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Abstract
The National healthcare Service (NHS) in the UK collects a massive amount of high-dimensional, region-centric data concern-
ing individual healthcare units throughout Great Britain. It is challenging to visually couple the large number of multivariate
attributes about each region unit together with the geo-spatial location of the clinical practices for visual exploration, analysis,
and comparison. We present a novel multivariate visualization we call a cartographic treemap that attempts to combine the
space-filling advantages of treemaps for the display of hierarchical, multivariate data together with the relative geo-spatial lo-
cation of NHS practices in the form of a modified cartogram. It offers both space filling and geospatial error metrics that provide
the user with interactive control over the space-filling versus geographic error trade-off. The result is a visualization that offers
users a more space efficient overview of the complex, multivariate healthcare data coupled with the relative geo-spatial location
of each practice to enable and facilitate exploration, analysis, and comparison. We evaluate the two metrics and demonstrate
the use of our approach on real, large high-dimensional NHS data and derive a number of multivariate observations based on
healthcare in the UK as a result. We report the reaction of our software from two domain experts in health science.

1. Introduction

The United Kingdom faces massive challenges with respect to pro-
viding the best healthcare via the National Health Service (NHS).
In order to provide the best service, Public Health England and the
UK government collect years worth of region specific-healthcare
data [NHS]. The public health profiles website [NHS] is used for
publishing the latest national healthcare data in the UK. The data
archive is designed to support GPs, clinical commissioning groups
(CCGs), and local authorities to ensure that they provide and com-
mission effective and appropriate healthcare services. However the
size and complexity of the data creates challenges for deriving new
knowledge and insight.

The NHS data includes a UK map divided into CCGs, which are
groups of NHS practices. Each CCG contains the local population
and high-dimensional healthcare data collected by the NHS, such
as cardiovascular disease (CVD) diagnoses, indicators of respira-
tory health, mental health, indicators, incidents of chronic obstruc-
tive pulmonary disease (COPD), kindey disease, as well as other
diagnoses.

Our goal is to develop imagery that combines UK-centric geo-
spatial information with high-dimensional NHS data in a unified
framework. Moreover, we believe the principles apply equally well
to other multivariate data sets of this kind. A hybrid visualization
we call a Cartographic Treemap combines the geo-spatial proper-
ties of cartograms with the space filling properties of treemaps, in-

heriting advantages of both. We provide the user interactive control
over the trade off between filling the most space, like a treemap, and
geo-spatial error. Currently, visualizing multi-dimensional health-
care data based on CCGs is not possible because many CCGs cover
the space of only a few pixels. Many CCGs are crowded into the
London region, obstructing any geo-spatial visualization without a
second magnified view. We propose a cartographic treemap to inte-
grate a modified representation of the UK based on the geo-spatial
information of CCG regions combined with a modified treemap to
present the multivariate NHS data. The contributions of this paper
include:

(1) A new hybrid visualization, the Cartographic Treemap, com-
bining geo-spatial information in the form of a modified car-
togram with space-filling geometry for the visualization of high-
dimensional data. (2) A layout algorithm for rectangular carto-
graphic treemaps: increasing region size incrementally and avoid-
ing overlapping regions. (3) A novel, interactive error metric and
user options that trade-off screen space versus geo-spatial accuracy
to facilitate user analysis. (4) The novel application of our hybrid
visualization to complex, real-world NHS data from the UK. The
paper by Tong et al. [TML∗17] extends this work by adding time
as a variate.
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Figure 1: This graph shows each region size proportional to its population with an added below average filter (left). The percentage of screen space
occupied, s0 = 41% and the local error, el = 3.5%, eg=8.7% and uniform size output with a below average filter (right). s = 47%, el = 2.3%, and eg = 5.5%.
All the healthcare disorders that exhibit higher than average prevalence are filtered and shown as grey context. Note how the London region is healthier with
the exceptions of diabetes and mental health. This is an observation based on multiple variates that would be difficult to make otherwise. See Figure 12 for
high-resolution version.

2. Related Work

Some very helpful survey papers provide an overview of healthcare
research [KM02, RWA∗13, WBH15, ML17]. However we would
like to couple geo-spatial information with the healthcare data.

Geo-spatial related work falls into the areas of cartograms and
spatially-ordered treemaps. we separate and review those two cate-
gories of previous paper here.

Cartographic visualization Cruz et al. [CCM15] define a car-
togram as "a technique for displaying geographic information by
resizing a map’s regions according to a statistical parameter in
a way that still preserves the map’s recognizability". They can
display geo-spatial information and another data attribute (such
as population or disease prevalence) in one visualization. Tobler
[Tob04] and Nursat and Kobourov [NK16] survey general car-
tograms. They present the development of value-by-area cartogram
algorithms and performance in computer science.

