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Abstract: In Molecular Dynamics (MD) Visualization, representative surfaces of varying resolution are commonly used
to depict protein molecules while a variety of geometric shapes, ribbons, and spheres are used to represent
residues and atoms at different levels of detail (LoD). The focus of the visualization is usually on individ-
ual atoms or molecules themselves and less often on the interaction space between them. Here we focus on
LoD interaction between lipids and proteins and the space in which this occurs in the context of a membrane
simulation. With naive approaches, particles may overlap and significant interaction details can be obscured
due to clutter. Furthermore, the spatial complexity of the protein-lipid interaction (PLI) increases over time.
Co-developed with an MD domain expert, we address the challenge of visualizing complex, time-dependent
interactions between lipids and proteins by introducing two abstract LoD representations with six levels of
detail for lipid molecules and protein interaction. We also propose a fast GPU-based projection that maps
lipid-constituents involved in the interaction onto the abstract LoD protein interaction space. The tool pro-
vides fast LoD, the imagery of PLI for 336,260 particles over almost 2,000 time-steps. The result is a great
simplification in both perception and cognition of this complex interaction that reveals new patterns and insight
for computational biologists. We also report feedback from the domain expert to our visualization.

1 INTRODUCTION AND
MOTIVATION

Visualization of Molecular Dynamics (MD) has re-
ceived a great amount of attention over the past two
decades. Numerous MD visualization tools are used
for visualizing MD data from simple to complex
molecules [Kozlı́ková et al. (2017) and Alharbi et al.
(2017)]. With recent advances in computer graphics,
most of the MD visualization research focuses on op-
timal rendering quality and performance.

Proteins perform an array of functions such as
drug and neurotransmitter transport. Lipids inti-
mately influence the structure and function of mem-
brane proteins by extensive protein-lipid interaction
(PLI) Antonny (2011). Here the PLI plays a sig-
nificant role in understanding the interdependence
of membrane proteins with their surrounding lipids.
Simulations facilitate structural understanding in the
context of a lipid bi-layer. This is the application we
focus on here.

In an MD visualization, a number of models are
used to depict molecules at the molecular and atom-
istic scale. Protein molecules, for example, are of-
ten represented by surfaces. This representation pro-

vides an overview of the protein shape at the molecu-
lar scale. At the atomistic scale, small molecules in-
cluding atoms’ bounds are often represented by mod-
els such as ball-and-stick. These representations are
commonly used to visualize the MD data at the de-
sired scale. However, depending on the intended anal-
ysis task, these same representations might also be-
come part of the challenge due to their complexity.

The visualization of PLIs in time-dependent sys-
tems involves a number of challenges. Complex pro-
tein surfaces might not be an ideal solution in this
case. The dynamics of the system may cause many
particles to be occluded or to overlap. The PLI oc-
curs at the atomistic level which presents computation
and visualization challenges. Every single interaction
holds information that might explain the lipid’s influ-
ence on a protein’s functions. At the very beginning
of the simulation, a lipid might interact with one pro-
tein at most. Over time, the complexity of the system
increases due to the evolution of the system particles.
Figure 1 illustrates the motivation behind this work
where lipid particles interact with more than one pro-
tein. Special techniques we can use to enable users
to investigate the PLI at different levels of abstrac-



Figure 1: A snapshot of a naive Protein-Lipid interaction
representation. Protein particles are yellow, and lipid par-
ticles are green initially and turn red after an interaction.
Perceptual difficulties stem from complexity and occlusion.

tion. We extend Alharbi et al. (2018) by design and
implement a LoD PLI in close cooperation with do-
main experts to help computational biology scientists
to obtain insight into PLI for time-dependent systems.
Our contributions are:

• Six levels of detail for the protein-lipid interaction
and an enhanced implementation of the PLI space
utilizing a tree-structure.

• A smooth transition between the six LoDs uti-
lizing lipid-scale and particle-scale effects. The
lipid-scale effect provides a smooth transition for
particle positions between levels. The particle-
scale effect provides a smooth change of the ra-
dius of the particles between levels.

• While the previous work harnesses the GPU to ac-
celerate the computation of PLI here we propose a
fast GPU-based approach to accelerate represent-
ing the PLI LoD in the abstract interaction space.

• A number of PLI filtering and selecting tech-
niques as well as a custom color-map feature to
enhance the visualization.

