
computers

Article

Feature-Rich, GPU-Assisted Scatterplots for Millions
of Call Events

Dylan Rees 1,*, Richard C. Roberts 1, Roberts S. Laramee 1, Paul Brookes 2, Tony D’Cruze 2 and
Gary A. Smith 2

1 Department of Copmuter Science, Swansea University, Bay Campus, Swansea SA1 8EN, UK;
richardroberts1992@gmail.com (R.C.R.); rlaramee@gmail.com (R.S.L.)

2 QPC Ltd., The Harlech Building, Theater Clwyd Complex, Flintshire CH7 1YA, UK;
paul.brookes@qpc.com (P.B.); tony.d’cruze@qpc.com (T.D.); gary.smith@qpc.com (G.A.S.)

* Correspondence: 849119@swansea.ac.uk; Tel.: 01792 295207

Received: 14 January 2019; Accepted: 2 February 2019; Published: date
����������
�������

Abstract: The contact center industry represents a large proportion of many country’s economies.
For example, 4% of the entire United States and UK’s working population is employed in this sector.
As in most modern industries, contact centers generate gigabytes of operational data that require
analysis to provide insight and to improve efficiency. Visualization is a valuable approach to data
analysis, enabling trends and correlations to be discovered, particularly when using scatterplots.
We present a feature-rich application that visualizes large call center data sets using scatterplots that
support millions of points. The application features a scatterplot matrix to provide an overview
of the call center data attributes, animation of call start and end times, and utilizes both the CPU
and GPU acceleration for processing and filtering. We illustrate the use of the Open Computing
Language (OpenCL) to utilize a commodity graphics card for the fast filtering of fields with multiple
attributes. We demonstrate the use of the application with millions of call events from a month’s
worth of real-world data and report domain expert feedback from our industry partner.

Keywords: information visualization; call-center data; big-data;

1. Introduction and Motivation

This paper represents an extensive reworking and extension to a previously published conference
paper [1]. Specific additions to this paper are the inclusion of new features: a scatterplot matrix, to
provide an overview of the call center data attributes (Section 4.1), a comparison of CPU vs GPU
filtering performance (Section 4.3), an animation feature that reflects real-time call arrival (Section
4.5), and a customer experience visualization to find the tipping point between pleasant and poor
experiences (Section 4.6). Section 5, domain expert feedback, is also extended. Figures 3, 10, 12, 13,
14, 15, and 16 are new additions to this extension, while Figures 2, 5, and 9 have been updated. The
supplementary video has also been updated to include the latest features [2].

In the United States, there are 2.6 million contact center agent positions in 40,750 contact
center locations. This represents 4% of the adult working population [3]. A similar proportion
of the adult working population in the United Kingdom is also employed by the contact center
industry representing 770,00 agent positions across 6200 sites [4]. This is set to increase with a recent
survey revealing that 67.8% of contact center operators forecast an uplift in the number of overall
interactions [5]. This highlights the impact of the call center industry on the global economy.

The primary way to contact any large customer facing company is through a contact center,
usually by telephone. Therefore it is paramount to provide a satisfactory customer experience.
Four out of five organizations recognize customer experience as a key differentiator between them

Computers 2019, xx, 5; doi:10.3390/computersxx010005 www.mdpi.com/journal/computers

http://www.mdpi.com/journal/computers
http://www.mdpi.com
http://www.mdpi.com/2073-431X/xx/1/5?type=check_update&version=1
http://dx.doi.org/10.3390/computersxx010005
http://www.mdpi.com/journal/computers

Computers 2019, xx, 5 2 of 22

and their competitors and over three-quarters of companies rank customer experience as the most
strategic performance measure [5]. Better customer experience also has financial benefits with 77% of
organizations able to report cost savings from its improvement [5].

Call-centers are a variant of contact centers that focus solely on telephone communications, not
other contact methods such as web-chat and email. Call center metrics have traditionally focused
on customer service times, queue wait times, call abandonment rate, and other similar metrics [6].
However, customer experience is a multifaceted phenomenon with many influences that span multiple
interactions between the organization and the customer. Customer relationship management systems
are used to capture and store information related to customer interaction with a given company. The
use of these systems can decrease overall call volume [7]. To further improve call center performance,
it is important to collect and analyze detailed call records. Data collection is often performed by call
center operations systems. However, with several attributes for each call recorded and a high call
volume, the amount of data becomes difficult to analyze.

Data visualization and visual analytics provide an effective means of analyzing data and facilitate
insight into behavior. In this paper, we present techniques and an application for visualizing a large
multi-call center data set. We demonstrate our application with a data set comprising of almost
5,000,000 calls collected over a month, with each call described by over 70 attributes including over
32 million events. Our application design is based on Shneiderman’s visual information-seeking
mantra of overview first, zooming and filtering, and details on demand [8]. We present visual designs
that enable the linking of calls associated with individual customers to track each customer journey. We
also demonstrate the use of CPU vs GPU-based computation for enabling fast filtering and rendering
of large data sets filtered by multiple attributes, and asses the performance. Our contributions are:

• A novel feature-rich interactive scatterplot application that visualizes 5,000,000 calls
• The ability to track customers over multiple calls
• Advanced interactive and hardware accelerated filtering of call and customer parameters with

evaluation of performance
• Multiple methods of exploring call variables including animation features
• The reaction and feedback from partner domain experts in the call center industry

An example of an image created by the software can be seen in Figure 1 which shows call time
against call date and time, with point size mapped to call duration.

Figure 1. Scatterplot with call time on the y-axis and call date and time on the x-axis. Point size is
mapped to call duration and color to customer feedback score. Data points that represent calls that do
not have a feedback score are filtered out. A clear trend is observable: the majority of the longer calls
with the largest points are at times before 14:00, with shorter calls in the afternoons and evenings.

The remaining sections of this paper are as follows: Section 2 details work related to this topic,
including call center operations management, hardware acceleration, and scatterplot applications.

Computers 2019, xx, 5 3 of 22

Section 3 details the data set while Section 4 outlines the rich set of features and implementation of the
application. Domain expert feedback is presented in Section 5. A conclusion is drawn in Section 6.

2. Related Work

For all related research literature, we first consult a survey of surveys in information visualization
by McNabb and Laramee [9] and a survey of information visualization books by Rees and Laramee [10].
Friendly and Denis [11] show that the scatterplot has a history dating back to the 17th century, however
there are limitations to the visual design when plotting large volumes of data. Some modifications,
by methods such as subsampling, binning, and clustering, have been proposed to overcome the
limitations due to large numbers of points. Ellis and Dix survey clutter reduction methods for
information visualization [12]. Methods explored include clustering, sampling, filtering, use of opacity,
differing point sizes, spatial distortions, and temporal solutions.