Auber et al. [AHL∗11] propose a layout method based on a geo-
graphic map metaphor, which facilitates the visualization and nav-
igation of a hierarchy and preserves the order of the hierarchy’s
nodes.

Gastner and Newman [GN04] present a diffusion cartogram for
constructing value-by-area cartograms, which provides a valuable
tool for the presentation and analysis of geographic data. Keim et
al. [KNP04] develop a faster algorithm for cartograms. It enables
display dynamic data with cartogram visualizations. These two al-
gorithms are categorised as contiguous area cartograms. Their per-
formance depends on the corresponding value in each area. If the
value does not correspond to the area, the cartogram may be diffi-
cult to recognize.

Raisz [Rai34] presents the rectangular cartogram, using rectan-
gles instead of real area shapes. Dorling [Dor11] presents the Dor-
ling cartogram which uses circles instead of geographic area shape,
similar to the modified cartogram we present. They are categorized
as non-continuous area cartograms. They can display statistical in-

formation well, regardless of original shape of area, and preserve
relative position. Van Kreveld and Speckmann [vKS07] present the
first algorithm for rectangular cartograms. They formalize region
adjacencies in order to generate processable layouts that represent
the positions of the geographic regions. It converts a rectangular
cartogram to a contiguous area cartogram. Our modified cartogram
does not fall into the category of continuous cartograms but resem-
bles a cross between rectangular and Dorling cartograms [NK16].
Our algorithm can be considered as a modified space-filling rect-
angular cartogram with the addition of a hierarchical structure and
multivariate data.

Heilman et al. [HKPS04] propose a novel visualization tech-
nique for geo-spatial datasets that approximates a rectangular par-
tition of the rectangular display area into a number of map regions
preserving important geo-spatial constraints. They use elongated
rectangles to fill the space whereas we use uniform rectangles to
fill the space such that regions can easily be compared with one
another. Their work focuses on univariate, non-hierarchical data.

Panse et al. [PSKN06] combine a cartogram-based layout (global
shape) with PixelMaps (local placement), obtaining benefits of both
for improved exploration of dense geo-spatial data sets. Their work
also focuses on univariate, non-hierarchical data.

Slingsby et al. [SDW09] explore the effects of selecting alter-
native layouts in hierarchical displays that demonstrate multiple
aspects of large multivariate data sets, including spatial and tem-
poral characteristics. They demonstrate how layouts can be related,
through animated transitions, to reduce the cognitive load associ-
ated with their reconfiguration whilst supporting the exploratory
process. No metric for neighborhood preservation is described in
this work.

Slingsby et al. [SDW10] present rectangular hierarchical car-
tograms for mapping socio-economic data. They present a detailed
map of 1.52 million UK unit postcodes in their spatial hierar-
chy, sized by population and coloured by the OAC category that
most closely characterises the population. However, no algorithm
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for preserving geo-spatial information is provided. No metric for
neighborhood preservation is described.

Alam et al. [AKV∗15] present a set of seven quantitative mea-
sures (Average Cartographic Error, Maximum Cartographic Error,
Adjacency Error, Angular Orientation Error, Hamming Distance,
Average Aspect Ratio, Polygonal Complexity) to evaluate perfor-
mance of cartograms based on the accuracy of data and its readabil-
ity. They compare previous cartogram algorithms based on statisti-
cal distortion, geography distortion and algorithm complexity and
evaluate their performance with respect to different properties. Nur-
sat and Kobourov [NK16] survey cartogram research in the field of
visualization and present design guidelines as well as research chal-
lenges. They state that mapping multivariate data is still a challenge
in cartogram research. In general, previous cartographic visualiza-
tions focus on flat, univariate data, whereas we process hierarchical,
multivariate data.

Eppstein et al. [EvKSS15] introduce a new approach to solve
the association challenge for grid maps by formulating it as a point
set matching problem. They present algorithms to compute such
matchings and perform an experimental comparison that also in-
cludes a previous method to compute a grid map. Their work fo-
cuses on geo-spatial information and filling space. multivariate, hi-
erarchical data is not considered.

Meulemans et al. [MDS∗17] design a comprehensive suite of
metrics that capture properties of the layout used to arrange the
small multiples for comparison (e.g. compactness and alignment)
and the preservation of the original data (e.g. distance, topology and
shape). Their work focuses on geo-spatial information and neigh-
borhood preservation. Multivariate, hierarchical data is not consid-
ered.

We note that the visualizing multivariate data is one of the
top future research challenges in the latest survey by Nursat and
Kobourov [NK16]. Also cartograms, in general, are not space-
filling and do not necessarily make the best use of screen space.