The paper is organized as follows: In Section 2, we
discuss related work. In Section 3, we describe the
simulation data. Section 4 discusses the visual-design
aspects. In Section 5 we present the results of our
method and discuss the reaction of a domain expert
in computational biology to our novel LoD PLI repre-
sentation. Conclusions and directions for future work
are given in Section 6. The implementation is de-
scribed in the supplementary file.

2 RELATED WORK
There has been a fair amount of recent as well as use-
ful review papers on the theme of molecular visual-
ization. Readers can be referred to O’Donoghue et al.
(2010). The report covers web-based and stand-alone
tools and discusses the advantages and disadvantages
of the most common molecular structure acquisition
techniques for biological data. Kozlı́ková et al. (2017)
in another of their state-of-the-art review, classify re-
cent advances in visualization undertaken within the
area of molecular simulation particularly focussed on
structural biology applications. Alharbi et al. (2017)
present the first survey of surveys on molecular dy-
namics visualization involving survey papers from the
computational biology community as well as com-
puter graphics. The chosen surveys (in total 11 sur-
veys) discuss a diverse range of research topics in
molecular visualization spanning the long history of
advances in molecular dynamics visualization (MDV)
spanning 1980 to 2017.

In the molecular visualization literature, metaphor
and levels of detail (LoD) are often used to enhance
software performance or reduce visual complexity,
and enhance perception. Table 1 classifies related
work into LoD for performance and perception and
their complexity.
LoD for Performance And Computational Com-
plexity Preceding literature often cites spatial data
structures which rely on 1) the assembly of atoms
within a molecule, or 2) modifying the surface resolu-
tion of a molecule concerning the LoD. The aim is to
allow a user to interactively visualize larger molecular
datasets by minimizing the computational complexity
needed for data representation.

Sharma et al. (2004) implement a hierarchical
frustum-culling algorithm on the basis of an octree
data structure. This algorithm is efficient for remov-
ing atoms which are outside the field-of-view win-
dow. This is through the application of probabilistic
and depth-based occlusion culling as well as the uti-
lization of a multi-resolution algorithm for rendering
the chosen subset of visible atoms at different levels
of detail.

Bajaj et al. (2004) introduce a biochemically sen-
sitive level-of-detail hierarchy for molecular repre-
sentations. The hierarchy is constructed from the base
upwards in such a manner that each member of this hi-
erarchy includes all members which are related to the
level immediately preceding it. For example, an atom
is the lowest level of the hierarchy. A residue con-
tains all constituent atoms, while a secondary struc-
ture contains all constituent residues. Each level of
the hierarchy is associated with a geometric repre-
sentation. A single sphere represents an atom with



Table 1: A classification of the related work with respect to: performance and perception and their complexity. The fourth
column presents the focus elements. (S= Surfaces, P= Protein, M= Molecules, R= Residues, A= Atoms, Ast= Astrocytes, N=
Neurites).

Paper Performance and
Computational Complexity

Perception and
Perceptual Complexity Focus Objects

Bajaj et al. (2004) 3 7 S
Sharma et al. (2004) 3 7 A
Lee et al. (2006) 3 7 S
Lampe et al. (2007) 3 7 P
Weber (2009) 7 3 M
Van Der Zwan et al. (2011) 7 3 M, A
Lindow et al. (2012) 3 7 M, A
Krone et al. (2012) 3 7 S
Falk et al. (2013) 3 7 M, A
Parulek et al. (2014) 7 3 M, A, S
Le Muzic et al. (2014) 3 7 M, A
Mohammed et al. (2018) 7 3 N, Ast
Alharbi et al. (2018) 3 7 M, A

a Van der Waal radius, while a residue is depicted by
a minimal single bounding sphere which includes all
its constituent atoms. This approach considerably re-
duces visual clutter by presenting the suitable volume
occupancy and shape. Additionally, the hierarchical
image-based rendering enables the mapping of de-
rived physical characteristics onto the molecular sur-
faces.

Lee et al. (2006) propose an algorithm for real-
time surface visualization on the basis of a view-
dependent LoD method. This technique comprises
two stages: a pre-processing stage and a real-time
rendering stage. This technique offers high-quality
rendering and also displays critical components of
molecular models. In the preprocessing stage, the
mesh of the molecular surface is simplified and clas-
sified by different levels of detail. In the real-time
rendering stage, hierarchical LoD models are con-
structed which result in accelerating the rendering
performance. Lampe et al. (2007) introduce a two-
stage approach for visualizing large as well as time-
dependent protein complexes. In the first stage, each
residue is substituted with a single vertex based on
the residue’s rigid transformation. In the second level,
the atoms which are contained in the residues are dy-
namically generated within the geometry shader on
the basis of the initial simulation vector and the trans-
formation matrix.