Sarikaya and Gleicher also survey scatterplot techniques and identify which design options are
best suited to different scatterplot tasks [13]. The paper first outlines analysis tasks performed with
scatterplots before examining different data characteristics. A taxonomy of scatterplot designs is
presented with reference to suitable tasks and data characteristics. A binning technique to reduce
clutter is introduced by Carr et al. [14]. They demonstrate the use of hexagonal bins with the size
and color of each bin proportional to the number of points. Keim et al. propose a space distortion
technique to minimize overlap of data points [15]. The user is able to control the level of overlap and
distortion to view trends in the data. Deng et al. introduce a technique for visualizing overlapping data
by stacking elements in a third dimension [16]. To overcome overplotting, Chen et al. use a sampling
method to form a cloud that represents multi-class point distributions [17]. Mayorga and Gleicher
use a kernel-density estimation of multi-class data to visualize dense regions as contour bounded
areas [18]. The technique presented also supports the use of GPU computation to enable interaction
with large data sets comprising of up to three million data points.

2.1. Information Visualization and Hardware Acceleration

Elmqvist et al. [19] present a GPU implementation of an adjacency matrix where 500,000 French
Wikipedia pages are represented by 6,000,000 links. McDonnel and Elmqvist [20] present a refinement
of the traditional information visualization pipeline, to incorporate the use of GPU shaders, enabling
the use of parallel computing and interactive plotting of large data sets. The technique is shown to be
applicable to many visual designs including treemaps and scatterplots. They postulate that this is due
to a gap between the abstract data types requiring visualization and the GPU shader languages that
would be used. To remedy this, they present a visual programming environment that generates the
required shader code.

Mwalongo et al. discuss web-based visualization applications that utilize GPU-based technologies
such as WebGL to render large data sets [21]. Technologies are categorized according to their
application domain with categories covering the scientific visualization, geovisualization, and
information visualization fields. The survey features three publications that utilize hardware
acceleration to process and render scatterplots [22–24]. These publications however only feature
small data sets or use a pre-processed aggregation to reduce the number of data points, whereas
we demonstrate fast filtering and rendering of almost five million data points. These papers
rely on web-based technologies such as JavaScript and WebGL, while we concentrate on local
GPU computation.

2.2. Call Center Analysis Literature

The operation of a call center is complex with many intricacies. We recommend that readers
consult “Call Center Operation: Design, Operation, and maintenance" by Sharp [25] for a comprehensive
overview. The demands on a call center can be challenging to predict even with research studying
incoming call rate [26–28]. This creates a difficult challenge for call center managers who have to

Computers 2019, xx, 5 4 of 22

balance costs and the staffing levels required to cope with the call demand. Failure to achieve a correct
balance can lead to either high staffing costs or dissatisfied customers with long waiting times trying
to reach the call center. Due to the complex nature of call center management, a large body of research
addresses the challenges that they face. Askin et al. provide a comprehensive survey of the research
up to 2007 [6]. The paper is organized into different aspects of call center management surveying
traditional call center operations, research into call demand modulation, the effect of technological
innovation, human resource issues, and the integration between call center operations and marketing.

A statistical analysis of call center data is presented by Brown et al. [28]. Three service processes
are explored: call arrival, customer patience, and service duration. Shi et al. demonstrate the
improvement of a telephone response system in a veterans hospital [29]. Roberts et al. present
an interactive treemap application for displaying call metrics of calls serviced at a call center over one
day [30]. Roberts et al. also use the same data to demonstrate a higher-order brushing technique for
parallel co-ordinate plots [31]. Their data set is limited to one day only, while this work can render a
complete month’s worth of data.

3. Call Center Data Characteristics

We demonstrate the use of our software with data collated in a database developed by our partner
company QPC Ltd. It consists of all calls to one of their client’s call centers during February 2015.
All calls have been anonymized. In total there are 4,940,292 calls collected from 43 different sites
across Egypt, India, Romania, South Africa, and the UK. The data set consists of four separate CSV
files, each file consisting of different attributes linked by a common ‘Connection Identifier’ to link the
individual calls.

Each call has over 70 attributes, some are recorded directly such as the call duration, whilst others
are derived, such as the cost of each call to the call center. Other attributes are used to identify the
customer, the agent(s) involved to and the site where the agent is based. Each call is initially received by
an interactive voice response system (IVR). This is an automated menu system that plays a prerecorded
message and directs the call guided by the input from the caller.

Two important measures of customer satisfaction are supplied as part of the data set: customer
effort score (CES) and net promoter score (NPS). CES is a derived metric that tries to establish how
much effort a customer has applied in each call, with a lower score indicating that the call required less
effort from the customer. Some factors that contribute to the CES are the call duration, wait duration,
the number of agents spoken to, and the number of transfers. The NPS is only supplied for a small
percentage of the calls (3.7%), involving a post-call survey sent to the customer, and completed by the
customer. The NPS value is a score out of ten of how satisfied the customer was with the call, with ten
indicating very satisfied and 0 extremely dissatisfied.

4. Hardware Accelerated Scatterplots

The software is written in C++ using the Qt framework (version 5.9) [32] and OpenGL
(version 4.5) [33]. Development was performed on an Ubuntu 18.04 system with an Intel i7-6700k
processor, 16GB of RAM, and an Nvidia GTX1070 graphics card. The software was also tested on a
Windows system with an Intel i7-6700HQ processor with 8GB of RAM and an Nvidia GTX1060 6GB
mobile graphics card. The software must first import and process the data before the graphics can be
constructed. Processing the data predominantly involves connecting the calls across different files,
and linking calls to customers to facilitate look-up. The default view of the application, once data has
been pre-processed, can be seen in Figure 2, displaying over 4.6 million calls. The daily periodicity
of call volume is immediately conveyed. The main window of the application shows the scatterplot
chart, with a side panel for various interaction and filtering options, based on Shneiderman’s visual
information-seeking mantra [8]. These interaction options include:

• Fully interactive zooming on two independent axes
• User-chosen axis variables (see Table 1)

Computers 2019, xx, 5 5 of 22

• GPU enhanced filtering of multiple call attributes
• Animation of call arrival
• Brushing data points for details on demand

Table 1. A table showing available axis variables, along with descriptions, within the software.