Geo-Spatial Treemaps Mansmann et al. [MKN∗07] present
HistoMaps for visual analysis of computer network traffic visual-
ization with a case study showing that a geographic treemap can
be used to gain more insight into these large data sets. However
the visualization is essentially univariate (one scalar per level in the
hierarchy). It is also not adjacency preserving.

Wood and Dykes [WD08] provide a squarified layout algorithm
that exploits the two-dimensional arrangement of treemap nodes
more effectively. It is suitable for the arrangement of data with a
geographic component and can be used to create tessellated car-
tograms for geo-visualization. They convert a geographic distribu-
tion of French provinces to a spatial treemap layout and preserve
the corresponding geo-spatial relationships to some extent. How-
ever, they demonstrate that it is impossible to preserve local region
adjacencies if nodes are constrained to a standard rectangle parent
node. For example, a region map may only have one or two neigh-
bors on a geographic map. We preserve geo-spatial relationships
with less error by allowing gaps in screen space at the different
levels of the data hierarchy.

Jern et al. [JRA09] demonstrate and reflect upon the potential
synergy between information and geo-visualization. They perform

Figure 2: This table shows characteristics of related work. It includes
five visualization properties: geo-spatial information, neighborhood preser-
vation, multivariate, hierarchical and space-filling. Geo-spatial informa-
tion implicates whether a visualization conveys geographic information
and AP in the column represents adjacency preservation only. Neighbor-
hood preservation indicates an algorithm that features a distance metric
to preserve neighborhood relationships. multivariate indicates the dimen-
sionality of abstract data. Hierarchical indicates a type of hierarchical data
and space-filling indicates how well the output visualization fills the screen.
Cartographic treemaps feature all five properties.

this through the use of a squarified treemap dynamically linked to
a choropleth map to facilitate visualization of complex hierarchical
social science data. It conveys the neighborhood relationships by
using a second view.

Slingsby et al. [SDWR10] develop an OAC (Output Area Clas-
sifier) explorer that can interactively explore and evaluate census
variables. There is no inherent information preserving the geo-
spatial location of regions because a synthetic grid is used to sub-
divide space. It is not possible to derive any information about the
geography of the UK regions.

Buchin et al. [BEL∗11] describe algorithms for transforming a
rectangular layout without hierarchical structure, together with a
clustering of the rectangles, into a spatial treemap that respects the
clustering and also respects to the extent possible the adjacencies
of the input layout. The work of Buchin et al. is similar to ours
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with few differences. First, they do not demonstrate their layout
algorithm on a full geo-spatial map, e.g. the UK. Second, the space-
filling requirement results in elongated rectangles that are difficult
to compare. Third, the data is univariate.

Wood et al. [WBDS11] present Ballotmaps that using hierar-
chical spatially arranged graphics to represent two locations (ge-
ographical areas and spatial location of their names on the ballot
paper) that affect candidates at very different scales but their work
does not contain any neighborhood preservation algorithm.

Wood et al. [WSD11] identify changes in travel behavior over
space and time, aid station rebalancing and provide a framework for
incorporating travel modeling and simulation by using flow maps.
Their work focuses on univariate, non-hierarchical data.

Duarte et al. [DSF∗14] propose a novel approach, called a
Neighborhood Treemap (Nmap), that employs a slice-and-scale
strategy where visual space is successively bisected in the horizon-
tal or vertical directions. The bisections are scaled until one rectan-
gle is defined per data element. Nmap achieves good space-filling
visualization that couples related rectangles using a distance met-
ric. However, the distance metric is not geo-spatial, it is also not a
treemap of multivariate data nor a hierarchical visualization.

Ghoniem et al. [GCB∗15] present a weighted maps algorithm,
which is a novel spatially dependent treemap. They present a quan-
titative evaluation of results and analyze of a number of metrics that
are used to assess the quality of the resulting layouts. The work
of Ghoniem et al. is similar to ours with some important differ-
ences. They place emphasis on evaluating adjacency relationships
between nodes rather than geo-spatial positions. Requiring 100%
space-filling results in higher geo-spatial error and elongated nodes.
Also the data is not multivariate.

Treemaps: Geo-spatial information versus adjacency preser-
vation: In general, the treemap layout algorithms attempt to reflect
geo-spatial information implicitly through adjacency relationships
between the nodes. As shown by Ghoniem et al. [GCB∗15], this
leads to high geo-spatial error, e.g. in the 40%-50%. It also leads to
elongated rectangles which may be difficult to compare. It may be
difficult to recognize the correspondence to the original geo-spatial
map when looking at a treemap. In contrast, our algorithm empha-
sizes geo-spatial preservation with less emphasis on adjacency rela-
tionships. We give the user new interactive control over the amount
of error and allow spaces and gaps to reduce geo-spatial error.

