Dynamic Choropleth Maps - Using Amalgamation
to Increase Area Perceivability

Liam McNabb

Robert S. Laramee

Richard Fry

Visual & Interactive Computing Group Visual & Interactive Computing Group National Centre for Population Health

Swansea University
Swansea, Wales

661370@swansea.ac.uk

Abstract—Choropleths are a common and useful way of
depicting area-coupled data on a geo-spatial map. One advantage
they provide is combining area-based data accurately with geo-
space. However perceptual problems arise when areas are too
small, i.e when they only cover a few pixels or less. This is a very
common occurrence when zooming or in densely populated areas
like capital cities. We present a novel algorithm that ensures the
user is able to observe area-based data coupled to geo-space based
on their interactive level of zoom without distorting the original
geo-spatial map. This is resolved by building a hierarchical data
structure in which each area and its data is merged with one of
its smallest neighbor recursively until only one polygon covers
each contiguous region. The benefits are that the viewer can
always view area-based data contained in the map regardless
of how small any individual area becomes during interactive
zooming. We break down each step of the algorithm and provide
pseudo-code to enable reproducibility. We also discuss unique test
cases that challenge the robustness of the algorithm with 30,000
polygons and 4,652,800 vertices as well as the performance.

Index Terms—Information Visualization, Choropleth Maps,
Cartographic Generalization, Hierarchical, Zooming, Perceivabil-
ity, Geospatial

I. INTRODUCTION

Choropleth maps can be defined as displays where data is
aggregated using administrative units and normalized values
[33]]. Choropleths are ubiquitous for conveying area-based data
on a geo-spatial map because they are intuitive and preserve
geo-spatial information. However, because they do not distort
geospatial boundaries, areas may be too small to perceive
any data (see Figure [)). This is especially true in the context
of zooming where an area may not even cover a full pixel.
Area-based data is often too dense to perceive in capital city
regions. Ward et al. state, ”A problem of choropleth maps is that
the most interesting values are often concentrated in densely
populated areas with small and barely visible polygons, and
less interesting values are spread out over sparsely populated
areas with large and visually dominating polygons™ [51].

We focus on maintaining perceivable areas without map
distortions by developing an area-merge algorithm that provides
a user-controlled parameter, m, to display area units or area
unit clusters that meet a minimum screen-space requirement.
Rao and Card define such an adjust operation as “...change
the amount of contents viewed within the focus area without

Swansea University
Swansea, Wales

r.s.laramee @swansea.ac.uk

and Wellbeing Research, Medical School
Swansea University
Swansea, Wales
r.j.fry @swansea.ac.uk

changing the size of focus area” [36]]. By introducing a
hierarchical representation of the choropleth, we can update
the display quickly and enable changes to the level of detail for
the best visual experience. We call this a dynamic choropleth
map. Our zooming is smooth and continuous. By this we
mean there are no jumps, distortions, or disruptions during
the zooming. The level of detail changes dynamically and
interactively without distorting the geometry. Changes in zoom
level must be smooth and not rely on distortion of the geo-space
or any areas contained within.
Our contributions include:

« A novel algorithm to interactively zoom smoothly, pro-
viding appropriate and perceivable levels of detail for
choropleth maps.

« Providing a set of pseudo-code to enable reproducibility
of the method.

o The application of our algorithm to complex, real-world
shapefiles including those with over 10,000 unit areas and
over 4.5 million vertices.

To provide this functionality, challenges must be overcome
including developing an algorithm that detects when unit areas
become too small, joining boundaries, building an appropriate
area hierarchy, and zooming dynamically and continuously
whilst preserving the traditional choropleth properties.

In Section [l we review previous work on interactive
zooming and choropleth maps. Section discusses the
proposed methodology of the algorithm, a general overview
of the procedure and the individual steps required. Section
discusses results and performance including benefits and
limitations. Section looks at potential future work and
conclusions.

II. RELATED WORK

We examine three main branches of related work which
include zooming, choropleth maps, and cartographic general-
ization. The Survey of Surveys for information visualization
[32] identifies one related survey paper on clutter reduction, no
related surveys on the topic of choropleths or surveys focused
on geo-spatial zooming, and one survey focused on hierarchical
aggregation [|18]]. Ellis and Dix provide a taxonomy of clutter
reduction for information visualization and review 11 clutter

Pre-Processing Run-Time

Build Area Tree Render Areas

Order Identify Sort Unit- Select Create Update " elect
- > Contiguous > Areas by » | Neighbor —» Parent —» Listwith Displayed
Vertices ? : A ; ;
Regions Size ! for Merging Area New Parent H Areas
A] [P S

While (Areas > 1)

Fig. 1: The pipeline for the area amalgamation algorithm. After loading the shapefile, polygons are partitioned based on area contiguity, and sorted within
islands (or land masses) based on their size. A recursive function is then used to identify new parent areas and their boundaries until their are no remaining

neighbors to merge. See section [III] for details.

reduction techniques including clustering, space-filling, and
animation [17]).

A. Zooming

Cockburn et al. review pan+zoom used in over 15 research
papers, and examine overview+detail, zoom, and focus+context
[13]. Rao and Card discuss the use of zooming for tabular
information in the context of interactive manipulation of focus
(zoom, adjust, and slide) [|36]]. We require that the view and
geometry are not distorted in any way in our work. Jog and
Shneiderman present the zoom bar and introduce a zooming
approach based on zooming towards a fixed line within a
starfield visualization [26]. This differs from our work that
focuses on choropleths. Van Wijk and Nuij provide an algorithm
for smooth and efficient zooming across 2D planes [47]]
and extend on this idea by looking at non-uniform scaling
between two planes [52]]. They derive an optimal camera
path for smooth zooming and panning. This is likely the
previous work most similar to ours. Their work does not
consider regions that may be too small to perceive which
differs from our work. Also the choropleth map is dynamic
in our case. Javed et al. present a zooming technique titled
PolyZoom where a user progressively builds a hierarchy of
focus regions to zoom between [24]. Polyzoom focuses on
different scales of maps separately whereas we endeavor to
provide a continuous zooming method. Axelsson et al. tackle
challenges addressing visualization between large scales of
information for astronomical data using scale scene graphs [4]
which differs from our work that focuses on a single scene that
must be smooth and continuous. Google Maps provides a map
of the earth which enables the user to zoom on user-selected
areas. Moving between zooming levels comes with sudden,
discontinuous transitions between levels of detail which we
avoid [22]]. Both Akelsson et al. and Google Maps process
image data broken up into rectangular tiles. Our algorithm
processes original unit areas and handles geo-spatial boundaries
composed of vertices and edges.