Variable Description

Time The time and date at the start of the call
Normalized Time The time (duration) since the first contact of that customer

End Time The time and date at the end of the call
CES Customer Effort Score—A derived metric for customer investment
Cost The cost of the call to the operator in pence

Call Duration The length of the complete call (in seconds)
Agent Duration The number of seconds of agent interaction in the call
Wait Duration The length of waiting in a call (in seconds)
IVR Duration The length of IVR interaction (in seconds)

Hold Duration The length of hold in a call (in seconds)
Time of Day The time of day at the start of a call

Due to the large volume of data, these interaction options are important to enable exploration
of the data. Filtering is provided for a number of call attributes and is split into two categories,
customer-centric filters, for customer-oriented attributes such as accumulated CES, and call-centric
filters, for call related filters such as call duration (see Table 2). To garner more information about a
particular data point or collection of points, the user is able to brush the point with the mouse which
activates a dialog containing details about the call.

Table 2. A table showing available filters, and the category to which they belong. Customer-centric
filters filter groups of calls belonging to one particular customer, whereas call-centric filters filter
individual calls.

Customer Filters Call Filters

Number of Calls Time of Call
Total CES CES
Total Cost Agent Duration

Total Call Duration Wait Duration
Time of First Call IVR Duration

Figure 2 shows an overview of the call data set. Notable within the figure is the layered
nature of the colors representing the call origin. The calls that do not involve a call center agent
(yellow—conspicuous in zoomed section), are predominantly at the bottom with the lowest CES, calls
initiated by a call center agent (orange) generally have a higher CES, with the customer initiated calls
(blue) sandwiched in between. The total number of calls loaded is shown along with the number of
calls displayed and a bar displaying the percentage of loaded calls rendered in the top-left corner. The
number of customers represented in the scene is also given. Within the scatterplot the call volume
distribution can be observed, a peak of calls can be seen each day with troughs at night time. The
majority of the data can be seen in the lower areas of the scatterplot space, with proportionately fewer
calls in the upper two thirds.

Computers 2019, xx, 5 6 of 22

Figure 2. An overview of the application interface with one month of call data loaded. By default, the
customer effort score (CES) is shown on the y-axis and the time of the call on the x-axis. To increase
visibility, we added a zoomed in image from one day. Calls are colored by their origin, orange indicates
an agent initiated the call, blue that the customer initiated the call, and yellow indicates a customer
initiated call with no agent interaction. Immediately we can see the periodic pattern of calls spanning a
month where peak times are mid-day every day. Within the zoomed frame, zoomed to approximately
one day, an interesting wave pattern can be observed in the data.

4.1. Scatterplots View

The default view depicts the CES of each call along the left y-axis against the time the call was
made along the x-axis, as can be seen in Figure 2. Color is mapped to call origin. Orange indicates an
agent initiated the call, blue the customer initiated the call, and yellow indicates a customer initiated
call without any agent interaction. An agent interaction might not occur due to the call requirements
being served by the IVR or because the customer abandoned the call. The user is able to click on the
color key to choose from a selection of other color-maps if required. A drop-down menu is available
for each axis, to change the axis variables. Options for the y-axis include CES, call cost, call duration,
agent duration, wait duration, IVR duration, hold duration, and time of day of the call. These call
attributes are also available for the x-axis, along with additional attributes of date and time of the start
of the call, date and time of the end of the call, and a normalized call date and time. The normalized
time is based on the time since the first call of each customer in the data set.

Scatterplot matrix: To provide an overview of all call attribute combinations, the user can choose
to view a scatterplot matrix of all available variable choices as in Figure 3. This can guide exploration
of the data with interesting features, in any particular combination of axis variables, immediately
distinguishable. Users are able to click a scatterplot from the matrix to bring the view up in the main
window. Once the user selects the scatterplot matrix option, the software takes a snapshot of each
scatterplot combination and presents the images in a matrix. All variables available for the x-axis
are drawn horizontally and all variables available for the y-axis drawn vertically. Snapshots of each
view are saved internally for quicker display of the scatterplot matrix on subsequent uses. Once an
individual scatterplot is chosen, the user has the option of keeping the matrix view open, for ease of
exploration, or for the matrix view to close, if screen space is limited.

Computers 2019, xx, 5 7 of 22

Figure 3. A scatterplot matrix showing all possible axis variables. Users can click any image of interest
to bring the view into the main viewing pane.

Interaction: The user is able to smoothly zoom in on particular regions of the scatterplot by either
using the mouse wheel or sliders at the edge of the plot area. Each axis can be zoomed independently
with the mouse wheel zooming in on the x-axis only and the control modifier used in conjunction
with the mouse wheel to zoom on the y-axis. Users are able to explore the scatterplot by clicking and
dragging the zoomed scene. Figure 4 shows a zoomed scene, with zooming on both the x and y-axes.
The x-axis has been zoomed from the full month to a obtain a closer look at single day, meanwhile the
wait on duration on the y-axis has been zoomed to a maximum of 26 min. By applying the zoom a void
of calls becomes visible between 17:00 and 18:00, indicating a malfunction with either data recording
or call center operations.

Rendering options: The user also has the option to map the size of the data points to a third call
attribute to enable further exploration, as can be seen in Figures 1 and 5. Figure 5 also shows calls
connected by a polyline. This polyline is another user option and connects multiple calls that are
made from the same customer. To establish a customer’s satisfaction with the service they receive, it is
important to consider all interactions that the customer makes with the call center and not treat each
call in isolation. To facilitate the exploration of this, we enable the user to accumulate the CES and cost
for each customer. This is achieved by ordering all calls from a particular customer chronologically
and accumulating the totals for each call.

Focus+Context: Users also have the option to adjust the size and opacity of the data points for
easier exploration. In sparsely populated scatterplots, larger data points are easier to distinguish,
whilst in over-plotted data smaller points prevent clutter. In overplotted areas of data, reducing the
opacity of the data points enables discovery within dense data regions. This can be seen in Figure 6,
where the reduced opacity image shows a pattern in the data that was previously hidden.

Computers 2019, xx, 5 8 of 22

Date Time

05:00 09:00 17:0013:00 21:00 09 Feb
23:57:36

09 Feb
00:00:16

Wait
Duration

204.8
371
4

Call Origin: ● Agent ● Customer ● Customer Without Agent

── Average Wait Time ── Call Arrival ── Call Abandonment
 (Seconds) Calls/min Calls/min

00:26:10

00:20:56

00:15:42

00:10:28

00:05:14

00:00:00

Figure 4. A close-up view of a scatterplot with supplementary call metric lines. Wait duration is
represented on the y-axis against the date and time on the x-axis. The zoom function is used to obtain a
closer look at a single day and to a wait duration of below 30 min on the y-axis. Calls are colored by
their origin. Call metrics lines are also drawn. The majority of calls can be observed between 08:00 and
21:00, indicating the times where the main call centers are open. A gap can be seen between 17:00 and
18:00, indicating a malfunction with either data recording or call center operations. An increase in the
waiting times for customers can be observed between 07:00–08:00.