The work we present here differs from previous work in that it
attempts to combine the space-filling, hierarchical characteristics
of ordered space-filling treemaps together with the geo-spatial in-
formation conveyed by a cartogram. Table 2 compares the current
work with the work presented here. No previous algorithm com-
bines all five properties. Cartographic Treemaps convey geo-spatial
information. They feature an error-driven distance metric between
nodes and visualize multivariate hierarchical data. They also give
the user interactive control over how much screen space is used.

3. NHS Data Description

The NHS data includes a UK map divided into CCGs, groups of
NHS practices. A standard map of the UK only covers about 18

% of screen space due to its awkward shape. Each CCG contains
various categories of disease in prevalence value. Prevalence is the
proportion of a population who have a specific medical diagnosis in
a given time period, typically an illness, a condition, or a risk factor
such as depression or smoking. Prevalence is a derived metric of the
local population of each region. Prevalence is usually expressed as
a percentage.

Typically this data is displayed using line charts, bar charts, and
pie charts. The map provided by public health England is a stan-
dard UK map with 209 CCG regions. The boundaries of CCG re-
gions vary and are difficult for presenting high-dimensional data.
The CCGs coupled directly to the geography do not make effi-
cient use of space. The UK map itself only occupies 18% of screen
space. For visualization purposes the CCG regions in London for
example, crowd together and hamper our ability to visualize multi-
dimensional data clearly. This will be true in the capital region of
most countries and other densely populated areas. Other healthcare
data, for example, the population distribution data is typically vi-
sualized using a single line chart showing the percentage of age
groups distributed from 0-4 to 85+. Standard graphs show no con-
nection with other health data attributes such as geo-spatial location
and clinical diagnoses. This challenging data set is the inspiration
behind cartographic treemaps. See the supplementary PDF for a
description of the health disorders.

4. Cartographic Treemaps

This section describes the cartographic treemaps construction algo-
rithm and interactive error control, starting with an overview. The
processing begins with reading the UK geo-spatial information and
high-dimensional healthcare data. The algorithm is as follows:

(1) Compute region center points: We use the QGIS [QGI] tool
to calculate the center points of each CCG region. The center points
are the starting positions of the rectangular region nodes. (2) Up-
date node size: We start with a unit square to represent each CCG
region as a node in the cartographic treemap and increase the size
of each node according to the user’s chosen space-filling target or
error constraint. (3) Update cartographic layout: During the region
growing process, one region may shift adjacent neighboring regions
to remove overlap and preserve relative position. When all regions
reach their maximum size or the user-specified geo-spatial error is
reached, the cartogram layout stops. We use the fast overlap re-
moval algorithm [DMS06, DMS07] incrementally for this process.

(4) Treemap node layout: After the cartographic node layout is
completed, an ordered squarified treemap layout is used to present
the multivariate healthcare data in each CCG region, the lowest
(finest) level in the treemap hierarchy. (5) Interactive user options:
For further exploration, analysis and region comparison, several
user options are designed to present the results focusing on dif-
ferent user requirements, such as modifying algorithm parameters,
region selection for detail, modifying the color legend, and explor-
ing the hierarchy.

4.1. Updating Node Size

After calculating the center point of each CCG node, we initialize
CCG nodes as unit squares on the cartographic treemap. The al-
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gorithm increases the size of each node to make the most efficient
use of space. It terminates when the user-specified geo-spatial er-
ror or a target screen space percentage is reached. The algorithm
can also increase the size of each node based on any property of
the region (or proportion to a fixed maximum size region), e.g. the
local population of the CCG like a traditional cartogram. Because
we gradually increase the size of each CCG region node, the rela-
tive geo-spatial position between nodes is preserved. After the area
of each square is increased by a small amount (1 pixel by default)
some adjacent nodes may overlap. We then update the position of
each node in the tree by running the fast node overlap removal algo-
rithm [DMS06, DMS07] described in the next section. We provide
an animation to present the incremental processing from 1 pixel to
maximum size. Slingsby et al. demonstrate the benefit of animation
in this context [SDW09].

4.2. Updating Region Node Position

We use the fast node overlap removal algorithm presented by
Dwyer et al. [DMS06, DMS07] for removing overlap between
neighboring region nodes. With this algorithm, the overlap is re-
duced in the quickest, most effective way. That means if a node,
n, overlaps with its northern neighbor, nn, running this algorithm
shifts n south or its neighbor nn north, the most effective way to re-
move overlap. By constraining the overlap to a small area, the rela-
tive position of adjacent nodes is preserved. If we increase all nodes
to their maximum size before running the overlap removal algo-
rithm, relative geo-spatial position of region nodes is not preserved
as well. The reason for this is when a node (n) is much smaller than
its neighbor (nn), it may lie completely inside its neighbor after its
size has expanded to its maximum. In this case, it is faster to reduce
overlap without preserving relative position.