Blanch and Lecolinet provide zoomable treemaps that pan
and snap-zoom between different levels within a tree map
[6]]. Roberts et al. extend Van Wijk and Nuij’s zooming work
applying their smooth zooming algorithm to tree maps, and
combine this with a smooth transition between levels of detail
[39]. Our work differs from Roberts et al. as our approach
maintains a smooth and continuous transition between zoom

levels, and selects what to display based the zoom level and
a user-specified parameter. In addition, our work handles
much more complex area-unit boundaries because it processes
choropleths.

B. Choropleths

Digital choropleth maps have been produced prior to 1970
with the U.S Department of Commerce citing 10 choropleth
mapping systems [I]]. From our related work literature search
we find previous work on choropleths focus on class intervals
(or systems) rather than zooming. A class is defined as a
mutually exclusive and non-overlapping set of grouped data
whilst a class interval is defined as the selected width (or
range of data) of each class [23]]. Tobler questions the use of
class intervals within choropleth maps by reviewing the use
of inked area vs. white area to display values [46]]. Brewer
and Pickle provide a qualitative study on class intervals for
choropleth maps comparing seven different methods [[10].
Zhang and Maciejewski detect critical boundary cases within
choropleth maps where statistical measures fall near the selected
classification bounds [54]. This informs them of optimal
selection of class intervals for data representation. Pickle
presents a guideline for map design including color selection,
legend design and smooth transition between color within area-
units [35]]. Slocum et al. provide a full chapter on Choropleth
Mapping which includes 58 references [41]] spanning 1957
[43] to 2006 [3]]. They discuss decision-making behind classed
and un-classed maps, appropriate color schemes, and designing
the legend of the map [41]. Dykes and Brunsdon introduce
new techniques for geographically weighted visualization using
scalograms [|16]. Each of these papers places emphasis on class
intervals, whilst our paper focuses on perceivable individual
areas on a dynamic map.

Andrienko and Andrienko briefly survey the overall spatial
distribution of data with diverging color scales in choropleth
maps, and provide an example of animated choropleth map
displays with small multiples [2]. We do not review color
scales or the use of temporal data in choropleth maps.

Jern et al. use linked views to observe regional development
data using both a choropleth map and tree map [25]. Our
paper focuses on adding a new dynamic feature to choropleth
maps rather than combining them with other techniques. Dang
et al. present a generalized map-based information tool for
dynamic queries and brushing on choropleth maps [[14]]. Our

Before After

"y

%

Fig. 2: Example of the procedure applied to Wales [50]. The left image shows the original image with over 10,000 output areas having 4,652,800 vertices
[49], where we can see a dense clutter of indistinguishable areas in the south-east section. The right images shows the effects of the procedure at two different
zoom levels (indicated by the red box), where m is 2%. Areas are color-mapped using colorbrewer color palette [9].

work focuses on zooming rather than brushing. Li and Han look
at applying the Lorenz curve to choropleth mapping to identify
numerical trends [29]]. We focus on user perceivability rather
than new trends in data. Johansson et al. present a web-based
visualization tool that combines the use of choropleth maps
with dashboard functionality in order to review multifaceted
information on climate change and adaption measures [27].
We focus on perceivability of unit areas, rather than the use
of a choropleth map for climate change data. Speckmann and
Verbeek present necklace maps which present choropleth maps
with juxtaposed proportional symbol maps that allow the user
to understand size data without distorting the topological view
[48]]. We develop interactive, smooth zooming in order address
similar issues.

Rittschof and Kulhavy present a user-study which includes
a comparison of choropleth maps and cartograms. Cartograms
are a different class of related work considering a wide range
of techniques (Gastner-Newman [21]], Dorling [15], etc.) which
use distortion to convey data. We want to avoid introducing
geo-spatial error into the map in our technique. Their results
found choropleth maps were associated with greater recall of
information [38]]. Kasper review the effectiveness of Gastner-
Newman diffusion cartograms [21]] for the representation of
population data, which includes a comparative experiment
against thematic maps (choropleth with overlayed circle maps).
The results report that the thematic maps are more efficient
and effective, specifically with complex tasks [28]. Sun and Li
review the effectiveness of cartograms for the representation of
spatial data, which includes a comparative experiment against
thematic maps including choropleths. The results indicate that
the thematic maps are more effective representing quantitative
data, whilst cartograms were more effective with qualitative
data [44].

To the best of our knowledge, no previous work focuses on
dynamic and continuous zooming of choropleth maps while
maintaining perceivable area units without distortion.

C. Cartographic Generalization

Slocum et al. provide a full chapter on Cartographic scale and
generalization [41]. The chapter defines generalization as: “the
process of reducing the the information content of maps because
of scale change, map purpose, intended audience, and/or
technical constraints”, and reviews models of generalization
include the models of Robin et al. [40] and McMaster and
Shea [31]]. Slocum et al. define the fundamental operations
of generalization as simplification, smoothing, aggregation,
amalgamation, collapse, merging, refinement, exaggeration,
enhancement, and displacement. Our algorithm uses recursive
amalgamation on a per-area basis.