Date Time

06 Feb
00:00

10 Feb
00:00

22 Feb
00:00

18 Feb
00:00

26Feb
00:00

01 Mar
00:00

01 Feb
00:00

CES

Call Origin: ● Agent ● Customer ● Customer Without Agent

240

279

209

139

69

0

14 Feb
00:00

Figure 5. The CES on the y-axis and the time of the call on the x-axis for all of the calls associated with
an individual customer over a month. Point size is proportional to individual call duration. Calls are
connected with an edge to indicate all calls are made by the same customer. Calls are colored by their
origin. Notable in this figure is that the calls that have the highest CES are the calls without any agent
interaction (colored yellow), while calls initiated by the customer and interact with an agent (in blue)
are comparatively short.

Computers 2019, xx, 5 9 of 22

Date Time

09:00 12:00 18:0015:00 03 Feb
00:13:4502 Feb

05:35:38

Call Origin: ● Agent ● Customer ● Customer Without Agent

Wait
Duration

00:00:00

00:11:41

00:08:45

00:05:50

00:02:55

00:14:36

21:00

09:00 12:00 18:0015:00 03 Feb
00:13:45

02 Feb
05:35:38

21:00

00:14:36

00:11:41

00:00:00

00:02:55

00:05:50

Wait
Duration

00:08:45

Figure 6. A comparison of plot opacity for the wait time plotted against date and time of calls. By
reducing opacity (bottom), different wave patterns become visible within the data set compared to the
patterns seen with high opacity (top).

Users also have the ability to adjust opacity for context calls. Calls that have been filtered out are
shown in a faded gray to provide context as described by Card et al. [34] For more detail on filtering
see Section 4.2. Filtered context call data points are also rendered before focus call data points in a
two-pass rendering. The first pass renders only context calls while a second pass renders only focus
calls. This enables focus calls to be rendered on top of context calls, as in Figure 7.

Computers 2019, xx, 5 10 of 22

Figure 7. A filtered scatterplot zoomed to a single day and call duration of less than 1 hr 40 min
including supplementary call metric lines. Filters are used to exclude calls with agent interaction and
with a waiting time of less than ten seconds. Calls excluded from the filter are rendered gray in the
background to provide context. An inverse correlation can be seen with the call duration and the call
abandoned rate (red line).

It has been found, with initial exploration of the data, that the majority of data points reside in the
lower data ranges of CES and cost variables. To enable better exploration of this data we include an
option to map to a logarithmic scale, allowing a focus to be put on this data. This is shown in Figure 8,
where the points are more evenly distributed revealing layers of call origins. Calls without agent
interaction have the lowest CES, whereas calls initiated by an agent tend to have the highest CES.

Computers 2019, xx, 5 11 of 22

Date Time

09:00 11:00 21:0017:00 02 Feb
04:59:29

01 Feb
04:47:57

CES

Call Origin: ● Agent ● Customer ● Customer Without Agent

1

147

21851

CES

0

17481

13111

8740

4370

21851

01:00

09:00 11:00 21:0017:00 02 Feb
04:59:29

01 Feb
04:47:57

01:00

Figure 8. Two scaterplots showing the same data, one with a standard linear y-axis scale (top) and the
other using a logarithmic y-axis (bottom). CES is mapped to the y-axis and the time of the call on the
x-axis. The x-axis is focused on a single day and calls are colored by their origin. The three-layered trend
seen in Figure 2 is more visible here, with customers who do not interact with an agent predominantly
with lower CES, agent initiated calls with the highest CES, and customer initiated calls in between.

Caller line plots: Call center metrics are provided to help identify features discovered in the
data set as can be seen in Figure 4. Metrics provided are call arrival rate, call abandonment rate, and
average waiting time. Call arrival rate is calculated by summing the number of calls every minute, and
this is then smoothed using a non-parametric regression function on a day-by-day basis, as outlined
by Brown [35]. Call abandonment is calculated using the same technique. Average wait time is
calculated using a tricube function with bandwidths automatically chosen using cross-validation on
a day-by-day basis, as described by Brown et al. [28]. To supplement this, a typical day line for the
wait time, call arrival rate and abandonment can also be shown. The typical day line is constructed
by calculating the average day from a month’s worth of data. Because arrival rate is significantly
different over the weekend compared to the weekdays, average arrival rate has been separated into
weekday values, Saturday values, and Sunday values. The typical day metrics can be used as a
benchmark and compared to given days to establish if they are above or below average. This feature
informs the observation that Mondays are typically busier than other weekdays and that Thursdays
are generally quieter. This can be seen in the supplementary video [2]. The metric lines can also be
used as benchmarks for comparison across different data sets from different companies.

GPU implementation: We utilize OpenGL to provide the graphical element of the software.
Encoding data to axis co-ordinates is pre-computed after the data is loaded. This data is loaded into
the GPU memory buffer and rendered with the use of OpenGL shaders [36]. Using these techniques
and a commodity graphics card, we achieve interactive frame rates with almost 5 million data points.

Computers 2019, xx, 5 12 of 22

The OpenGL fragment shader code is provided to facilitate reproducibility.

layout(location = 0) in float xVert;
layout(location = 1) in float yVert;
layout(location = 2) in float colorAttr;
layout(location = 3) in float filterAttr;
uniform mat4 matrix;
uniform mat4 cMatrix;
uniform float opacityF;
uniform float conOpac;
uniform float pointSz;
uniform float passNo;
out vec4 color;
void main()
{

float grey = 0.7;
vec4 colorAt = vec4(0.0, 0.0, 0.0, 0.8);
gl_PointSize = pointSz;
gl_Position =matrix*vec4(xVert, yVert,0.0,1.0);
//apply color
if (colorAttr == 2.0) color = cMatrix[1];
else if (colorAttr == 1.0)

color = cMatrix[0];
else if (colorAttr == 0.0)

color = cMatrix[2];
else

color = cMatrix[3];
//two pass filter
if (filterAttr == 2.0 && passNo == 0.0)

color = vec4(grey, grey, grey, conOpac);
else if (filterAttr == 0.0

|| passNo == 0.0
|| filterAttr == 2.0)

color = vec4(1.0, 1.0, 1.0, 0.0);
else color *= vec4(1.0, 1.0, 1.0, opacityF);

}

4.2. GPU Enhanced Filtering

To facilitate user-driven selection and exploration of the call data, we have implemented filters
for multiple call attributes. Some filtering can be achieved visually using the zoom function, however
this is limited in functionality. Two groups of filters are used, customer-based filters and call-based
filters. Customer-based filters enable filtering of groups of calls belonging to particular customers
using variables collated from all calls for each customer. Call filters are used for filtering individual
calls. Available customer filters are shown in Table 2.

