS
02Frs 30 min 3000 10

t-Total t-IVR
00 hrs 20 min

t-Start

50 03 s 00 min

00'tvs 00 min 00 hrs 00 min 00 hrs 00 min

t-Start t-Total tIVR t-Wait t-Agent cEs NPS
23:50:50 hrs 22 min hrs 03 min )0 hrs 04 min hrs 07 min 9B 10
+ + + + o+

b)

Fig. 13: This figure shows a before and after screen capture of
the automatic axis scaling. Image a) shows the axes unscaled and
where no priority rendering is set. Polylines are colored by total
duration of the call. Image b) displays the automatic axis scale
which is applied from the #-total axis to the Customer Effort Score
axis. The rendering priority has been given to the call duration. The
upper ranges of these axes are calculated as 3 standard deviations
from the mean of each axis. Whilst the PCP axes now have a
much smaller range (maximum 20 minute call) almost 80% of the
230,000 polylines are still in focus. The automated calculations of
the auto-complete axis scaling enable precise analysis of large and
dense datasets quickly and easily.

of an axis creating a symmetrical pattern showing the distribution
of the data. The plot updates automatically as the axis is scaled.
We calculate the distribution by splitting the axis into 100 intervals,
summing the total number of polyline intersections that fall within
each interval, and then normalizing each of those totals by the most
populated segment on each axis. Polylines that are out of focus are
still included in this calculation. See Figure 1 on page 1, Figure 8
on page 6 & Figure 10 on page 7.

5.3 Smart Automatic Analysis

The previous features aide users in the placement of brushes and
also in n-dimensional pattern search and analysis. Since higher-
order brushing may be difficult to a new user, we also have added
fully automatic higher-order brushing to our implementation. The
higher-order auto-complete brushes offer guidance to the user
during initial brush placement. This guidance, or added intelligence,
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Fig. 14: This figure shows the sketch-based brush data. a) shows an unfiltered PCP where each axis represents a duration metric followed
by the two customer scoring metrics. Immediately we see a dense set of f-wait calls (3™ axis) clustered mid-way up the axis. b) shows a
brush applied to that cluster of polylines. ¢) shows the main trend within the cluster using the higher-order brush. A sketch pattern is
defined to narrow the scope of polylines in focus. The remaining calls in focus show a high ¢-wait but a low #-agent and all seem to occur

within half an hour - from 19:00-19:30.

is derived from properties of the data. To maximize the analytical
output of the PCP software we implement several automatic
features that can provide feedback and apply features with more
precision.

5.3.1 Statistical Analysis

We offer three statistical metrics to the user to either display directly
on the PCP or facilitate smart, automatic application of higher-
order brushes - the clustered centroid, the mean, and the standard
deviation. Each provides valuable insight into the n-dimensional
trends in the dataset and can either enable an informed manual
application of high-order brushing or can automatically apply the
smart axis scaling and magnification described below.

Clustered Centroid: We calculate the clustered centroid
incorporating a user specified interval range (default 10%). We then
loop over each interval range of the distribution data summing all
the polyline intersections within each interval range. We continue
this loop until each position on the distribution has been processed
and then use the central point of the range that contains largest
number of intersections.

Mean Polyline: To calculate the mean polyline, we sum the
position of each polyline intersection with an axis and then divide
by the total number of polylines. The resulting mean positions are
saved as points. They can be drawn as an overlay on the PCP so
that the user can see the average data line. A user option enables
and disables the rendering of this line. See Figure 15 on page 11.

Standard Deviation: Once the mean is calculated, we can add
the standard deviation from the mean on each axis. We calculate
this by taking the set of polylines N containing x,, where u is the
mean and applying the following [49]:

1

_ 2
c N_1. (i — )

=

This is calculated for each axis. The upper and lower bounds of
the SD can be calculated: y + ¢. The user can toggle the drawing
of upper and lower standard deviation lines at 1, 2, and 3 standard

deviations away from the mean. See Figure 15 on page 11. The
standard deviations are then shown as tick marks along the axis
labeled with the o value. A user-option also displays their actual
data values on screen.