Lindow et al. (2012) introduce a 3D voxel grid
based on the GPU, for storing the atomic data and uti-
lizing a fast ray-voxel traversal through which just the
spheres within the existing voxel are tested for inter-
section. This algorithm enables for the interactive rev-

elation of biological structures comprising of billions
of atoms. Comparable to results obtained by Lindow
et al. (2012), Falk et al. (2013) store every molecule
in its own supportive grid, which is further traversed
in detail via a ray. Here the grid is constructed on the
basis of each atom’s size while in Lindow et al. (2012)
the grid is constructed based on the number of atoms.
Krone et al. (2012) propose a novel fast approach for
molecular surface extraction that can be used for de-
picting structural details on a constant scale. By mod-
ifying the resolution of the grid as well as the density
kernel function the scale may vary from atomic detail
to lower resolution detail in visual representations.

Le Muzic et al. (2014) present a LoD approach
which envelopes adjacent atoms within a single
sphere dependent on the distance from the camera.
They utilize texture for storing the atomic positions
of the whole molecule. Tessellation and geometry
shaders are used for constructing the atom’s position
based on a rotational quaternion which represents the
molecule’s present orientation. Their approach is sim-
ilar to Lampe et al. (2007) but uses the tessellation
shader instead of the geometry shader. Alharbi et al.
(2018) introduce a novel abstract protein space and
provide a solution to address PLI computations and
visualizations challenges. They focus on the space
between lipids and proteins and visualize the PLI at
the atomistic level. The PLI details are maintained via
a uniform cylindrical grid. The paper mainly focuses
on the abstract protein space as a proposed solution
for PLIs in complex MD systems.
LoD for Perception and Perceptual Complexity
In the context of molecular visualization, abstraction



typically refers to structural abstraction. The struc-
ture of a molecule is commonly depicted via various
representations. e.g., a space-filling diagram, the ball
and sticks model, and the ribbon model.
Generally, every representation is associated with a
particular molecular structure, and several LoD tech-
niques are applied for the provision of a smooth tran-
sition within the structures.

Van Der Zwan et al. (2011) propose a novel
continuous abstraction space for illustrative molec-
ular visualization. This approach is GPU-based
for depicting continuous transitions between various
stages of structural abstraction of a molecular sys-
tem (i.e. space-filling, licorice, ball-and-stick, rib-
bon, and backbone). A seamless structural transi-
tion is applied from space-filling to ribbon. Parulek
et al. (2014) propose a novel LoD approach for vi-
sualizing larger protein complexes. Its application
to individual levels is based on the distance to the
camera. They utilize three distinct surface represen-
tations (such as solvent-excluded surface (SES), Van
der Waals spheres and Gaussian kernels). Shading ab-
stractions, as well as hierarchical representations, are
used for creating smooth transitions between the three
representations. Mohammed et al. (2018) present a
novel tool for visualization of astrocytes and neurons
at varied levels of abstraction. This tool employs a
novel abstraction space to provide a set of visualiza-
tions ranging from detailed 3D surface images of seg-
mented structures (realistic images) to simplified ab-
stractions (like skeletons and graphs). Previous work,
in general, does not focus on the interaction space be-
tween lipids and proteins.

In this work we extend Alharbi et al. (2018) by
providing six dynamic, levels of detail to address vi-
sual complexity and perception. We provide a simpli-
fied representation of the PLI at different levels. Here,
the protein’s interaction space is also used to enhance
performance during detection of protein-lipid inter-
sections on-the-fly. The LoD is computed based on
the zoom value. Each level represents the molecule
by increasing the number and the size of its parti-
cles. Our approach enables the user to smoothly zoom
between the levels of detail without losing the over-
all structure of the molecule. Also, our visualiza-
tion conveys historical information about the dynamic
protein-lipid interaction overall simulation time steps.
It differs from the previous one in three significant
ways. First, Alharbi et al. (2018) focus on the PLI
space at the atomistic level while we here introduce 1)
six LoD representations for an abstract protein space
and 2) six LoD representations for lipid molecules.
Second, Alharbi et al. (2018) utilize a uniform 2D
grid to maintain the PLI detail. We employ a custom

quad-tree structure to exploit the properties of a tree
structure in the PLI LoD representations. We also im-
plement a fast GPU-based method to accelerate rep-
resenting the PLI on the PLI space. Thirdly, this work
introduces a number of additional features which en-
able the user to 1) filter the frequency of the PLI, 2)
filter the PLI based on the participating molecule type,
3) map the PLI frequency to different color maps uti-
lizing a custom color map method that provide an en-
hanced color mapping with respect to the distribution
of the PLI along the color scale.