An additional filter is available to distinguish between each of the different origins of the calls.
Figure 9 shows the user interface to facilitate filtering, with filters split into customer-based and

call-based. The distribution of calls can be seen on the thumbnail previews of histograms, placed
on each button, to aid filtering decisions. Filters that have already been applied are highlighted in
red as can be seen with the “Time of Call” filter in the left of Figure 9. Clicking a filtering button
enables the filtering dialog for that attribute (Figure 9 right shows the filter dialog for wait duration).
The filter dialog shows two histogram plots of the attribute, the topmost shows the total distribution
whilst the lower shows the distribution with user-adjustable lower and upper range limits set in
the controls applied. This allows for focus+context style exploration of unevenly distributed data.
A selection box at the bottom of the dialog enables a logarithmic function to be applied to the histogram
heights, enabling easier exploration of uneven distributions. Filter limits can be set using three control
mechanisms, an input box for the lower limit, an input box for the upper limit, and a range slider
enabling adjusting of both lower and upper limits. Controls are connected, with changes in one control
reflected in the other controls. Indications of the maximum and minimum filtering values, as well
as the current applied filter values, are also provided. A bar is shown at the bottom of the call filter
dialogs indicating the percentage of total calls that will be displayed after applying the filter, providing
an indication of filter effectiveness.

Computers 2019, xx, 5 13 of 22

Figure 9. Filter interface including thumbnail previews with call attribute histograms on buttons (left).
Buttons are highlighted with red when filters are applied, as can be seen with Time of Call. Filter dialog
for wait duration (right). Two distributions are shown, the top shows the total call distribution and the
bottom shows the distribution resulting from the user-applied filters.

Filters can be applied individually by clicking the apply button in the dialog for the appropriate
filter, or all open filters can be applied by clicking the apply button in the main interface. A “reset
filters” option is available to set all filters to their maximum and minimum values, and a customer
picker is available to choose an individual customer for investigation. Figure 7 shows an example
of the visualization with filters applied, along with call metrics. A correlation can be seen with the
number of abandoned calls metric line and the call duration of the remaining calls. McDonnel and
Elmqvist describe the use of GPU for filtering and visualizing using OpenGL shaders [20], however
this filtering method fails with calls being grouped by customers and requires image processing to
ascertain filtering result metrics. In order to remedy this issue, we utilize the parallel processing
benefits of a GPU and the Open Computing Language (OpenCL version 2.0) [37] to quickly filter the
number of calls and to return the filtering metrics.

To filter the calls without hardware acceleration requires iterating through each call for each
customer, testing if each variable is within filtering limits. With millions of calls, this method can take
considerable time to complete. However with the use of parallelism, on the GPU, each call can be
tested concurrently. For further guidance and instruction on the use of OpenCL, we recommend the
books by Munshi et al. and Scarpino [38,39]. OpenCL functions, known as kernels, are performed
on each instance of the data, in this case calls, returning an output. This can be quickly processed to
return the number of calls and customers filtered. Our abridged kernel code for filtering follows for
reproducibility:

Computers 2019, xx, 5 14 of 22

int row = get_global_id (0);
if (colIn[row] > 0.0f)
{

if (inputD[row] > maxD || inputD[row] < minD ||
inputE[row] > maxE || inputE[row] < minE ||
inputF[row] > maxF || inputF[row] < minF ||
inputG[row] > maxG || inputG[row] < minG ||
inputH[row] > maxH || inputH[row] < minH ||
inputI[row] > maxI || inputI[row] < minI ||
inputJ[row] > maxJ || inputJ[row] < minJ ||
inputK[row] > maxK || inputK[row] < minK ||
inputL[row] > maxL || inputL[row] < minL ||
inputM[row] > maxM || inputM[row] < minM ||
binaryV == 0 ||
(binaryV%2==0 && binaryL[row]==2) ||
(binaryV/4<1 && binaryL[row]==0) ||
((binaryV==1 ||binaryV==4 ||
binaryV==5) && binaryL[row]==1))

{
sizeOut[row] = 1; //cust filtered out
colOut[row] = 2.0;

}
else
{

sizeOut[row] = 0; //cust stayed in
colOut[row] = 1.0;

}
}
else

sizeOut[row] = 2;
outputA[row] = inputC[row];

The kernel code tests if each call variable is between the maximum and minimum ranges specified
in the filters and outputs the filtered status. Each call is processed with this code, returning a vector of
the filtered status of each call. This vector can then be passed to the OpenGL rendering shader so that
the data point for the call can be rendered as focus or context. The vector can easily be processed to
calculate filtering statistics quickly.

4.3. CPU vs GPU Filtering Performance Comparison

Due to the large number of calls being processed, CPU-based filtering by iterating through an
array of calls with multiple attributes was found to take some time. To mitigate this, the calls can be
processed in parallel using the parallel compute ability of a commodity graphics processor using the
OpenCL framework. We compare the performance of the OpenCL implementation with a standard
C++ implementation for filtering. The OpenCL implementation utilizes the GPU for computing the
calls and customers to be filtered whereas the standard implementation utilizes the CPU. Tests were
performed on an MSI GE62VR-6RF laptop with an Intel Core i7-6700HQ processor and an NVIDIA
GeForce GTX 1060 (6GB version).

Three tests are performed, one based on a customer-centric filter, time of day, one on a call-centric
filter, NPS, and the final test on a combination of filters, call origin, agent duration, and number of calls.
The time taken to filter the calls and reset the filter was recorded using the OpenCL implementation
and without. Each test was repeated three times and an average time taken for each. The data set for
one month is used for the performance testing, after erroneous calls are removed, leaving a total of
4,606,054 calls to filter. The first test focuses on the customer filter, in this case, all customers with their
first call before 12:00 on any day are removed. This removes 1,552,011 calls and leaves 3,054,043 calls
in focus. The second test focuses on the call filter and filters all calls without an NPS score. This option
removes 4,425,529 calls, leaving 180,525. The final test is a combination filter including call filters and
customer filters. Calls without an agent interaction are removed along with calls who spend more
than an hour speaking to an agent, and customers with less than ten calls or more than 50 calls. This
removes 4,275,003 and leaves 331,051 calls. Results can be seen in Figure 10.

Computers 2019, xx, 5 15 of 22

0

2000

4000

6000

8000

10000

12000

Test 1 Test 2 Test 3

Ti
m

e
(m

ill
is

ec
on

ds
)

OpenCL Filter OpenCL Reset CPU-Based Filter CPU-Based Reset

Figure 10. A chart showing average filtering and filter reset performance using OpenCL and without
for three separate tests. Error bars indicate 1 standard deviation.