Elmqvist and Fekete provide a survey on hierarchical
aggregation for information visualization [[18]]. The survey only
provides one spatial aggregation techniques by Andrienko and
Andrienko (discussed below). Andrienko and Andrienko briefly
discuss aggregation with earthquake occurrences in Turkey
[2]. They use a density map to aggregate the occurrences per
rectangular grid cell. Andrienko and Andrienko’s generalization
approach looks at point data, whilst we focus on areas. Zhang et
al. present a novel visualization technique titled *TopoGroups’
[53]] used to group spatial data into hierarchical clusters to
minimize visual clutter. Boundaries are used to present data
topics as a stipple line, where the ratio of a stipple represent
that of the data. We focus on polygon unification rather than
point data.

Regnauld and Revell discuss their automatic amalgamation
method used in producing the ordnance survey’s scale maps
[37]. The paper uses a number of generalization techniques to
select clusters (triangulation, proximity, and edge filtering) and
manipulate the clusters to give a visually clear representation
of amalgamated buildings. Our paper looks at areas rather
than buildings and is used for only contiguous areas. Li et
al. review amalgamation of buildings based on the Gestalt
principles of design [30] which include separation, length,
and area thresholds as well as similarities in shape, size and
orientation. Our amalgamation technique does not allow for
any separation and unites two areas instead.

III. METHODOLOGY

We begin with an overview of our methodology before
discussing each step in detail. The algorithm is based on the
premise that each area, starting with the unit areas, can be
merged with its closest neighbor from smallest to largest to
create a smooth and continuous transition for perceptible areas.

A. Method Overview

In order to effectively enable smooth and continuous zoom-
ing at run-time, we use pre-processing. We build a hierarchical
data structure before displaying the choropleth. For this we
have created a pre-processing pipeline shown in Figure [T We
first load each unit area represented by a polygon, p. A polygon
p is a list of vertices: p = {vo,...,v,}. We then update the
order of each unit-area’s list of vertices to ensure that they
are in clockwise order. The next step is to identify contiguous
regions. Here we separate contiguous regions into islands (or
land masses) which enforces topological continuity. Once each
contiguous region is identified, each unit-area within the same
contiguous region is sorted by size since scale is an important
part of the algorithm. It is more efficient to sort before building
the hierarchical data structure.

The hierarchy construction is a recursive algorithm broken
down into three sub-routines. As the regions are pre-sorted from
smallest to largest, we know the first area merge candidate
(p1) is at the front. We must then find the second merge
candidate (p») by selecting one of p;’s neighbors using a
distance function. When we have found a merge pair (p1, p2)
we identify both the shared (b;) and non-shared (b,s) boundary
of each, and combine such that p; and p, unite using only
their shared boundary to create a new area P.

P=(p1Upz)—(p1Np2) (1
This is stored as a parent in the hierarchical data structure.
When this is done, we can then remove the p; and p, from the
merge candidates list and insert the new parent P into the list
preserving sorted order (by size). When there are no remaining
neighbor candidates, the hierarchy is complete. When this
is done for each contiguous region, we have the necessary
hierarchical data structures for smooth zooming and clustering.

With the hierarchies built, display is relatively simple. By
specifying a desired minimum screen space, m, using the
current zoom level and comparing that to each tree node’s
size using a depth-first search (DFS) in the hierarchy, we can
select the appropriate polygons to display. An example of the
results can be found in Figures [2] and [

B. Order Area Polygon Vertices

Our first step is to order the original vertex data from the
shape file. This is important in order to reduce complexities
in later stages. It allows us to simplify the identification of
and unification of boundaries (p; U p»). For this we use the
shoelace formula (also known as Gauss’s Area Formula or

® O @
°°°

L, = A C
I, =B

O

I, 5 A
I, > B

Ip >ABCD

Fig. 3: Visual example of the contiguous regions procedure. This shows how
a potential contiguous region can be derived over three steps. See Section

g

Surveyor’s Formula), which allows us to derive both the area
(useful for later) and the orientation []].

n—1 n—1
a= % Zixiym +Xay1 — Zixi+1yi — X1 Yn 2

= 1=

The notation x and y refer to the coordinates of each vertex

and n refers to the number of vertices in p. If we remove the
absolute value, we can deduce that if the area is negative, the
vertex list is counter-clockwise, and we can reverse the list
order. Unit-area’s with multiple contiguous regions are also
split up to enforce topological continuity. We process these
islands (or land masses) as individual areas. We must also
test for uncommon inner rings or any other vertices related
to the shape. These can be saved in a separate list to aid
in rendering, however these must also be searched during
boundary processing, as a ring found in unit-areas is usually
formed as a result of a fully surrounded unit-area. In our Wales
example (Figure [2) we find 31 instances of inner rings out of
30,000 polygons.

C. Identifying Adjacent Neighbors & Contiguous Regions

After ordering each unit-area’s vertex lists, we can identify
the contiguous regions. This is important for us in order
to prevent a merge of two islands. The most important
consideration is identifying what is classified as a neighbor.
We provide pseudo-code for this in Algorithm 1 in the
Supplementary Material (refer to Section [V).

We first test p; and p;’s bounding boxes for overlap. By
comparing Axis Aligned Bounding Boxes (AABB’s) which use
the maximum and minimum values for each axis of the areas
p1 and p> [19], we ensure the in-depth neighbor checking is
applied to as few areas as possible.

If p; and py’s AABB intersect, we test their vertex lists for
common points. Algorithm 1 in the Supplementary Material
(refer to Section [V)) uses a simpler approach where we assume
that all points have a matching point in a neighbor’s vertex
list. If areas with long straight edges (like some US states)
are used to define unit-areas, we find cases where we need
to use a second test to identify whether a point intersects
a boundary edge (examples of this include T-junctions). We
define neighbors as two polygons with at least two unique
common vertices. We do not consider one common vertex as a
boundary edge. The start and end of a shared boundary b; must

Unit Areas on Standard Choropleth Map

With Smooth and Continous Zooming

Fig. 4: A comparison between a shape file representing France with over 30,000 administrative units and 729,565 vertices before and after the implementation
of smooth zooming at 3 different levels of zoom, with minimum required screen space (m) of 1%. Mapped colors from colorbrewer color palette [EI]

also be considered the end and start of a non-shared boundary
bys to enforce topological continuity of the unit areas.