5.3.2 Higher-Order, Auto-Complete Brushing
We offer an n-dimensional brush, auto-complete feature. The
statistical methods described previously can be used to automati-
cally apply higher-order brushes. Depending on the method, user-
provided interval brush ranges may be adjusted from their default
value to complete the process. If the user’s chosen method involves
a single point (mean or clustered centroid) then an interval range
value is provided by default as input so that the brush can be
applied. If standard deviation is selected then the user is presented
with options of 1, 2, or 3 standard deviations to apply the higher-
order brush range. Alternatively the user can type in a custom
decimal value to control the size of the resulting brush ranges.
Once the brush interval range option is selected, the user can
specify (all axes by default) the axes which they wish to apply
the auto-complete smart brushing to and then run the process. The
higher-order brush is then automatically applied to the specified
axes and the polylines are filtered.

Automatic, Smart Axis Scaling and Magnification: In
addition to the auto-complete brushing we implement an automatic
n-dimensional axis scaling feature whereby we use the same meta-
data guidance as with the brushes and then apply an axis scaling
and magnification to the respective brush interval ranges across
the PCP axes. This is a logical follow up to the automatic brush
application in that the same number of polylines are rendered out-
of-focus, however the axis scaling provides a closer, more detailed
view at the data within focus and alleviates the challenges posed
by occlusion and overplotting efficiently. See Figure 13 on page 9.

Example 6: Automated Data Focus: To demonstrate the
utility of the automatic axis scaling feature, Figure 13 on page 9
illustrates how this feature can make use of the screen space whilst
maximizing the data being visualized. Here we apply an automatic
axis scale to 3 standard deviations on the axes call duration, t-IVR,
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Fig. 15: This figure shows axis scaling and auto-complete brush in use. The left image shows a PCP where the axes have been scaled to
view the lower ranges of data. The mean and standard deviations are plotted on the axes. A slight inverse trend can be seen between the
NPS and the CES, but occlusion prevents definitive results. Applying an auto-complete brush to 1 standard deviation from the mean
reduces this overplotting, and confirms the hypothesis that low CES is an indicator of high NPS.

t-wait, t-agent, and customer effort score. After smart dimensional
zooming, 80% of the original data is still in focus, and yet the
duration ranges on each axis have been reduced to a small fraction
of their initial values. This concentrated view provides the user with
a specific insight into the typical call in the call center. Without
this feature, the user would have to apply multiple brushes with
pinpoint precision, taking time and effort without any ability to
replicate their brush patterns if they wish to attempt this more than
once. With the priority rendering set to high t-total values, we can
see the paths that lengthy calls typically follow.

6 COMPLEMENTARY USER OPTIONS

To maximize utility of the PCP software, we ensure each feature
has a user option that can enable/disable use of each. In some cases,
this is simply to disable the rendering of a glyph but also can be
in the form of alpha sliders that adjust the opacity of polylines
rendered. When polylines are difficult to see due to being sparsely
distributed along an axis, the user can increase the opacity value
making them more visible. When overplotting is a challenge, the
user can lower the opacity such that the most prominent trends can
be seen more clearly.

We provide the user with a choice as to which features they
enable and to combine the features in new ways to explore
previously unobserved trends or n-dimensional patterns in the
data.

6.1

Parallel coordinate plots of large datasets like those used in our
case study are often subject to overplotting. Density plots can
sometimes reveal trends in the polylines, but often the data is
simply too dense for meaningful insight. We provide a priority
rendering option that enables the user to select any point on an
axis and the PCP will prioritize the rendering. This means that
polylines intersecting the axis closest to that point will be rendered
last and therefore on top. Previous implementations of this do not
re-order the draw list but instead apply an opacity value to the
lines such that the context becomes non-binary [24], [26], [27].
This implementation uses the color of the polylines to overcome
occlusion and so can still be used alongside traditional forms of
focus + context brushing and rendering. See Figure 11 on page

Priority Polyline Rendering

8. This feature is implemented as both a continuous mouseover
feature whereby the focus is continuously updated according to the
mouse position, or through a single click interaction on an axis.

6.2 Mouseover Color Selection

This feature dynamically applies the color map to the axis currently
being studies. The user moves the mouse over an axis and the
polylines will be color mapped according to that axis. The renderer
also draws the polylines in order from that axis, enabling a more
detailed view into how the dataset interacts with the given axis.