For all tests, the OpenCL filtering is shown to be quicker, with test two showing the most
significant difference in performance, where the OpenCL implementation took an average of
889 milliseconds and the standard compute took 10,005 milliseconds (10 × longer). Test three
has the smallest difference in performance, with the OpenCL implementation taking an average
of 907 milliseconds and the standard compute taking 3585 milliseconds. The time to reset the filters
is relatively consistent for each test, taking an average of 2126 milliseconds across all tests for the
OpenCL implementation and 11,160 for the standard compute.

From these tests, we can conclude that the OpenCL implementation is between 4–11 times faster
to filter, depending on the filter applied. Resetting the filter is five times quicker using the OpenCL
implementation.

4.4. Brushing for Details

Once particular data points of interest have been identified by the user, they are able to brush
the desired region on the scatterplot to bring up a dialog featuring all attributes of the brushed calls.
This fulfills the final part of Shneiderman’s visual information-seeking mantra, [8], details on demand.
Figure 11 shows an example of the brush dialog. Users are able to copy selected data attributes from
the brush dialog for further analysis with other tools. This copy feature was requested by our domain
experts to enable further exploration and analysis using different applications.

Computers 2019, xx, 5 16 of 22

Figure 11. Brush dialog showing all call attributes for brushed calls in full detail.

4.5. Animation

To further aid data exploration, we have implemented an animation feature that enables the user
to view calls arriving as if in real-time or an accelerated simulation of time. Users have the option of
either discarding calls after they have passed their end time, rendering them in context, or enabling
them to be displayed continuously. Figure 12 shows the three options for calls past their end times.

Figure 12. Three screenshots of the software animation feature, with the y-axis showing the Customer
Effort Score and the x-axis showing the date and time of the calls. The left image shows calls removed
after their end time has expired, the center image shows calls placed into context after the end time,
and the right image shows calls continuously once appeared.

The user also has options to control the speed of the animation by entering a time value for the
duration of the animation. The ability to loop the animation such that it restarts after displaying all
calls is also available. A progress slider is available to show progression through the animation. Users
are able to manually drag the progress slider to advance and rewind the animation and pause the
animation. Figure 13 demonstrates a feature within the call center behaviour discovered as a result of
the animation feature. The figure shows three images of time of day against agent duration at different
time steps of the animation. The left image shows the animation on the fourth day, the middle image
during the fifth day, and the right image shows the animation at the end on the 28th day. During the
fifth day, a diagonal row of points is seen as highlighted in the middle image of Figure 13. Further
investigation shows that these calls end within ten minutes of each other, however, why this pattern is
not seen on other days is still unknown. Although this observation is visible through trial-and-error
using other axis variables, it is particularly apparent using the animation feature.

Computers 2019, xx, 5 17 of 22

Figure 13. Three images demonstrating the animation feature, showing different stages of the animation.
The x-axis is mapped to the time of day at the start of each call while the y-axis shows the agent duration.
A month’s worth of data is loaded (28 days). The left pane shows the animation during the forth day,
the middle image shows the animation towards the end of the fifth day, and the right image shows
the animation at the end of the final 28th day. Noticeable is the unexpected appearance of a straight
diagonal line on the fifth day seen in the middle panel.

4.6. Customer Experience Tipping Point Chart

At the request of our domain experts, we created a chart depicting customer experience against
the total journey time, as can be seen in Figure 14. The chart depicts two lines showing the percentage
of calls, who answered a survey, with positive and negative feedback in green and red respectively.
Positive feedback scores are those that provide a NPS feedback score of over eight and are considered
customers who would promote the company while customers who provide an NPS score of less than
five are considered detractors. Along the x-axis is the customer journey time, this is the total amount
of time that the customer has spent interacting with the call center, across multiple calls. This chart
allows for the discovery the call journey tipping point time, where the promoter score first crosses
below the detractor line. Customers who exceed this journey time are more likely to be detractors than
promoters, providing a maximum journey duration target for call centers to keep customers happy.
As can be seen in Figure 14, the promoter score first crossed below the detractor line at approximately
2900 s.

Figure 14. Customer experience tipping point chart depicting when customers who provide negative
feedback surpass the number of customers who provide positive feedback. The time at which the
detractor score line first surpasses the promoter score line, 2900 s, provides a benchmark for call centres
to try to stay below to keep the most customers satisfied.

Video Demonstration: Please visit https://vimeo.com/305933032 to view an updated
demonstration of the application and its features.

https://vimeo.com/305933032

Computers 2019, xx, 5 18 of 22

5. Domain Expert Feedback

The software was developed in collaboration with our industrial partner QPC Limited, with
whom we have been working with since 2014. The development of this application has been driven
by discussions with QPC Ltd. and their requirements. Here we present important feedback garnered
from guided interviews [40] with three of their experts, see Figure 15.

Figure 15. An image from one of our feedback sessions with QPC Ltd.

Expert one is a software developer with almost 30 years of experience in the call center industry.
Expert two has over 20 years of experience in the contact center industry in a variety of roles, and
is currently working in a consultancy role. Expert three is a director of product and marketing with
over 15 years experience of the contact center industry. Feedback was garnered over three recorded
interview sessions, the first was an hour meeting in person, the second via a one hour video conference,
and the third at an hour and a half meeting with all members present. Interviews were conducted
using guidance garnered from Hogan et al. [40].

Initially, when shown the software with a month of data loaded, the experts were impressed with
the application’s ability to plot a large number of data points. When asked if they had seen a month’s
worth of data before, an expert one replied:

“Not at this speed, no. We’ve had to go down the route of pre-aggregating the data to get
the speed.”

In fact, this is the first time anyone has seen an entire month’s worth of data simultaneously, in their
entire company’s history. Previous commercial products used to explore the data set have been limited
in the size of the input data set. After demonstrating the zooming, panning, and data variable choices,
the experts saw the value of the application and the exploration potential it provided, expert two
stated:

“It’ll be interesting to put a new data set in that we haven’t looked at before, that we haven’t
got any knowledge of and to instantly then be able to see something.”

The filtering ability of the software, in particular, was well received, with the thumbnail previews
of histograms exalted for their ability to give an initial summary of the different fields and distributions.

Computers 2019, xx, 5 19 of 22

“I like the look of that, it looks nice first of all, it’s giving you a good summary of the different
fields and distributions.”

The ability to compound the filters and the briskness of the filters were praised by expert two.

“You’ve given the ability to filter the contacts in quite a few different ways and to enable you
to focus in on particular areas and for the individual contacts you come down to you can
look closer, maybe in a different application.”