The fast node overlap removal algorithm has two phases. In the
first phase a number of constraints are applied that derive the sepa-
ration distance between nodes. In the second phase, the solution is
searched based on location as close as possible to the original node
positions [DMS06]. To address relative geo-spatial position preser-
vation, we run the fast node overlap removal algorithm incremen-
tally. In each pass, we increase the size of nodes by 1 unit and run
the fast node overlap removal algorithm. In this way, the algorithm
removes overlap and preserves relative position. The process is re-
peated until all nodes have reached their maximum size or a user
specified error threshold is reached. (Some examples are shown in
supplementary file.) We can also animate the region growing pro-
cess in order to increase the legibility of the visualization. Please
see the accompanying video for a demonstration. Observing the
evolution of each region provides benefit [SDW09].

4.3. A Neighborhood Preservation Error Metric

We introduce a novel neighborhood preservation error metric that
objectively quantifies how closely the relative geo-spatial positions
of the resulting nodes correspond to their original positions. In
other words, a west neighbor na should remain west of a given node
after the layout is updated. Likewise for the east, north, and south
directions. We consider an error when the relative geo-spatial po-
sition of the region center points cross. We use global error, eg, to

Figure 3: The illustration of global and local error for neighborhood
preservation. The error distance is decoupled into x(west-east) and y(north-
south) components. The x components is illustrated here.

record any two center points crossing while we use local error, el , to
record center points crossing when the distance between two cen-
ter region points is less than a user specific threshold in Euclidean
space, e.g. 20% of screen space.

As shown in Figure 3, we focus on the relative position of the
center points of regions na and nb. After looping through the layout
algorithm, an error is counted if the longitudinal line of nb crosses
the longitudinal (along y) line of na. i.e. the longitudinal distance
d(we)=na(x) -nb(x) > 0 initially and d(we)=na(x) -nb(x) < 0 after
updating the node positions. That means the relative longitudinal
positions of na and nb are not preserved, thus we count this case as
one error, similarly for the north-south orientation/position. If the
total distance between the centers of na and nb is less than a user
specific distance, we consider this error as local error, el . We con-
sider the worst-case scenario or maximum geo-spatial error when
the whole map is flipped both latitudinally and longitudinally, simi-
lar to the worst case of bubble sort O(n2). Figure 4 shows an actual
depiction of this error.

We consider the worst-case scenario when the center of every
region node n crosses every other region node, n−1. We adopt the
result that n+(n−1)+(n−2)+ ...+1 = n(n+1)/2. In our case n
is 209, however node n cannot cross itself. Thus we use n(n−1)/2
as our worst case result. The worst-case number of crossings in our
application is 21736. And all error can be expressed as a percentage
of this total.

We do not claim that this is the best distance metric in all of
the literature. Ghoniem et al. [GCB∗15] and Nusrat and Kobourov
[NK16] provide a comprehensive review and comparison of dis-
tance and error metrics for cartograms and spatial treemaps. In fact
many of those could be substituted here. Our contribution is that
this error metric is interactive as the user controls the level of er-
ror. For the first time the user controls the trade-off between filled
screen space and relative error of geo-spatial position.

4.4. Ordered Treemap Algorithm

After the size and position of each CCG region node is computed, a
treemap node layout algorithm is used to visualize the non-spatial,
multivariate health indicator data within each CCG. We require this
data is layed out consistently for each CCG region node to facili-
tate comparison between CCGs. Ordered treemap algorithms create
rectangles in a visual order that match the input order of the data.
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Figure 4: Visualization of errors: This figure shows error crossing edges
in north and south orientation. The screen space-filling percentage, s, is
20% and el is 0.9%, and eg is 1.8%.

Bederson et al. [BSW02] present two algorithms to display ordered
treemaps: A Pivot treemap and the Strip treemap algorithm. Com-
pared to the Pivot treemap algorithm, the Strip treemap results in a
lower rectangular aspect ratio. This version is more squarified with
a higher readability score. So we choose the Strip treemap algo-
rithm to present data inside each individual CCG node.

4.5. Interactive User Options

For further exploration and analysis, several user options are avail-
able to explore and present the results focusing on different require-
ments such as filling the maximum space, specifying the local or
global error, animating the node layout algorithm, modifying layout
parameters, region selection for detail, modifying the color legend,
and exploring the hierarchy.