3 SIMULATION DATA
DESCRIPTION

Data-sets characterize biological dynamics of lipids
and proteins within the perspective of a membrane
model. The simulation domain’s dimensions are 116
× 116 × 10 nanometers (x, y, and z respectively). In-
dividual trajectories reflect the evolution of 336,260
particles over 1,980 nanoseconds (ns). The system
comprises three molecule types: one protein, and two
lipid types (POPE and POPG). The protein type simu-
lates 256 protein molecules while the collective lipid
POPE and the POPG types comprise of 14,354 and
4,738 molecules respectively. The collection of the
structures is described below:

1- Each protein has 171 residues. Each residue
consists of 1 to 3 particles. A single protein consists
of 344 particles which result in (256 × 344) 88,064
particles in total.

2- The lipid collection consists of 19,092 lipids.
Each lipid contains 3 groups: i) a head group (2 par-
ticles), ii) a tail group (6 particles), and iii) a second
tail group (5 particles). Each lipid molecule has 13
particles which result in (19,092 × 13) 248,196 lipid
particles in total.
The models discussed are on the basis of the MAR-
TINI coarse-grained forcefield Marrink and Tieleman

Figure 2: Representation of molecules: Protein, POPE and
POPG types (left to right). The Protein and the Lipid type
images are generated with our tool.



(2013) which does not signify all the atoms, how-
ever, simplifies four heavy atoms through one coarse-
grained particle. Figure 2 provides a depiction of the
structure of a protein, lipid POPE type, and POPG
type. Regarding the size of the simulation, the data-
set contains more than 666 million space-time posi-
tions that occupy 8 Gigabytes of memory.

4 VISUALIZATION OF
PROTEIN-LIPID
INTERACTION

This section discusses the main aspects of the visu-
alization of protein-lipid interaction. It describes the
LoD representation of lipids and discusses the rela-
tion between lipid LoD representations and the PLI
detail at different levels. It also discusses the protein
interaction space and describes the LoD representa-
tions of the protein-lipid interaction space. The last
two subsections discuss the construction of our IBQT
(index-based quad-tree) and the projection of the PLI
onto the protein LoD space.

4.1 Lipid LoD Representation

The hierarchy for lipid is simplified based on the
MARTINI coarse-grained forcefield Marrink and
Tieleman (2013). Generally, lipids are represented ei-
ther by an abstraction such as Van der Waals spheres,
CPC, licorice Humphrey et al. (1996) and hyperballs
Chavent et al. (2011) or by atomistic representations
where every individual particle is depicted by a sin-
gle sphere (sticks might be used to represent bonds
between atoms). We choose the atomistic represen-
tation over the abstract representations as the latter
lends itself to a smooth LoD representation, espe-
cially with dynamic systems. We depict the lipid
particles as spheres and cylinders representing bonds
between particles. The rendering is accelerated by
GPU-based ray-casting techniques for both spheres
and cylinders.

Lipid Base-Structure: Our lipid LoD representa-
tion starts with the lipid base-structure. As described
in section 3 lipids have a well-defined structure: a
head group and two tails. The three groups are con-
nected via a linker particle in such a way that their
final representation reflects the Lipid model in Figure
2. We employ the geometry of the base-structure to
build five derivative structures such that each extends
the previous one and represents the lipid at the given
LoD.

Derived Structure: The first derived structure con-
sists of only one relatively large particle, i.e., the

Figure 3: Six levels of detail for Lipids. A smooth transition
(ST) is applied between the six levels. The size of the sphere
shrinks between level as well. The yellow spheres represent
the transition stage. The LoD is calculated based on the
zoom value.

linker particle which is the representative of the lipid
at LoD 1. The second derived structure involves the
linker and its closest neighbors which represent the
lipid at LoD 2. New structures for LoD 3, 4 and 5 are
derived by smoothly extending neighbors of existing
particles until a lipid reaches the most detailed rep-
resentation and smallest particle size at LoD 6. See
Figure 3.