Positive feedback was also received from expert three for the metric and the typical day lines:

“Yeah, I think it’s nice, it lets you look at some standard call center metrics.”

The average plot lines were particularly noted for their ability to benchmark call center performance.
With this feature, our industry partner can, for the first time, compare call center performance between
their customers in addition to different days. The ability to brush for individual call attributes was
also welcomed, allowing identification of specifically identified calls.

More general feedback was given with respect to the usefulness of the application to QPC Ltd.
and their customers by expert three:

“I think there are two immediate purposes it serves, one is validation, it’ll throw up those
outliers we’ve got... and two, from an insight perspective... we’d probably show this to the
customer to demonstrate the insight, to show how flexible the data is.”

This was followed up with a statement from expert one which we feel encapsulates the aims of
the application:

“It makes the application that you’ve created a stepping stone... because you can look at a
large set of data and filter down to a smaller number of calls, this application looks useful
for that then potentially you can go and look at some more specific detail with another
application or even you just literally go to the database and take those call I.D.’s you’ve listed
out there even just go directly to the database.”

Recommendations for improvements were received from the feedback sessions, in particular the
ability to include more caller data dimensions was requested.

6. Conclusions and Future Work

We present an application capable of visualizing millions of calls representing a month’s worth
of real-world data for the very first time. The application enables fast exploration of a large
data set including rapid filtering and brushing for further detail, reflecting Shneiderman’s visual
information-seeking mantra [8]. Details of fast filtering using OpenCL are presented. Insights into the
data set are presented, and feedback from our expert industrial partner is also provided.

In future, we would like to further explore improvements with the use of general-purpose
compute on the GPU. This includes the use of a shared context between OpenCL and OpenGL memory
buffers as demonstrated by Alharabi et al. [41] and the use of the Vulkan API [42]. Following feedback
from QPC Ltd., we would also like to extend the software to handle more call variables and to
utilize dimension reduction techniques to highlight key caller data dimensions and to find co-relation
coefficients. Further testing of the software would also be beneficial with data sets from other vocations,
and larger data sets. The ability to display other visual designs is also a desirable feature. Over-plotting
is a significant issue when plotting a large number of data points, hence in the future we would like
to provide an auto-detection feature for over-plotting that adjusts the opacity accordingly. Figure 16
shows a heat-map density plot of CES against the time of day for a month of data, highlighting the
areas of over-plotting.

Computers 2019, xx, 5 20 of 22

Time of Day

05:00 09:00 21:0017:00 00:00:0000:00:00

CES

5812

4650

3487

2325

1162

0
13:00

Figure 16. A heat-map density plot of CES against the time of day for a month of call data. The darker
maroon colors indicate areas of over-plotting.

Author Contributions: conceptualization, D.R., R.C.R., R.S.L., P.B., T.D. and G.A.S.; methodology, D.R. and R.S.L.;
software, D.R.; validation, R.S.L., P.B., T.D. and G.A.S.; formal analysis, D.R.; investigation, D.R.; resources, R.S.L.;
data curation, D.R. and P.B.; writing—original draft preparation, D.R. and R.S.L.; writing—review and editing,
D.R., R.C.R. and R.S.L.; visualization, D.R.; supervision, R.S.L. and G.A.S.; project administration, R.S.L.; funding
acquisition, R.S.L. and G.A.S.

Funding: The authors gratefully acknowledge funding from KESS. Knowledge Economy Skills Scholarships
(KESS) is a pan-Wales higher level skills initiative led by Bangor University on behalf of the HE sector in Wales.
It is part funded by the Welsh Government’s European Social Fund (ESF) convergence programme for West Wales
and the Valleys.

Acknowledgments: We would also like to thank Liam McNabb and Beryl Rees for their help.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Rees, D.; Roberts, R.C.; Laramee, R.S.; Brookes, P.; D’Cruze, T.; Smith, G.A. GPU-Assisted Scatterplots for
Millions of Call Events. In Computer Graphics and Visual Computing (CGVC); Tam, G.K.L., Vidal, F., Eds.;
The Eurographics Association: Munich, Germany, 2018.

2. Res, D. Feature-Rich, GPU-Accelerated Scatterplots for Millions of Call Events—Demonstration Video, 2018.
Available online: https://vimeo.com/305933032 (accessed on 4 February 2019).

3. ContactBabel. In US Contact Centres: 2018–2022 The State of the Industry & Technology Penetration; Technical
Report; ContactBabel: Newcastle-upon-Tyne, UK, 2018.

4. ContactBabel. In UK Contact Centres: 2018–2022 The State of the Industry & Technology Penetration; Technical
Report; ContactBabel: Newcastle-upon-Tyne, UK, 2018.

5. Dimension Data. Global Contact Centre Benchmarking Report; Technical Report; Dimension Data: Johannesburg,
South Africa, 2016.

6. Aksin, Z.; Armony, M.; Mehrotra, V. The modern call center: A multi-disciplinary perspective on operations
management research. Prod. Oper. Manag. 2007, 16, 665–688.

7. Mehrotra, V.; Grossman, T. New Processes Enhance Crossfunctional Collaboration and Reduce Call Center
Costs; Technical Report, Working Paper; Department of Decision Sciences, San Francisco State University:
San Francisco, CA, USA, 2006.

https://vimeo.com/305933032

Computers 2019, xx, 5 21 of 22

8. Shneiderman, B. The eyes have it: A task by data type taxonomy for information visualizations.
In Proceedings of the 1996 IEEE Symposium on Visual Languages, Boulder, CO, USA, 3–6 September
1996; pp. 336–343.

9. McNabb, L.; Laramee, R.S. Survey of Surveys (SoS)-Mapping The Landscape of Survey Papers in Information
Visualization. In Computer Graphics Forum; Wiley Online Library: Hoboken, NJ, USA, 2017; Volume 36,
pp. 589–617.

10. Rees, D.; Laramee, R.S. A Survey of Information Visualization Books. In Computer Graphics Forum; Wiley
Online Library: Hoboken, NJ, USA, 2019; forthcoming.

11. Friendly, M.; Denis, D. The early origins and development of the scatterplot. J. Hist. Behav. Sci. 2005,
41, 103–130.

12. Ellis, G.; Dix, A. A taxonomy of clutter reduction for information visualisation. IEEE Trans. Vis. Comput. Gr.
2007, 13, 1216–1223.

13. Sarikaya, A.; Gleicher, M. Scatterplots: Tasks, Data, and Designs. IEEE Trans. Vis. Comput. Gr. 2018,
24, 402–412.

14. Carr, D.B.; Littlefield, R.J.; Nicholson, W.; Littlefield, J. Scatterplot matrix techniques for large N. J. Am. Stat.
Assoc. 1987, 82, 424–436.