Geo-spatial Error and CCG Region Node Size As our goal is
to combine the geo-spatial properties of cartograms with the space
filling properties of treemaps, the first user controlled parameter
setting is the maximum geo-spatial error of the CCG regions. All
CCG region sizes are uniform by default in order to facilitate com-
parison between regions. However, their size can also be propor-
tional to the maximum sized region. The size of each CCG region
can be mapped to the size of its local population or any health data
indicator like a traditional cartogram. So we enable the user to set
the maximum size of the region with the largest population and the
other regions are adjusted relative to the maximum. As in Figure 5.

Node Size Increment and Animation In the cartographic
treemap layout algorithm, the region size grows incrementally. As
discussed in section 4.2, immediately increasing the node size to its
maximum does not preserve the geo-spatial relationship between
regions as well, while iterative increments take more time to gener-
ate the final result. So we provide a user option to explore an ideal
size of area increase in a single layout algorithm pass. The incre-
ment size is set between 1 and 10 pixels. The layout takes more
time when the increment size is small, but the accuracy of geo-
spatial neighborhood relationships is increased. There is a trade-off
between processing speed and accuracy of the geo-spatial relation-

ship between nodes. A user option of animating the region node
layout process is provided so the user can observe the correspon-
dence between the original node position and the final visualiza-
tion. Slingsby et al. [SDW09] demonstrate the value of animation.
The multi-pass layout algorithm is shown gradually from initial to
final layout.

Uniform Size Regions A cartographic treemap node for a single
region represents the prevalence of various health disorders. As the
size of each CCG region may be uniform or represent its popula-
tion, the size of bottom level rectangles represents the proportion of
the population with a particular health disorder in the respective re-
gion. We can get an overview of the prevalence of various diseases
in CCG regions. As in Figure 6. However, as the population some-
times varies greatly among CCG regions, the size of bottom level
rectangles may not be directly compared with other CCG region
nodes. For example, a large population of heart failure in Oxford-
shire CCG may not indicate heart failure there is relatively preva-
lent. The prevalence of heart failure in Oxfordshire is 0.51 which
is lower than the average of 0.73. In order to facilitate direct com-
parison of health disorders across CCG region nodes, we provide a
user option to generate uniform size region-level nodes set to true
by default. In this way, the size of rectangles at the bottom level of
the treemap hierarchy can be compared directly. As in Figure 7.

Difference Cartographic Treemap and Focus+Context To
make the healthcare visualization clearer, we introduce a user op-
tion: a difference cartographic treemap. The size of each rectangle
at the bottom level of the healthcare treemap does not represent
the absolute prevalence value of each health disorder. Instead, it
represents the difference from the average UK value. Using this
option, we can emphasize how the prevalence of a specific health
condition differs from the national average level and understand the
conditions in a particular region. As in Figure 8. We also use a fo-
cus+context visualization incorporating a focus+context color map.
The user may choose to focus on above average or below average
values. Focus attributes are then rendered in color while context
rectangles are rendered in grey-scale. As in Figures 10 and 1.

Figure 5: Nodes proportional to CCG size. The screen space-filling per-
centage, s=36% and el=2.4%, eg = 4.5. The two red outlines show the two
biggest region nodes on the map: Cambridgeshire Peterborough and North
East & West Devon. This is unexpected since we hypothesized the largest
regions to be in London or Birmingham. This example uses color map from
the Disk Inventory X tool [dis]. See Figure 13 for high-resolution version.
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Figure 6: This visualization shows the output of cartographic treemap
with region size proportional to population, and with a details-on-demand
window for one region node. s=30%, el=2.4% and eg= 5.1%. The first three
rectangles in each region node represent three CVD health disorders. Note
the prevalence of hypertension and diabetes is very widespread the UK.
This type of multivariate observation display itself clearly with this type of
visualization. See Figure 14 for high-resolution version.

Area Groups We introduce area groups to classify CCG regions
into 27 area groups in the treemap hierarchy based on area code.
This option creates a more space-filling cartogram and another hier-
archy level in the treemap. It facilitates comparison of CCG regions
healthcare data within their own CCG groups and enables explo-
ration and analysis. As in Figure 9. It also results in a more space-
filling layout with greater resemblance to a traditional treemap.

Details-on-Demand and on-mouse-over: For the finest (low-
est) level of data detail in CCG regions or area groups, a details-
on-demand feature is implemented. By hovering the mouse over
or clicking on any region, a new window opens with a higher res-
olution treemap, providing the CCG code, CCG name and value
of each health diagnosis category. As in Figure 6. To improve the
appearance, we also add user options for various color maps and
color gradient styles (See Figure in supplementary file). The color
maps come from different sources; one is from the disk inventory
X tool [dis], the second one is from ColorBrewer [Col], the third
one is from Telea [Tel14], the fourth is from QGIS [QGI], and the
last one is from Setlur and Stone’s paper [SS16]. As in Figure 7.