Now that we can identify adjacent neighbors, we identify
the contiguous regions. Pseudo-code is provided in Algorithm
2 in the Supplementary Material (refer to Section [V). We
assume that our first unit-area is an island and test this against
every other island. If an island contains a neighboring unit-area,
we know that every other region on that island is also linked.
Knowing this, we can merge the two polygon lists and continue
our search. See Figure [3] It is important that we do not finish
the search here as our new unit-area may connect multiple
islands together. Once this is done for each unit-area, we have
identified each contiguous region and each of these can be
sorted based on their size. Figure [3] provides an example of
the procedure, whilst Figure 2 in the Supplementary Material
(refer to Section [V)) shows a visual result of this step.

D. Building the Hierarchical Data Structure

We use a recursive procedure to create a hierarchical data
structure. A hierarchy is created for each contiguous region,
where each area (p;) is merged with it’s closest neighbor
(p2). Distance is measured using a general and flexible metric
described in Section [[lI-E] We start with a merge candidate list
filled with the sorted unit-areas (for one contiguous region).
The list is sorted by size. As mentioned in Section [[II-A] there
are three main sub-routines: neighbor selection, creating the
parent area (P), and updating the merge candidate list. If only a
single unit-area remains in the merge candidate list, no further
merges can be processed and we have finished the procedure.
Here we denote p; as the first area merge candidate, p, as the
second merge candidate and parent P (Equation [I)).

E. Boundary Neighbor Selection & Amalgamation Criteria

In order to select an appropriate neighbor to join, we use a
general and flexible distance metric for amalgamation evaluated
between neighboring areas. We use this to measure a distance
where the closest distance is considered the optimal selection
for a neighbor. The measure consists of four constituents:
Smallest area (a), euclidean distance between centroids (d),
value variance (o), and shared boundary resolution (by). We
formulate the measure as:

a

by
+wp(1=———) (3)

Smax

D=w,. +wy.

+wgy.
Amax Ainax

max

The distance metric includes weight co-efficients which
enable the user to customize the importance (w) of each criteria
as an option, with a default weight 0.5 for a, and a % weight
for d, o, and b,. We define the criteria as:

« Smallest area (a). The criteria tests the size of a neighbor.
Searching for small areas is the primary objective of the
procedure and it is therefore important to take this into
account during the distance measure. By doing this we
reduce the number of small areas at a faster rate. We
discuss how the area is calculated in detail in Section
(Equation [2). amay is considered the area of the
canvas’ bounding box.

o Euclidean distance (d). This represents the shortest dis-
tance between two centroids. By taking the distance
between centroids into account, we can enable more
natural polygon formations to form. To calculate this
we can use (v/(|p1(cx) — pa(cx))2+ (Ip1(ey) = pa(ey))?)
The term d,,,, is the largest distance between all centroids.

o Data Value Similarity (). Data is an important aspect
of cartography and is considered when agglomerating
areas. In order to factor it in the distance metric we
look at the variance between the values of p; and p»
(Ip1(et) = pa(&t)]). Quuay is the largest data value in the
data range.

« Shared Boundary Resolution (by). Unlike the other crite-
rion, we favor a larger shared boundary resolution. The
shared boundary resolution refers to the topological length
of a shared boundary, where a larger shared boundary
defines a closer unification between two areas. This is
calculated by running our merge algorithms early (refer
to Section [[TI-F for more detail) and normalizing it over
the largest resolution area in the tree (b;,,,.). Once this is
done, we subtract the normalized value from 1 to impose
a stronger weight for larger shared boundaries.

Using these criteria, we can select an optimal amalgamation
candidate. We also provide the user the freedom to modify the
criteria by using weighted coefficients. These can be modified
after the procedure has been completed. This is a general and
flexible distance metric because the distance metric itself is
not a focus of the paper. Many such metrics have been studied

in great detail [18]).

Vertices;
Non-shared
Shared @

o

vy vy V3
\ A
Vo v3 — vy form by of py. vg —vio and
V. vo —v2 form b, which is used to
P1 s P2 !
define the boundary of p; and p>’s
Vio Ve parent.
Vg Vg V7
vy Vg Vg
Vio -
V! / vo — v and vg —vyo are joined to
® P1 Vo P2 form 'b.\. Qf p1. v3 —vg form by,
which is used to define the
Vs Vi boundary of p; and p,’s parent.
A V3 vy
Vy Vo V3
v3 — vy and ve —v7 form b of p;.
\4 vy vg — vio and vy — v, form by
Vo / which is used to define the
@ P1 Vs P2 boundary of p; and p»’s parent. vs
il Ve is a vertex le,fl b}{ a previous merge
from p;’s children. This is
considered a T-junction.
Vg Vg V7
Vy Vo V3
\2 vz — vy and v —vg form by of py.
Vo' Vs 4 vg — vy and vo — v, form b,
which is used to define the
® P1 Ve P2 ,
boundary of p; and p;’s parent. vs
Vi1 \Z is a vertex found within a by and
creates a void.
Vip Vo Vg
vy Vs V3
A vz —vy4 and v7 —vg form by of py.
Vo' Vs vg —vy1 and vo — v, form b,y which
@ Py P> is used to define the boundary of
Ve p1 and p;’s parent. vs — v is a by,
Vi1 vy found within b, and can represent
a river or a fissure between areas.
Vie Vo Vg

Fig. 5: Different cases for bs and b, identification. Case 1 displays the basic
case where a whole boundary is found in contiguous order. Case 2 provides a
contiguous order, but is split due to the location of p;’s vertex list start index.
Case 3 displays a T-junction which splits by into two segments. This could be
resolved by point-line intersection testing. Case 4 and 5 represent voids and
fissures which cannot be resolved by point-line intersection, with the fissure
having a possible size of bs.length —2. We look at the length of common
vertex chains to determine the start and end of by detailed in Section

E. Creating Parent Area

Creating P includes 3 steps: (1) identify b and b, of each
area’s merge pair, (2) combining b, of the p; and p, for the
boundary of the parent area P, (3) linking p; and p;, to P for
use in the rendering stage.