Smooth LoD Transition: By convention we use
the term ”terminal particle” to describe relatively
small particles that occupy leaf nodes of the given
structure. We utilize a smooth dynamic transition
between levels to avoid flickering caused by sudden
transitions. The smooth transition is achieved by
applying two continuous effects, a lipid-scale, and
a particle-scale effect. The lipid-scale effect is re-
sponsible for providing a smooth, forward/backward
translation for terminal particles between levels. The
particle-scale effect is responsible for providing a
smooth increasing/decreasing of each terminal parti-
cles’ radius during the transition. The speed of the
transition is a user option, and it can be configured
by increasing or decreasing the transition time. The
longer the time, the smoother the transition. Figure 3
shows the transition between levels.

4.2 LoD Lipid Interaction
One of the properties of the PLI is that it occurs at the
atomistic level. This property poses a LoD computa-
tional and visualization challenge. The property im-
plies that for every lipid molecule each of its particles
needs to be included in the PLI proximity test. For
example, if the interaction test is performed at LoD
1 then, for every lipid, only one particle is involved



in the interaction test while some of its other particles
might pass the interaction test if they were involved.
On the other hand, not all the particles of the given
lipid necessarily pass the interaction test at the max-
imum LoD. For example, if the interaction is caused
by a particle p that exists only at LoD n we will not
be able to reveal its interaction detail at LoD n−1 as
particle p is not represented at this level downward.
These challenges might result in unexpected approxi-
mations at all the LoDs except LoD 6 as all the lipid
particles are included in the structure. Hence the PLI
test is performed on the GPU for LoD 6 as the lipid
structure in this level involves all the lipid particles.
The result is maintained in full detail. For every LoD,
we inherit the interaction details from the upper level
in such way the visualization reveals the interaction
detail for the present LoD and higher approximations.
It is clear from Figure 4 that adding lipid LoD helps
reduce occlusion and clutter. However further inno-
vation is required for protein LoD.

4.3 Protein Interaction Space

Cylindrical PLI Representation: The description of
the cylindrical PLI representation is given by Alharbi
et al. (2018). See Section 4.

4.4 LoD Protein-Lipid Interaction space
PLIs can occur at any position within a protein space.
By utilizing an abstract cylinder to represent a protein
space, a PLI can be directly depicted on the surface
of the abstract protein space using a tile. Essentially,
the surface of the abstract protein space is divided
into 1024 tiles. Each tile is associated with an IBQT
(index-based quad-tree) node (see Section 4.5). The
IBQT nodes are responsible for maintaining the PLI
detail while tiles are used to depict the nodes’ infor-
mation. We exploit the properties of IBQT to apply
LoD techniques to a PLI space. The root of the IBQT
represents the first LoD. The PLI frequency is accu-
mulated from the nested levels before it is projected
on the cylinder. The LoD level 1 helps the user obtain
an overview of the PLI. The leaf nodes of level 6 rep-
resent the sixth LoD. Each node is mapped to a tile
on the cylinder. LoD 6 provides the user with the PLI
at the highest resolution where each tile depicts the
smallest interaction area on the abstract surface. The
user can investigate the PLI at different resolutions in
between LoD 1 and LoD 6. The LoD is calculated
based on the camera zoom level. The zoom interval
between levels is parametrized enabling the user to
control the switching time between levels. The user
also is provided with a manual LoD slider. The man-
ual LoD slider helps the user to focus on the PLI at
particular LoD while zooming in and out or at a fixed

Figure 4: An overview of protein-lipid interaction. The
top image shows the default representation of the lipid
molecules (no level of detail). The middle and bottom im-
ages show the representation of the same lipid after enabling
the level of detail (level 4 and 1 respectively). Protein par-
ticles are yellow, and lipid particles are green initially and
turn red after an interaction. In the first image, more in-
teraction details are occluded, due to overlapping particles.

camera position. Figure 5 illustrates six LoDs for a
single PLI.