6.3 Color Maps

Polylines can be color-mapped by any dimension available in the
dataset. The user can select from a list of any data dimensions, not
just from the axes currently being rendered. A range of color maps
are also available to chose from. We provide a number of diverging
color maps from ColorBrewer [50] that are color-blind friendly.
We also include an improved rainbow color map from Alex Telea
[51]. See Figure 11 on page 8.

7 CASE STUDY FROM INDUSTRY - OBSERVATIONS

In addition to the previous examples, we demonstrate the utility of
our visual designs using real-world data by exploring previously
unseen trends in the call center dataset.

High t-wait/t-agent ratio: After loading in the data and
selecting a set of dimensions to explore, the first thing we notice is
a dense set of polylines around the middle region of the t-wait axis
(Figure 14a) on page 10. If we apply a brush to that area, both the
resulting filter and histogram glyph show a majority of polylines
projecting downwards to the lower end of the tagent metric. These
high wait time callers do not speak to an agent for very long. If we
examine this cluster of polylines on the #-start axis, we can see that
a large number of calls congregate around a small time frame - at
6:30pm (Figure 14b) on page 10.

If we apply a new brush around that time frame, the plot is still
occluded due to the high volume of calls. Using the sketch-based
higher-order brushing we can apply the next brush to a low t-hold
(Figure 14c). We observe that the original dense cluster of calls
around the mid point of the t-wait axis still remains so we continue
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the sketch brushing by applying the next brush to the cluster of
high b-wait calls. Remaining in focus is a subset of the polylines
that represent callers who have had a negative experience with the
call center. High t-wait and low t-agent times are considered a
poor quality of service. Now that this cluster of callers has been
identified, the reasoning behind this behavior can be explored and
recommendations can be given to the call center. Due to the small
number of NPS responses, the customer satisfaction may be unclear
in these cases.
Customer Effort Score: The CES is derived by QPC using

a combination of factors that influence the effort exerted by the
caller. A number of measures such as t-wait, transfer count, and
t-hold are composited together to predict the customer feedback
scores given in the NPS. The advantage of the CES is that it can
be derived for each call. To validate the CES against the NPS we
need to examine the most important metrics involved in the CES
calculation. See Figure 15 on page 11. We load in a number of
duration metrics as well as transfer count metrics and plot the PCP.
We immediately filter out all non-response NPS data entries and
scale the axes so that we can clearly see the customer satisfaction.
The majority of polylines intersect the very bottom of each axis
representing a near zero duration for most axes. If we apply auto-
complete axis scale to the very dense lower segments of each
axis we can zoom in and see the data more clearly. Immediately
we notice that the trend between NPS and CES is accurate. The
majority of zero scoring NPS show a high CES. Also low CES
trend with high NPS. This contributes towards the validation of the
CES measure. It is also important to note that it appears low CES
is better at predicting higher NPS due to the more clearly defined
trend between low CES and high NPS.

If we try the automated features in the software, we can remove
a lot of noise in the plot by automatically applying higher-order
brushes to the t-total duration axes at 1 standard deviation from
the mean. The result further validates the CES calculation but also
reveals some additional trends in the calls. Again we see a cluster
of low t-total duration calls that originate at a certain time. #-wait
and t-hold appear to be roughly correlated, especially in the lower
values. See Figure 15 on page 11.

8 INDUSTRY DOMAIN EXPERT FEEDBACK

We undertake a multi-stage domain expert feedback process with
our industry partner QPC Ltd. in order to demonstrate the real-
world efficacy of the smart brushing features. For the duration of
the project, we worked closely with the business that provide us
with a large call center activity dataset.

At the preliminary evaluation session we presented the software
to three of the data experts to demonstrate its explorative and
analytical capabilities. During this session we received a number
of suggestions improving the current features and some ideas for
new features. As a result of this session we implemented a number
of user options that give the user more control over the exploration
and analysis. A range of features were also conceived during this
session. See Figure 16 on page 13.