There are configurations which can cause unexpected chal-
lenges with the boundary identification. Firstly, the vertex list
of each area is ordered but there is no given information about
shared boundaries. This means that by can be found at any
point within a vertex list, and can also start at any point with a
vertex list. If our boundary search starts on b, and we search
the vertices in clockwise order, as in case 1 of Figure E], we
can assume that the first common vertex is the boundary start.
This is not the case for a first vertex found on by. In order

to render the boundary correctly, we must not only identify
bs but also identify the start and end points of the boundary.
Figure E] illustrates various cases identified for by identification
between two neighboring areas p; and p».

Due to voids and fissures representing by rivers or other
geographical features, finding the start and end points of by
can become complicated even when testing the entire vertex
list. For example, if a vertex list begins on b, that includes
a fissure of n vertices, the selection of the b’ beginning and
end indexes becomes less obvious.

We provide our boundary identification process in Algo-
rithm’s 3 and 4 in the Supplementary Material (refer to Section
which identify the start and end vertices of b;. Firstly, we
search and identify every common vertex between the area
neighbors. As discussed in Section we assume that every
common vertex has a matching vertex in their neighbor’s vertex
list, whilst shape files with simpler boundaries may need an
additional point to line intersection test (T-junctions). From
these vertices we can identify the beginning and end indexes of
bs (a common boundary between p; and p») by looking at the
length of each common vertex chain. We use a heuristic that
any voids and fissures found on by will be smaller in length
compared to b, and therefore the longest chain between two
common vertices signifies the chain between the end and the
start of b,. Figure [5] provides a visual presentation of boundary
identification on some test cases encountered. This method
handles cases with voids and fissures between neighboring
polygons, as well as complications that can be caused by the
T-junctions that may arise. For our Wales example in Figure
with over 10,000 unit areas (over 20,000 merges) and 4.5
million vertices we found 11,112 individual error cases caused
by voids, fissures, and T-junctions. This means a non-trivial
case is found in over 55% of the merges between p; and p;.

Knowing by’s start and end indexes, we can easily separate
the boundaries into b; and b,;. We can then combine the b,
of an p; and p; in clockwise order to create the new parent
area P. Once P’s vertex list is updated, we create pointers
that enable P to find it’s children. This is important to enable
traversal and selection within the hierarchical data structure.
Algorithm’s 3 and 4 in the Supplementary Material (refer to
Section [V) detail this process.

G. Updating the Sorted List with the Parent

We update the list preserving the sorted areas. We first
remove the p; and p, from our merge candidates list as each
area can only be merged with one other area. Then we can
insert P into the list in sorted position based on its size. The
procedure for building the hierarchical structure is found in
Algorithm 5 in the Supplementary Material (refer to Section

V).
H. Selecting Visible Boundaries

We select visible areas and boundaries based on a minimum
area requirement, m, relative to the current screen space. As
the screen space coverage changes based on the movement of
the dynamic zoom level, we render different areas based on

R 3 5
— q*‘;!;'-i.l'ﬁ'-‘ Gl WY g . m i[-‘-- y
g L ST S % ad b
R % £ 2 g T T
e Ak i w =8
SR Ry =

(a) Sum

(b) Frequency

(c) Average

Fig. 6: 1 value-set displayed using 3 different base-calculation types using US counties (m=0.3%). (a) Represents using the sum to calculate the new values
(sums). (b) Uses the highest frequency to represent values (qualitative data). (c) Uses the average of the value from all leaf nodes. See Section m

Displayed Boundaries []
Under Required Area []

Fig. 7: An example of areas being selected and rendered. An area is only
rendered if one or both child nodes are smaller than the minimum area
requirement, m. Otherwise, perform a depth-first search until a leaf node is
identified. In this example, I, A+B+C, H, D+E, & F+G are selected to be
rendered. See Section @

a zoom level and area size. The DFS identifies the smallest
nodes in the tree that meet the minimum area size requirement.
If any parent node is larger than the m, we test two criteria.
(1) If the area is a leaf node, we can render the current node.
(2) If either the left child or right child is smaller than m, then
the current parent area is the smallest unit that meets the area
requirement and is rendered. Completing the DFS will render
only the smallest area within each branch that is larger than m.
An illustrated example of this search can be found in Figure [7}

I. Storing Values of Amalgamated Areas

The Modifiable Areal Unit Problem (MAUP) [34] is an
important aspect to consider when discussing the modification
of boundaries or values. We address this by providing the user
options to modify calculation of aggregated values as well as
the weighted distance metric discussed in Section [[lI-E} The
data is linked to the administrative areas during the initial
loading of the shape files. Before the area tree is built, the user
can select the type of value amalgamation. This enables the
user to choose options of sums, qualitative frequencies, and
averages. When amalgamating values using sums, the value
of P can be calculated as P(at) = p; (o) + p2(cr). Qualitative
values are calculated using frequencies. Using a DFS, P can

count the frequency of each value for each leaf node and
use the value of the most frequent of the leaf nodes. This is
useful for categorical data. The average and weighted average
can also be calculated using a DFS, by calculating the sum,
Pla) =Y=¢ ’;) ’]’l((g)) , where p; denotes a leaf node in the tree.
Examples are shown in Figure [6]

As well as these value criteria, these can be normalized at
the rendering stage. Some examples of these normalization

techniques include area (f,((j))), population (%), as well as

any ratio (%).