4.5 Constructing the Interactive
Index-Based Quad-Tree (IBQT)

Taking into account 256 simulated proteins, we main-
tain a dynamic LoD interaction representation i.e each
interaction position, time and frequency over 1981
time-steps. In terms of storing and retrieving the in-



Figure 5: Six levels of detail to represent protein interac-
tion. The color of each tile is mapped to the number of
interactions with each tile’s extent. The interaction detail is
maintained by passing the number of particle interactions
down to the next level. The LoD is dynamically updated
based on the camera zoom value.

teraction data in a spatial data structure, there are a
variety of solutions discussed by Samet (2006). How-
ever, the key challenge here is posed by the dynamics
of the simulation. The interaction position of every in-
dividual particle needs to be identified, translated, and
rotated, per time step with the given protein. Another
challenge is that the PLI occurs in a three-dimensional
space represented by an abstract cylinder. A naive so-
lution might require conversion between a cylindrical
coordinate system to a 3D Cartesian system. The con-
version is necessary to map the PLI from/to the cylin-
drical space to a 3D Cartesian space which can be rep-
resented by a quad-tree. We address these challenges
by proposing a fast quadtree-based mapping approach
using the given protein’s local coordinate space. Our
approach eliminates the need for storing the global in-
teraction position of each individual particle or updat-
ing its translation or rotation. Also, it eliminates any
explicit conversion between cylindrical and Cartesian
coordinate systems. See Section 4.6.

We utilize a custom index-based quad-tree (IBQT)
to capture and store the protein-lipid interactions. The
IBQT is designed to accommodate a GPU-based pro-
jection onto each protein’s local cylinder. Because the
PLI is represented with an abstract cylindrical shape,
the local polar system of each protein can be exploited
in the IBQT design. The IBQT is inspired by the
Samet’s sector tree Samet (2006). Samet (2006) dis-
cusses a sector tree structure that utilizes a polar co-
ordinate system to maintain an object’s spatial data
in two dimensions. In the sector tree, the angle of
the intersection between the boundary of the two re-
gions participates in its construction. The common
facet between the sector tree and the IBQT is that in
both angles play a key role in defining a tree structure.
Our IBQT differs from the sector tree in two aspects.

First, our structure is a point-based quad-tree struc-
ture while the sector tree is region-based. Second, our
IBQT encodes a three-dimensional position to repre-
sent a PLI in 3D space. Each IBQT node has a key in-
dex (called a base index). The base index of a node is
used to identify the node with respect to a given LoD.
The node index consists of two components; the first
component encodes the interaction position along the
z axis while the second component encodes the angle
of the interaction. Every interaction node stores the
interaction frequency, a list of particles involved in
the interaction, and the interaction time-step. Figure
6 depicts our IBQT and illustrates the PLI encoding.
The index components are derived from the interac-
tion position by applying the following:

u1 =
h

2LoD−1 (1)

Where h indicates the height of the cylinder used to
represent a protein’s interaction space.

u2 =
2π

2LoD−1 (2)

With respect to a given LoD, Equation 1 calculates
the size of a unit scale that span the z axis while 2
calculates the size of unit scale spanning 2π.

iz = f loor(
z

u1
) (3)

Equation 3 calculates iz which represents the PLI
along the z axis with respect to a given LoD. The fol-
lowing calculates the angular value ixy of the PLI with
respect to a given LoD:

ixy = f loor(
DoublePI(arctangent(y,x))

u2
) (4)

Figure 6: This image illustrates the computation of the
IBQT node’s index. An IBQT node index is encoded on
the GPU by applying Equations 1, 2, 3, 4 to an interaction
position.



The function DoublePI() returns a positive radian ∈
[0,2π], arctangent returns an angle confined to the in-
terval [−π,π] and positive for y > 0. Equations 3 and
4 encode the PLI position into an IBQT node index.
The index consists of two components. The first and
second components are represented by iz and ixy re-
spectively. Finally, we construct the IBQT by utiliz-
ing the derived node index instead of the global in-
teraction coordinates. Figure 6 illustrates process of
encoding the PLI position into IBQT node index. The
following equation is used to find the index of the par-
ent node index (PNIndex) of any given node:

d f =
2LoDmax−1

2LoD−1 (5)

LoDmax indicates the maximum level of detail. The
d f is used to calculate the parent node’s index based
on the first and second components of the given node
index. It ensures that the node index ∈ [0,31].