5. Results and Discussion

In this section, we present the results of our interactive metrics and
derive a number of observations based on cartographic treemaps.

Accompanying Demonstration Video URL

https://vimeo.com/199637583

The images here are lower resolution due to space limitations.
The video and supplementary PDF contain higher resolution im-
agery.

Figure 7: This graph shows the output of cartographic treemap with uni-
form size region nodes. s=50% and el=2.4%, and eg=5.8%. The region with
the red circle (Bradford City) contains the largest purple rectangle which
indicates the highest relative prevalence of diabetes in the UK. This exam-
ple uses a published color-map from Setlur and Stone [SS16].

Evaluation of Space and Error Metrics To evaluate the per-
formance of our algorithm, we measure the percentage of filled
screen-space, s, versus the local and global geo-spatial error. As the
original map is narrow, the space filled with respect to the screen
is 18.5% and by using our algorithm the percentage of filled screen
can reach up to 70%. The relationship between error and screen
space filled is shown in Figure 11.

Based on the algorithm described in section 4.3, the local and
global error is shown in Table 1 and Figure 3. It shows the connec-
tion between el , eg and s. It presents percent space filled along with
local and global percentage and frequency of center-axis crossings.

Figure 8: This graph shows the cartographic treemap using average dif-
ference maps. s=50%, el=2.4%, and eg=5.8%. The larger a bottom level
rectangle is, the more it deviates from the UK average. This example uses a
well-known color map from color-brewer [Col].
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Figure 9: This graph shows the cartographic treemap with 27 area groups.
s= 70% and eg = 5.2% . The regions in red highlights are London areas.
This example uses Telea’s color map [Tel14].

Figure 10: A focus+context cartographic treemap visualization with uni-
form size regions. s=50%, el=2.4%, and eg=5.8%. The data is mapped to
two color scales: one for the focus data and the other for context. All the
healthcare prevalence categories are shown as context except for user se-
lected data attributes. The red circle shows the relatively largest rectangle
in the map that represents the highest prevalence of Chronic-kidney-disease
disorder in the UK (Nottingham North And East).

We can see that el increases linearly with s occupied while eg in-
creases more rapidly. We can achieve 65% screen-space occupancy
with only 1-4% error.

Performance and Observation The algorithm requires less than
a second to run (85ms-1000ms). The computer used to run this al-
gorithm is an MSI desktop with Intel 3.4GHz CPU, 8GB RAM,
GeForce GTX 770 graphic card and Windows 10. We slow it down
for purposes of animation and user observation.

Table 1: Neighborhood Preservation Metric

s el local error frequency eg
global error
frequency

10% 0.4 164 0.7 293
20% 0.7 308 1.5 667
35% 0.9 409 2.5 1073
57% 1.1 476 3.1 1369
66% 1.2 524 3.6 1593

Figure 11: This figure shows the relationship between percentage of both
local and global error versus the amount of filled space. The red line shows
the global error while the blue line indicates the local error.

Based on the cartographic treemap visualization, several ob-
servations can be derived from the public health data. Several of
these observations would be very difficult without the cartographic
treemap.

(1) From the region node layout in Figure 9, we can see that the
London area contains the most CCG group regions (32 in total) and
the largest population. (2) The individual CCG regions with largest
population are Cambridgeshire Peterborough and North East &
West Devon. As in Figure 5. This is not what we would expect
but rather the largest populations in a London CCG. (3) Hyperten-
sion is most prevalent health disorder with the largest proportion
throughout the UK while the second largest health disorder is dia-
betes. As in Figure 6. This is clear from an overview cartographic
treemap.

(4) Three kinds of CVD related disorders (Coronary-heart-
disease, Heart Failure, Stroke) are prevalent throughout the UK,
and coronary heart disease is the most common disorder in the
CVD disorder group (a multivariate observation ). As in Figure 6.
(5) From the uniform size nodes, the regions with a significantly
higher prevalence of health disorder can easily be observed. Brad-
ford City has the relatively highest diabetes in the UK. As in Figure
7. We can also find the highest relative chronic kidney disease dis-
order prevalence in the Nottingham North & East CCG. As in Fig-
ure 10 and the highest relative mental health disorder prevalence
is found in Islington. (6) Compared to the average value across all
health disorders, regions in London are generally better than the av-
erage in most health categories with the exceptions of mental health
and diabetes. As in Figure 1. This is another multivariate observa-
tion found using the cartographic treemaps capabilities.