8.1

When demonstrating the higher-order brushing feature, the domain
experts are intrigued at the concept of pattern discovery through
a sketch-based interface, “That’s really interesting to know that
that’s the average customer journey. It would be good to be able to
plot a series of those lines and be able to move them up and down

Higher-Order Brushing
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or how the plot changes when you move the lines around slightly”.
We then show them the translation feature that facilitates just this.
We hand control over to the experts and they place a brush sketch
pattern that explores the odd cluster of high wait time calls. They
continue placing brushes at strategic points on the #-start and agent
duration axes and are left with a subset of calls that are clearly
related. This sparks an in depth discussion focused on the possible
causes for this phenomena. “I don’t know the answer, but it’s doing
its job already. That’s interesting.” states an expert as they look at
the visualization. We output the data in focus to a .csv file for the
analysts to examine at a later date. We continue the exploration,
looking at the customer effort score metric that the experts derived.
Using the higher-order brushing we looked at how it compares
against the net promoter score. Expert 1 states “So I think what this
was hinting at, is that it’s visually reinforcing some of the things
we think know about the data. It’s hinting at the fact that there
are definitely relationships in the data, things you would expect,
but now we can prove them. Now the next thing is to help quantify
these relationships.”

8.2 Dynamic Brush Glyph

We begin to demonstrate the dynamic brush glyph. Although the
experts had seen images of the glyphs previously, they had not seen
them used on their own data with a full explanation of the features.
“It definitely feels like a good investigation type approach. It helps
us select things of interest.” Expert 2 claims. We apply a glyph
brush to the t-wait axis and translate the brush up and down. The
result highlights a crossover point whereby higher t-wait calls tend
to have lower durations on average. Expert 3 states “[They] give
you that confidence level, that ability to see if things are out of the
norm. Are there errors that shouldn’t be there? But also you can
see the distribution quickly as well which is helpful.”.

The demonstration continues as the experts explore the software,
applying the brush glyphs alongside the higher-order brushing
feature to study the data. Expert 3 says, “And you've still got an
idea of what you've filtered out compared to what you’re viewing.
1 suppose you’ve got the context lines as well to reinforce that but
it can be noisy. The glyphs create a good signal-to-noise ratio.”.
We found that once the glyph had been explained and the experts
understood exactly what the angular histogram represented, the
feedback was positive. However the initial explanation was more
complicated than we anticipated. It appears that interpretation of the
glyph requires a more thorough explanation of its features than the
higher-order brushing. Expert 3 finished the glyph demonstration
by saying “The brushing glyphs are great. They give you a good
indication of how data is that range is spread. I like how you can
see the trends in the data outside of the brush range. Indicating if
you're brushing against the flow.”.

8.3 Smart Automatic Scaling

Throughout the feedback session, the experts make it clear that the
interesting data is clustered very close to the bottom edge of each
axis. We have explored data in the higher ranges, but in reality they
are seen as outlying data points. At this point we demonstrate the
automatic scaling feature to take a closer look at the data in the
lower ranges. We apply the automatic axis scale to all the duration
axes and set the value to two standard deviations from the mean
and the scaling animation slides up the screen showing which axes
have been scaled. Expert 1 states - “This is definitely useful. It’s
more of a necessity than an additional feature when used on our
dataset. Without it we wouldn’t really be able to look closely at
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Fig. 16: An image from the domain expert feedback session.

those standard calls at the bottom.” We ask if the feature would be
used, “We would definitely need to use this feature when analysing
the data. It would take far too long to manually change each axis
scale according to our needs.”

Expert 2 claims - “In a more general sense, this is useful for
most datasets as it’s a way of zooming in on the data which we
know is replicable. If we use the same data, a 2 standard deviation
scale is going to look the same. It removes the time consuming
aspect of selecting very small axis scales.”

8.4 Smart Automatic Brush Application

We go on to show the automated brush application feature -
demonstrating how and where this is useful. We apply an automatic
axis scale to the duration metrics, and then apply automatic brushes
to the same axes. Expert 3 says “It’s good to see these in action.
Whilst the outcome is very similar to the automatic axis scaling.
it’s nice to have the context of the current axis scaling to remain
consistent so you can better see the patterns and trends in the
data.”

“This feature is probably better suited to someone who doesn’t
really know the data. I imagine we would use the automated brush
applications less than someone who had limited exposure to the
data.” Expert 3 states. We show them a few different configurations
of the automated brush. “I like that you have the ability to chose
which type of automation you can apply” states Expert 2, “Either
the automated scaling or the automated brush. It’s easier to see
where the data has been filtered with the brush, but the scale
increases the resolution of the data.”