15. Keim, D.A.; Hao, M.C.; Dayal, U.; Janetzko, H.; Bak, P. Generalized scatter plots. Inf. Vis. 2010, 9, 301–311.
16. Dang, T.N.; Wilkinson, L.; Anand, A. Stacking graphic elements to avoid over-plotting. IEEE Trans. Vis.

Comput. Gr. 2010, 16, 1044–1052.
17. Chen, H.; Chen, W.; Mei, H.; Liu, Z.; Zhou, K.; Chen, W.; Gu, W.; Ma, K.L. Visual abstraction and exploration

of multi-class scatterplots. IEEE Trans. Vis. Comput. Gr. 2014, 20, 1683–1692.
18. Mayorga, A.; Gleicher, M. Splatterplots: Overcoming overdraw in scatter plots. IEEE Trans. Vis. Comput. Gr.

2013, 19, 1526–1538.
19. Elmqvist, N.; Do, T.N.; Goodell, H.; Henry, N.; Fekete, J.D. ZAME: Interactive large-scale graph visualization.

In Proceedings of the IEEE Pacific Visualization Symposium, PacificVIS’08, Kyoto, Japan, 5–7 March 2008;
pp. 215–222.

20. McDonnel, B.; Elmqvist, N. Towards utilizing GPUs in information visualization: A model and
implementation of image-space operations. IEEE Trans. Vis. Comput. Gr. 2009, 15, 1105–1112.

21. Mwalongo, F.; Krone, M.; Reina, G.; Ertl, T. State-of-the-Art Report in Web-based Visualization. Comput. Gr.
Forum 2016, 35, 553–575.

22. Liu, Z.; Jiang, B.; Heer, J. imMens: Real-time Visual Querying of Big Data. Comput. Gr. Forum 2013,
32, 421–430.

23. Andrews, K.; Wright, B. FluidDiagrams: Web-Based Information Visualisation using JavaScript and WebGL;
EuroVis—Short Papers; Elmqvist, N., Hlawitschka, M., Kennedy, J., Eds.; The Eurographics Association:
Geneva, Switzerland, 2014.

24. Sarikaya, A.; Gleicher, M.; Chang, R.; Scheidegger, C.; Fisher, D.; Heer, J. Using webgl as an interactive
visualization medium: Our experience developing splatterjs. In Proceedings of the Data Systems for
Interactive Analysis Workshop, Chicago, IL, USA, 2015; Volume 15.

25. Sharp, D. Call Center Operation: Design, Operation, and Maintenance; Elsevier: Amsterdam,
The Netherlands, 2003.

26. Jongbloed, G.; Koole, G. Managing uncertainty in call centres using Poisson mixtures. Appl. Stoch. Models
Bus. Ind. 2001, 17, 307–318.

27. Weinberg, J.; Brown, L.D.; Stroud, J.R. Bayesian forecasting of an inhomogeneous Poisson process with
applications to call center data. J. Am. Stat. Assoc. 2007, 102, 1185–1198.

28. Brown, L.; Gans, N.; Mandelbaum, A.; Sakov, A.; Shen, H.; Zeltyn, S.; Zhao, L. Statistical analysis of a
telephone call center: A queueing-science perspective. J. Am. Stat. Assoc. 2005, 100, 36–50.

29. Shi, J.; Erdem, E.; Peng, Y.; Woodbridge, P.; Masek, C. Performance analysis and improvement of a typical
telephone response system of VA hospitals: A discrete event simulation study. Int. J. Oper. Prod. Manag.
2015, 35, 1098–1124.

30. Roberts, R.; Tong, C.; Laramee, R.; Smith, G.A.; Brookes, P.; D’Cruze, T. Interactive analytical treemaps for
visualisation of call centre data. In Proceedings of the Smart Tools and Applications in Computer Graphics,
Genova, Italy, 3–4 October 2016; pp. 109–117.

Computers 2019, xx, 5 22 of 22

31. Roberts, R.; Laramee, R.S.; Smith, G.A.; Brookes, P.; D’Cruze, T. Smart Brushing for Parallel Coordinates.
IEEE Trans. Vis. Comput. Gr. 2018.

32. The Qt Company. Qt Application Framework; The Qt Company: Helsinki, Finland, 1995.
33. The Khronos Group Inc.. OpenGL; The Khronos Group Inc.: Beaverton, OR, USA, 1992.
34. Card, S.K.; Mackinlay, J.D.; Shneiderman, B. Readings in Information Visualization: Using Vision to Think;

Morgan Kaufmann: San Francisco, USA, 1999.
35. Brown, L.D. Empirical Analysis of Call Center Traffic; Presentation for Call Center Forum: Wharton School of

the University of Pennsylvania, Pennsylvania, USA, 2003.
36. Kessenich, J.; Sellers, G.; Shreiner, D. OpenGL Programming Guide: The Official Guide to Learning OpenGL,

Version 4.5 with SPIR-V; Addison-Wesley Professional: Boston, MA, USA, 2016.
37. Munshi, A. The opencl specification. In Proceedings of the Hot Chips 21 Symposium (HCS), Stanford, CA,

USA, 23–25 August 2009; pp. 1–314.
38. Munshi, A.; Gaster, B.; Mattson, T.G.; Ginsburg, D. OpenCL Programming Guide; Pearson Education: Boston,

USA 2011.
39. Scarpino, M. OpenCL in Action: How to Accelerate Graphics and Computations; Manning Publications: New

York, USA, 2011.
40. Hogan, T.; Hinrichs, U.; Hornecker, E. The Elicitation Interview Technique: Capturing People’s Experiences

of Data Representations. IEEE Trans. Vis. Comput. Gr. 2016, 22, 2579–2593.
41. Alharbi, N.; Chavent, M.; Laramee, R.S. Real-Time Rendering of Molecular Dynamics Simulation Data: A

Tutorial. In Computer Graphics and Visual Computing (CGVC); Wan, T.R., Vidal, F., Eds.; The Eurographics
Association: Geneva, Switzerland 2017.

42. The Khronos Group Inc.. Vulkan Overview; The Khronos Group Inc.: Beaverton, OR, USA, 2016.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction and Motivation
	Related Work
	Information Visualization and Hardware Acceleration
	Call Center Analysis Literature

	Call Center Data Characteristics
	Hardware Accelerated Scatterplots
	Scatterplots View
	GPU Enhanced Filtering
	CPU vs GPU Filtering Performance Comparison
	Brushing for Details
	Animation
	Customer Experience Tipping Point Chart

	Domain Expert Feedback
	Conclusions and Future Work
	References