(7) The North regions are higher than average in most health
disorders, such as, Cumbria and Northumberland. The values are
higher than the average for a range of health disorders. For exam-
ple, diabetes is more prevalent in Northern regions than Southern
regions. This is shown in Figure 1. Cartographic Treemaps facili-
tate these kind of multivariate observations.

6. Health Science Domain Expert Feedback

Domain expert 1: "Data analysts are often required to analyse com-
plex sets of spatial, multivariate, longitudinal, and event history
public health data in order to answer research questions as part

c© 2017 The Author(s)
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of major studies such as CORTEX, ELAStiC and the Carmarthen-
shire Housing Project. Cartographic treemaps facilitate the recog-
nition of patterns within the data such as geographical clustering
and temporal trends, as well as the identification of salient features
including outliers and extreme values, thereby helping to comple-
ment machine learning and data mining techniques and to inform
statistical modelling. This visualization will make a major contri-
bution towards helping data analysts to achieve their research ob-
jectives. Therefore, we are delighted that this new technique will
be utilised by data analysts in the Farr Institute @ CIPHER within
Swansea University Medical School. We are confident that the car-
tographic treemaps will provide data analysts with the opportunity
to gain additional deeper insights into their complex public health-
care data."

Domain expert 2: "Some of the biggest challenges of working
with linked population health datasets relate to the sheer volume of
the data: the scale is daunting in terms of the population sizes, and
dimensionality. There are thousands of potentially interesting facts
stored in various data sources. The depth and breadth of the data
make it hard to see the big picture of what is going on in a popu-
lation, as well as to sort through the noise to identify what infor-
mation is relevant. These challenges are multiplied if the data is to
be used directly in a clinical setting by people who are not expert
analysts. Something that is necessary to derive maximum benefit
from available data resources. Visualization is a key technology to
help users, both academic and clinical, make sense of the data. The
cartographic treemap approach described here addresses our chal-
lenges by allowing a number of related variables to be presented si-
multaneously. Geography is often an important dimension in health
research and service planning, and this technique allows data to be
organized geospatially while transcending some of the limitations
of traditional map-based visualizations. The ability to see geogra-
phy, population sizes, and several health measures at the same time
will help users get a much more accurate, at-a-glance understand-
ing of the data and the population it represents. It has potential to
aid research, particular in the hypothesis-generation phase; and it
could be quite beneficial in the healthcare sector, supporting activ-
ities such as service planning."

7. Conclusion

This paper presents a novel hybrid visualization, the Cartographic
Treemap, combining geo-spatial information, a novel interactive
neighborhood preservation metric, and space-efficient geometry for
the interactive visualization of geo-spatial, and high-dimensional
data. It combines the advantages of both cartograms and treemaps.
We implement and demonstrate this visualization with a real-world
high-dimensional healthcare data collected by NHS to support
clinical commissioning groups (CCGs) and the healthcare service
providers. Several interactive user options are available to explore
and present the results focusing on different user requirements for
further exploration, analysis and comparison. Also, we present sev-
eral multivariate observations based on the cartographic treemap vi-
sualization and report feedback from two domain experts in health
science. Future work includes investigating more optional color
maps for high-dimensional data and a more in-depth user feedback
study.
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9. Appendix

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.



C.Tong et al. / Cartographic Treemaps

Figure 12: A high-resolution version for Figure 1. This graph shows each region size proportional to its population with an added below average filter (left).
The percentage of screen space occupied, s0 = 41% and the local error, el = 3.5%, eg=8.7% and uniform size output with a below average filter (right). s =
47%, el = 2.3%, and eg = 5.5%. All the healthcare disorders that exhibit higher than average prevalence are filtered and shown as grey context. Note how the
London region is healthier with the exceptions of diabetes and mental health. This is an observation based on multiple variates that would be difficult to make
otherwise.

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.



C.Tong et al. / Cartographic Treemaps

Figure 13: A high-resolution version for Figure 5. Nodes proportional to CCG size. The screen space-filling percentage, s=36% and el=2.4%, eg = 4.5. The
two red outlines show the two biggest region nodes on the map: Cambridgeshire Peterborough and North East & West Devon. This is unexpected since we
hypothesized the largest regions to be in London or Birmingham. This example uses color map from the Disk Inventory X tool [dis].
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Figure 14: A high-resolution version for Figure 6. This visualization shows the output of cartographic treemap with region size proportional to population,
and with a details-on-demand window for one region node. s=30%, el=2.4% and eg= 5.1%. The first three rectangles in each region node represent three
CVD health disorders. Note the prevalence of hypertension and diabetes is very widespread the UK. This type of multivariate observation display itself clearly
with this type of visualization.
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