Although the normalization can be turned on and off after
the area tree is built. In order to change value representations,
the build area tree procedure is re-run.

IV. RESULTS AND PERFORMANCE

The desktop used to test this implementation features an
Intel i5-4460 at 3.2GHz with 16GB of RAM and a GeForce
GTX960. The implementation is developed using the Linux
Mint 18 environment and the C++ framework of Qt. The
software uses the Geospatial Data Abstraction Library to read
the Shape File’s unit-area information [45] and the OpenGL
library to render the results.

We test 5 different shape files of varying resolution including
US Counties, Japan, Italy, Wales and Germany found using
the Global Administrative Areas website [20]. There is a large
variance in the number of areas, average number of vertices,
total contiguous regions, and coordinate space range. We know
of no closely related previous algorithm that we can compare
performance with. See Figures [to 0] for results imagery. See
the accompanying video for more dynamic results.

The performance is not only reliant on number of unit area’s
but also the complexity of unit areas, and the total number
of contiguous regions. A summary is found in Figure [§] Pre-
processing can require a few minutes however it’s only a
one-time cost.

We found that different shape files for the same region
would garner inconsistent topologies, which even includes
the contiguity of the unit-areas. This makes it impossible to
compare our fully merged areas to already existing shape files
as a way of testing the topology preserving nature of our
implementation.

V. SUPPLEMENTARY MATERIAL

We include a variety of supplementary material including
additional images, the referenced pseudo-code is also included

US Counties 3,134 51,891 16.56 30
Japan 3,223 869,386 269.744 21
Italy 8,946 966,206 108.004 9
Wales 10,355 4,652,800 449.32 5
Germany 12,416 1,934,800 155.779 6
France 37,227 729,556 19.597 4

Fig. 8: The results of performance. We present some attributes of each shape
file, performance times broken into separate sections of the procedure, and
the average FPS. The FPS is set to a minimum required screen space of 5%
for polygon rendering.

to allow the user a more fundamental understanding of the
procedures we discussed This can be found at: https://bit.ly/
2GGCe6v. Finally, we present a short video discussing the
paper in audio-visual format which can be found at: https!
/Ivimeo.com/263507801. For the purpose of this paper, we use
GADM, as well as United Stated Census Data [11]], [20] to
test our algorithm. In our video presentation, we use data to
present the value calculation aspect of our algorithm found
at the United Stated Census Data, and Office for National
Statistics [12]], [42]].

VI. FUTURE WORK & LIMITATIONS

There are many avenues for future work. Although we
use real unit-areas, we would like to test with a wider
range of choropleth data. The algorithm still has performance
optimizations which could accelerate the speed even further,
such as schematization [|5] which could be used to enable
better optimization with topological continuity being reduced.
Other existing formats such as TopoJSON [7] look at reducing
geometry redundancy and could be a good subsequent format
for the procedure. We can also continue with the idea of
pre-processing by adding ways to improve performance on
a second pass-through such as saving build instructions to
reduce calculation of neighbor and boundaries. We worked
with 2D coordinate-spaces. A 3D coordinate space would be
an interesting direction to take the the algorithm and could
open new applications. The algorithm potentially can apply to
any data-sets with geometric boundaries and is open to new
data-structures. We can also test the usability by providing user
studies on the minimum perceivable screen space using the
algorithm.

VII. CONCLUSION

We introduce a novel method of smooth and continuous
zooming by exploiting a hierarchical data structure to merge
areas based on their sizes and shared boundary. The shared
boundary is found by first comparing the vertex list of two
neighboring areas and finding the longest vertex chain between
common vertices. We then render only the perceivable areas
or area clusters based on the current zoom level and screen

space. This method of rendering improves perceptability whilst
still providing an understanding of the underlying data without
distorting the map. This enables the user to zoom without
any distortion to the geometry and enables clear perceivable
choropleth data for the user.

VIII. ACKNOWLEDGEMENTS

We would like to thank KESS for contributing funding
towards this endeavor. Knowledge Economy Skills Scholarships
(KESS) is a pan-Wales higher level skills initiative led by
Bangor University on behalf of the HE sector in Wales. It is
partially funded by the Welsh Government’s European Social
Fund (ESF) convergence programme for West Wales and the
Valleys. We also thank GoFore UK for contributing funds
to this endeavor. We thank Dylan Rees for proofreading the
paper. We also thank Thomas Basketter for testing content
comprehension. We thank Amy Mizen for giving us domain
expert feedback and advice.

REFERENCES

[1]1 Use of Address Coding Guides in Geographic Coding. United States
Department of Commerce, November 1970.

[2] N. Andrienko and G. Andrienko, Exploratory Analysis of Spatial and

Temporal Data: A Systematic Approach. Springer Science & Business

Media, 2006.

L. Anselin, I. Syabri, and Y. Kho, “Geoda: an introduction to spatial

data analysis,” Geographical analysis, vol. 38, no. 1, pp. 5-22, 2006.

[4] E. Axelsson, J. Costa, C. Silva, C. Emmart, A. Bock, and A. Ynnerman,

“Dynamic scene graph: Enabling scaling, positioning, and navigation in

the universe,” in Computer Graphics Forum, vol. 36, no. 3. Wiley

Online Library, 2017, pp. 459-468.

T. Barkowsky, L. Latecki, and K. Richter, “Schematizing maps: Sim-

plification of geographic shape by discrete curve evolution,” Spatial

Cognition II, pp. 41-53, 2000.

R. Blanch and E. Lecolinet, “Browsing zoomable treemaps: Structure-

aware multi-scale navigation techniques,” IEEE Transactions on Visual-

ization and Computer Graphics, vol. 13, no. 6, pp. 1248-1253, 2007.

[71 M. Bostock and C. Metcalf, “Topojson,” 2018, . [Online]. Available:
https://github.com/topojson/

[8] B. Braden, “The surveyor’s area formula,” The College Mathematics
Journal, vol. 17, no. 4, pp. 326-337, 1986. [Online]. Available:
http://www.jstor.org/stable/2686282

[9] C. A. Brewer, “Colorbrewer,” 2017, accessed 2017/08/10. [Online].