PNIndex = ( f loor(
iz
d f

)×d f , f loor(
ixy

d f
)×d f ) (6)

For example, let us take a node n from level 6 and let
us say its index is (17,23). We can compute the index
of the parent of node n at level 5 as follows:
The node index at level 6 is given by iz =17 and
ixy =23. First, we compute d f =

25

24 = 2 via Equa-
tion 5. Then Equation 6 can be used to compute the
index of the parent node:
PNIndex= ( f loor( 17

2 )×2, f loor( 23
2 )×2) = (16,22)

4.6 Projecting the Interaction on to the
LoD Protein Space

The interaction mapping process is performed on the
GPU utilizing a geometry shader. The advantage of
this approach is that it is no longer necessary to store,
update, translate or rotate the interaction positions for
every time-step because they are based on the given
protein’s local coordinate system. First we re-
trieve the interaction data from the IBQT using three
parameters: the time step, the LoD and a vector of a
TileData object. The time step and the LoD parame-
ters are used to specify the IBQT query. The TileData
vector returns a list of TileData objects. Each Tile-
Data contains an interaction node index, a molecule
type identifier and interaction frequency. Then, based
on the chosen level, every non-empty node is pro-
jected and visualized by a tile on the surface of the
corresponding abstract protein space. The projection
involves three steps. The first step is to project the left
edge of the interaction node on the surface. The sec-
ond step to identify the right edge of the interaction
before finally forming a tile by constructing a curved,

Figure 7: This image illustrates our GPU-based LoD pro-
jection. A protein interaction space and the index of a non-
empty node are used to construct the associated tile on the
surface of the cylinder. The red and green segments rep-
resent the left and right edges of the interaction node re-
spectively. The blue dotted arrows represent two curves that
connect the left and right edges to construct a tile.

triangular mesh between the two edges. To identify
the left edge, we derive two 3D points from the in-
teraction node index. For a given LoD, we calculate
the zstart and the zend of the left edge of the interaction
node.

zstart = f loat(iz)×u1 (7)

zend =
2Lodmax−1

2LoD ×u1 (8)

The interaction angle is computed and used to con-
struct the interaction normal #»nnn i

iθ =
ixy

2Lodmax−1×2π
(9)

The interaction angle iθ of a node can be computed
by utilizing the node index. For example, given the
node (17, 23). Its interaction angle can be computed
as follows: iθ =

ixy
2Lodmax−1×2π

= 23
32×2π

= 0.11439 Rad.
The #»nnn i components are computed as:

#»nnn i(x) = cos(iθ)× #»xxx x + sin(iθ)× #»yyy x (10)
#»nnn i(y) = cos(iθ)× #»xxx y + sin(iθ)× #»yyy y (11)
#»nnn i(z) = cos(iθ)× #»xxx z + sin(iθ)× #»yyy z (12)

Where #»xxx and #»yyy are the eigenvectors in the x-direction
and y-direction of the protein interaction space re-
spectively. The zstart , the zend and #»nnn i, then, can be
used to find the left edge start and end points:

is = sCoM +(zmin× #»zzz )+(zstart × #»zzz )+ rrr× #»nnn i (13)

ie = sCoM +(zmin× #»zzz )+(zend× #»zzz )+ rrr× #»nnn i (14)

Where zmin is the min z value of the cylinder. The
terms sCoM and rrr are the center of mass and the radius
of the abstract protein space respectively and #»zzz is the



eigenvector in the z direction of the protein interaction
space.

Similarly, we can obtain the starting and ending
points of right edge by adding the tile segment count
to the second component and apply Equations 13 and
14. See Figure 7.

5 EXPERIMENTAL RESULTS
AND DOMAIN EXPERT
FEEDBACK

The new visual design enables the user to investigate
the system and obtain insight into the PLI. See the ac-
companying video for further visualization results at:
https://youtu.be/VTh-IOk7hWo
Figure 9 shows three different LoD representations
for the PLI. The top image depicts lipid particles and
a PLI space at high LoD (LoD 6). The visualization at
this resolution reveals more PLI detail. i.e., each tile
represents the number of PLI that take place within
its extent. The middle image shows lipid particles and
PLI at LoD 4. The PLI frequencies are spatially ag-
gregated. The user can easily observe regions that re-
ceive the highest number of interactions. The bottom
image shows lipid particle and PLI space at low LoD.
This visualization is useful for an overview. It can
guide users to identify proteins that receive the high-
est frequency of interaction for further investigation.
Color Map Schemes and Adjusting the Color Map
Legend: We provide the user with two-color maps.
A continuous color map based on Telea (2014) and a
categorised color map using Color Brewer Harrower
and Brewer (2003). The PLI frequency is mapped
to the selected color schema. However, the PLI
histogram shows an uneven distribution which leads
some colors to dominate. A naive approach to address
this challenge is to clamp and rearrange the underly-
ing data to obtain a better color distribution. However,

Figure 8: PLI filtering and color map steering. The left im-
age shows no filtering and no modification to the color map
algorithm. The middle image shows highest frequency PLI
using the filtering slider. The right image shows the effect of
steering the underlying map to enhance color distribution.