8.5 Smart Guided Features & Off Screen Rendering

We show the experts the guided features that help the user navigate
the data whilst applying brushes. “The fact that you've got a
summary of distribution is really good. It’s helpful to see how the
data is spread out. I've not seen that before” Expert 3 states. “It’s
stopping that bunching of data to the bottom of the axis it just
helps when you've got that awkward distribution” he continues.

Whilst applying brushes and axis scales, the experts comment
on the off-screen brushing feature. Whereby polylines that are out
of context due to axis scaling are still drawn as context to a point
offscreen. “I like the off-screen rendering. It helps give perspective
once the axis is scaled. I can see it being really useful I would
often get lost without it.” says Expert 2.

8.6 Priority Rendering

Lastly, we demonstrate the priority rendering feature that enables
the user to pinpoint an axis value and the renderer ensures data
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closest to that point is drawn last. The experts find this to be an
excellent means to overcome dense datasets - “I guess for me, the
point is, we need to get some idea of scale. If we go from 10 million
data points down to half a million, it still looks the same. This
feature helps us look through the data” states Expert 1.

When using the priority rendering to reduce the overplotted
data we can reveal the correlation between the calculated CES
collected NPS. Expert 1 states “This is actually really good
because the theory we are trying to prove that is that time is
a really important factor. The variation between high and low
CES predictions looks like it’s due to the resolution of the call.
Whereby oftentimes negative customers are going to dislike the
service regardless of outcome due to past experiences. However
the positive feedback customers are easier to predict. This visually
reinforces that theory.” The priority rendering helped us look
through the occluded visualization and focus on a specific subset
of the data without losing the context at all.

8.7 General Comments

At the end of the session we wanted to get some general feedback
about the software as a complete package and how useful the
insights were to QPC Ltd. We ask the experts how efficient the
new features are compared to the traditional brushing and scaling
methods that they are familiar with. “So there is a small training
cost when using these features for the first time, but ultimately if
you're going to use this software for real world insight it’s definitely
beneficial to spend the two minutes learning the ropes”. When
asked if some features would require more training than others,
Expert 2 responded with “So I think the higher-order brushing
is pretty self explanatory. Though I definitely think that the brush
glyph would need to be explained before use as that is less intuitive
- but still very useful.” Expert 3 then states “We think the software is
really useful for us to explore our data in a new way, and the tools
you’ve provided let us do things we would never have been able to
do and see before. I would like to be able to see the software used
on our other datasets to see what it can find on those.”

9 CONCLUSION & FUTURE WORK

In this paper, we present a number of novel smart brush interaction
and visualization techniques to enhance the parallel coordinates
plot. Our first contribution represents the next step in brushing
techniques, enabling a sketch-based approach to higher-order
brushes facilitating multidimensional pattern searches with new
and novel interaction methods. Furthermore we present smart, data-
guided brushing that provides the user real-time feedback regarding
their interaction with the PCP using meta-data to inform them of
their potential brush placements. We design features that address
the challenge of large, overplotted datasets and we create smart,
automated application of the features to assist users unfamiliar with
the data or to aid in fast, precise analysis.

We provide a real-world case study example to demonstrate
the analytical and explorative capabilities of the novel interaction
features and then conduct detailed interviews with call center
domain experts to evaluate the effectiveness of the features. The
domain expert feedback attests to the utility of the new features
and provided the telecommunications experts with previously
unobserved patterns in the large call center data as well as
confirming hypothesis they hold about trends and relationships
within the data. The interaction and analysis techniques offer novel
methods for approaching the challenges.
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In the future we aim to continue work in this direction. address
the challenges of large, multidimensional visualization. We plan on
designing visualizations and techniques that accommodate twelve
to eighteen months of call center data. Utilizing the ‘big data’
advantages that the expanded volume of data will bring and explore
its potential in the field of overplotting reduction and automatic
analysis. Additionally, we could perform detailed user studies so
that we can quantify the training cost of using these features as
well as a comparison between traditional parallel plot features and
our improved methods.
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