Auvailable: http://colorbrewer2.org/

C. A. Brewer and L. Pickle, “Evaluation of methods for classifying

epidemiological data on choropleth maps in series,” Annals of the

Association of American Geographers, vol. 92, no. 4, pp. 662-681,

2002.

U. C. Bureau, “Cartographic boundary shapefiles - us counties,” 2018,

date Accessed: 2018-03-21. [Online]. Available: http://www.census.gov/

geo/maps-data/data/cbt/cbf_counties.html

, “Cartographic boundary shapefiles - us counties,” 2018, date

Accessed: 2018-03-21. [Online]. Available: https://www.census.gov/

support/USACdataDownloads.html

A. Cockburn, A. K. Karlson, and B. B. Bederson, “A review of overview+

detail, zooming, and focus+ context interfaces.” ACM Comput. Surv.,

vol. 41, no. 1, pp. 21, 2008.

G. Dang, C. North, and B. Shneiderman, “Dynamic queries and brushing

on choropleth maps,” in Information Visualisation, 2001. Proceedings.

Fifth International Conference on. 1EEE, 2001, pp. 757-764.

D. Dorling, “From computer cartographyto spatial visualization: A new

cartogram algorithm,” Proceedings of Auto-Carto, vol. 11, pp. 208-217,

1993.

J. Dykes and C. Brunsdon, “Geographically weighted visualization: inter-

active graphics for scale-varying exploratory analysis,” IEEE Transactions

on Visualization and Computer Graphics, vol. 13, no. 6, pp. 1161-1168,

2007.

[3

[t}

[5

[6

i}

[10]

(11]

[12]

[13]

[14]

[15]

[16]

https://bit.ly/2GGCe6v
https://bit.ly/2GGCe6v
https://vimeo.com/263507801
https://vimeo.com/263507801
https://github.com/topojson/
http://www.jstor.org/stable/2686282
http://colorbrewer2.org/
http://www.census.gov/geo/maps-data/data/cbf/cbf_counties.html
http://www.census.gov/geo/maps-data/data/cbf/cbf_counties.html
https://www.census.gov/support/USACdataDownloads.html
https://www.census.gov/support/USACdataDownloads.html

[17]

[18]

[19]
(20]

[21]

[22]

(23]

[24]

[25]

[26]

[27])

(28]

[29]

(30]

[31]

[32]

Zoom Level: 150%

'ﬁ

Normal

Choropleth
[
Zoom Level: 200%
[
-~
‘r ? Dynamic
“"‘é%&”" Choropleth

Fig. 9: An example of zooming out of Switzerland’s administrative units where m = 1%.

G. Ellis and A. Dix, “A taxonomy of clutter reduction for information vi-
sualisation,” IEEE Transactions on Visualization and Computer Graphics,
vol. 13, no. 6, pp. 1216-1223, 2007.

N. Elmqvist and J. D. Fekete, “Hierarchical aggregation for information
visualization: Overview, techniques, and design guidelines,” /EEE
Transactions on Visualization and Computer Graphics, vol. 16, no. 3,
pp. 439-454, May 2010.

C. Ericson, Real-time collision detection. CRC Press, 2004.

GADM, “Global administrative areas,” 2017, date Accessed: 2017-10-15.
[Online]. Available: http://www.gadm.org/country

M. T. Gastner and M. E. Newman, “Diffusion-based method for producing
density-equalizing maps,” Proceedings of the National Academy of
Sciences of the United States of America, vol. 101, no. 20, pp. 7499-7504,
2004.

Google, “Google maps,” 2017. [Online]. Available: https://www.google
co.uk/maps

R. Hooda, Statistics for business and economics.
House, 1994.

W. Javed, S. Ghani, and N. Elmgqvist, “Polyzoom: multiscale and
multifocus exploration in 2d visual spaces,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. ACM, 2012, pp.
287-296.

M. Jern, J. Rogstadius, and T. Astrém, “Treemaps and choropleth
maps applied to regional hierarchical statistical data,” in Information
Visualisation, 2009 13th International Conference. 1EEE, 2009, pp.
403-410.

N. K. Jog and B. Shneiderman, “Starfield visualization with interactive
smooth zooming,” in Visual Database Systems 3. Springer, 1995, pp.
3-14.

J. Johansson, T. Opach, E. Glaas, T.-S. Neset, C. Navarra, B.-O. Linnér,
and J. K. Rgd, “Visadapt: A visualization tool to support climate change
adaptation,” IEEE computer graphics and applications, vol. 37, no. 2,
pp. 54-65, 2017.

S. Kaspar, S. Fabrikant, and P. Freckmann, “Empirical study of
cartograms,” in 25th International Cartographic Conference, vol. 3,
2011, p. 5.

H. Li and J. Han, “Discovery of population distribution knowledge
visually through lorenz curve and choropleth map,” in Information Science
and Engineering (ICISE), 2010 2nd International Conference on. IEEE,
2010, pp. 3657-3660.

Z. Li, H. Yan, T. Ai, and J. Chen, “Automated building generalization
based on urban morphology and gestalt theory,” International Journal of
Geographical Information Science, vol. 18, no. 5, pp. 513-534, 2004.
[Online]. Available: https://doi.org/10.1080/13658810410001702021
R. B. McMaster and K. S. Shea, “Generalization in digital cartography.
Association of American Geographers Washington, DC, 1992.

L. McNabb and R. S. Laramee, “Survey of surveys (sos)-mapping the
landscape of survey papers in information visualization,” in Computer
Graphics Forum, vol. 36, no. 3. Wiley Online Library, 2017, pp.
589-617.