Figure 9: Three LoD PLI representations. PLI frequency is
mapped to color. From top to bottom, PLI at high resolu-
tion, medium resolution, and low resolution. Lipid particles
are green and brown. Blue spheres indicate lipid interaction
particles.

this method might result in a mapping error for data
that lay outside the lower and upper boundaries. We
address this challenge by enabling the user to adjust
the color map’s underlying look-up table. The user
can control the color map’s look-up table through a
range slider to obtain more color distribution. The
right image in Figure 8 shows an example of using
the color map slider.
PLI Frequency to Tile Height: A three-dimension

https://youtu.be/VTh-IOk7hWo


histogram can enhance the visualization. The height
of the histogram encodes a property to emphasize it.
We enable the user to map the PLI frequency to the
tile height. Figure 10 depicts the PLI by a simple his-
togram by mapping the PLI frequency to tile height.
PLI Space Cluttering Reduction: When two or
more protein spaces intersect each other, they cause
visual cluttering. The user may reduce cluttering by
either omitting the back face of a protein cylinder or
rendering the cylinder lids.
Lipid Type and Protein Selection and Filtering:
Three types of molecules are involved in the PLI. The
PLI molecule filter enables the user to focus on one
or more molecule types. Applying the PLI molecule
filter on one or more molecule types showing only the
PLI of the selected types. The user also can filter the
PLI based on the PLI frequency. The PLI frequency
filter accepts a range of values between the PLI min
and max of the current histogram data.
Focus-and-Context: We apply the focus-and-context
technique to reduce visual complexity. It can re-
sult in more detailed visualization, especially for an
overview. See the accompanying video for a demon-
stration.

Domain Expert Feedback The following is feed-
back from a domain expert in computational biology
with whom we have collaborated since 2014. “This
new representation is particularly useful to better un-
derstand the fine interactions in between lipids and
membrane proteins in very large membrane models.
These models are constituted by millions of particles
composing thousands of lipids and hundreds of pro-
teins. These systems are very complex to understand
especially if we only visualize them without filtering.
Even with some filters (removing some molecules,
changing the representation of the proteins), it is still
almost impossible for a user to interactively under-
stand how lipids may transiently interact with pro-
teins. Thanks to the new visualization, the user can
zoom on a protein and easily understand how (and
which) lipids can create contact with this protein.
This is possible thanks to the combination of LoD and
the new PLI visualization. Mapping the interactions
onto a cylinder also helps the user to identify areas
where the lipid may preferentially interact with the
protein just by visualizing the trajectory. Without this
visualization, lipid-protein interaction analysis neces-
sitates long post-processing treatments which give,
in general, only a final averaged view. The filter-
ing based on the number of interactions is helping
the user to focus on the important proteins. To this
expert’s knowledge, this feature is unique and has
never been available in any other molecular viewer

Figure 10: (Left) the number of protein-lipid interactions is
mapped to color. (Right) the same data map to the height of
the tiled interaction cylinder.

program. Thus, this new depiction helps considerably
the users to understand their models and gives new
clues to better analyze them. This new representation
is also clear enough to be used directly as a figure for
publications in a scientific article.”

6 CONCLUSIONS AND FUTURE
WORK

We describe an abstract protein space in the context
of membrane protein-lipid interaction and we propose
six levels of detail for both lipid types and the PLI ab-
stract space. The visual design of the abstract space
simplifies the PLI challenge and helps users obtain in-
sight into the PLI. The LoD lipid representations re-
duce clutter caused by lipid particles. The LoD PLI
space representations enable users to investigate the
PLI space at the desired LoD. We also introduce a
number of useful user options to aid the PLI visual-
ization.

In future work, we aim to focus more on analysis.
Discrete abstract rings can be employed to visualize
protein deformation. Properties of cylinder shape can
be exploited to map the PLI from a cylinder onto a
2D plane. Visual analytic techniques can be applied
to 2D PLI results to understand the relation between
residues and particles involved in the interaction.
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