Vikas Publishing

!7

[33]

[34]

(35]

(36]

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]
[45]
[46]

[47]

[48]

I. Meirelles, Design for information: an introduction to the histories,
theories, and best practices behind effective information visualizations.
Rockport publishers, 2013.

S. Openshaw, “The modifiable areal unit problem,” Concepts and
techniques in modern geography, vol. 38, 1984.

L. W. Pickle, “Usability testing of map designs,” in Proceedings of
Symposium on the Interface of Computing Science and Statistics, 2003,
pp. 42-56.

R. Rao and S. K. Card, “The table lens: merging graphical and symbolic
representations in an interactive focus+ context visualization for tabular
information,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. ACM, 1994, pp. 318-322.

N. Regnauld and P. Revell, “Automatic amalgamation of buildings for
producing ordnance survey 1:50 000 scale maps,” The Cartographic
Journal, vol. 44, no. 3, pp. 239-250, 2007. [Online]. Available:
https://doi.org/10.1179/000870407X241782

K. A. Rittschof and R. W. Kulhavy, “Learning and remembering from
thematic maps of familiar regions,” Educational Technology Research
and Development, vol. 46, no. 1, pp. 19-38, Mar 1998. [Online].
Available: https://doi.org/10.1007/BF02299827

R. C. Roberts, C. Tong, R. S. Laramee, G. A. Smith, P. Brookes, and
T. D’Cruze, “Interactive Analytical Treemaps for Visualisation of Call
Centre Data,” in Smart Tools and Apps for Graphics - Eurographics
Italian Chapter Conference, G. Pintore and F. Stanco, Eds. The
Eurographics Association, 2016.

A. Robinson, R. Sale, and J. Morrison, Elements of Cartography.
Wiley, 1978. [Online]. Available: https://books.google.co.uk/books?id=
QknctEDueRcC

T. A. Slocum, R. B. McMaster, F. C. Kessler, and H. H. Howard, Thematic
cartography and geovisualization. Pearson Prentice Hall Upper Saddle
River, NJ, 2009.

O. F. N. Statistics, “Lower super output area mid-year
population estimates,” 2018, date Accessed: 2018-03-21. [Online].
Available: https://www.ons.gov.uk/peoplepopulationandcommunity/
populationandmigration/populationestimates/datasets/
lowersuperoutputareamidyearpopulationestimates

S. S. Stevens and E. H. Galanter, “Ratio scales and category scales for a
dozen perceptual continua.” Journal of experimental psychology, vol. 54,
no. 6, p. 377, 1957.

H. Sun and Z. Li, “Effectiveness of cartogram for the representation of
spatial data,” The Cartographic Journal, vol. 47, no. 1, pp. 12-21, 2010.
G. D. Team, GDAL - Geospatial Data Abstraction Library, Version 2.2.2,
http://www.gdal.org/, Open Source Geospatial Foundation, 2017.

W. R. Tobler, “Choropleth maps without class intervals?” Geographical
analysis, vol. 5, no. 3, pp. 262-265, 1973.

J. J. Van Wijk and W. A. Nuij, “Smooth and efficient zooming and
panning,” in Information Visualization, 2003. INFOVIS 2003. IEEE
Symposium on. 1EEE, 2003, pp. 15-23.

K. Verbeek e al., “Necklace maps,” IEEE Transactions on Visualization
and Computer Graphics, vol. 16, no. 6, pp. 881-889, 2010.

http://www.gadm.org/country
https://www.google.co.uk/maps
https://www.google.co.uk/maps
https://doi.org/10.1080/13658810410001702021
https://doi.org/10.1179/000870407X241782
https://doi.org/10.1007/BF02299827
https://books.google.co.uk/books?id=QknctEDueRcC
https://books.google.co.uk/books?id=QknctEDueRcC
https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/datasets/lowersuperoutputareamidyearpopulationestimates
https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/datasets/lowersuperoutputareamidyearpopulationestimates
https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/datasets/lowersuperoutputareamidyearpopulationestimates

[49]

[50]
(51]

(521

[53]

[54]

D. Vickers and P. Rees, “Creating the uk national statistics 2001 output
area classification,” Journal of the Royal Statistical Society: Series A
(Statistics in Society), vol. 170, no. 2, pp. 379-403, 2007.

U. G. Wales, “Wales output area boundaries,” accessed: 2017-08-20. [On-
line]. Available: https://data.gov.uk/dataset/output-areas-oa-boundaries
M. O. Ward, G. Grinstein, and D. Keim, Interactive data visualization:
foundations, techniques, and applications. CRC Press, 2010.

J. J. V. Wijk and W. A. Nuij, “A model for smooth viewing and navigation
of large 2d information spaces,” IEEE Transactions on Visualization and
Computer Graphics, vol. 10, no. 4, pp. 447458, 2004.

J. Zhang, A. Malik, B. Ahlbrand, N. Elmqvist, R. Maciejewski, and
D. S. Ebert, “Topogroups: Context-preserving visual illustration of multi-
scale spatial aggregates,” in Proceedings of the 2017 CHI Conference on
Human Factors in Computing Systems. ACM, 2017, pp. 2940-2951.
Y. Zhang and R. Maciejewski, “Quantifying the visual impact of
classification boundaries in choropleth maps,” IEEE Transactions on
Visualization and Computer Graphics, vol. 23, no. 1, pp. 371-380, 2017.

https://data.gov.uk/dataset/output-areas-oa-boundaries

	Introduction
	Related Work
	Zooming
	Choropleths
	Cartographic Generalization

	Methodology
	Method Overview
	Order Area Polygon Vertices
	Identifying Adjacent Neighbors & Contiguous Regions
	Building the Hierarchical Data Structure
	Boundary Neighbor Selection & Amalgamation Criteria
	Creating Parent Area
	Updating the Sorted List with the Parent
	Selecting Visible Boundaries
	Storing Values of Amalgamated Areas

	Results and Performance
	Supplementary Material
	Future Work & Limitations
	Conclusion
	Acknowledgements
	References

