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Abstract
Flow visualization has been a very attractive component of scientific visualization research for a long time. Usu-
ally very large multivariate datasets require processing. These datasets often consist of a large number of sample
locations and several time steps. The steadily increasing performance of computers has recently become a driv-
ing factor for a reemergence in flow visualization research, especially in texture-based techniques. In this paper,
dense, texture-based flow visualization techniques are discussed. This class of techniques attempts to provide a
complete, dense representation of the flow field with high spatio-temporal coherency. An attempt of categorizing
closely related solutions is incorporated and presented. Fundamentals are shortly addressed as well as advantages
and disadvantages of the methods.

Categories and Subject Descriptors (according to ACM CCS): I.3 [Computer Graphics]: visualization, flow visual-
ization, computational flow visualization

1. Introduction

Flow visualization (FlowVis) is one of the classic subfields
of visualization, covering a rich variety of applications, from
the automotive industry, aerodynamics, turbomachinery de-
sign, to weather simulation, meteorology, climate modeling,
ground water flow, and medical visualization. Consequently,
the spectrum of FlowVis solutions is very rich, spanning
multiple technical challenges: 2D vs. 3D solutions and tech-
niques for steady or time-dependent data.

Bringing many of those solutions in linear order (as neces-
sary for a text like this) is neither easy nor intuitive. Several
options of subdividing this broad field of literature are pos-
sible. Hesselink et al., for example, addressed the problem
of how to categorize techniques in their 1994 overview of
research issues 24 and consider dimensionality as a means to
classify the literature. In the following, several aspects are
discussed on an abstract level before literature is addressed
directly.

1.1. Classification

According to the different needs of the users, there are dif-
ferent approaches to flow visualization (cf. Figure 1):

� Direct flow visualization: This category of techniques
uses a translation that is as direct as possible for repre-
senting flow data in the resulting visualization. The result
is an overall picture of the flow. Common approaches are
drawing arrows (Figure 2, left) or color coding velocity.
Intuitive pictures can be provided, especially in the case
of two dimensions. Solutions of this kind allow immedi-
ate investigation of the flow data.

� Dense, texture-based flow visualization: Similar to di-
rect flow visualization, a texture is computed that is used
to generate a dense representation of the flow (Figure 2,
middle). A notion of where the flow moves is incorpo-
rated through co-related texture values along the vector
field. In most cases this effect is achieved through filter-
ing of texture values according to the local flow vector.

� Geometric flow visualization: For a better communica-
tion of the long-term behavior induced by flow dynamics,
integration-based approaches first integrate the flow data
and use geometric objects as a basis for flow visualization.
The resulting integral objects have a geometry that reflects
the properties of the flow. Examples include streamlines
(Figure 2, right) , streaklines, and pathlines. These ge-
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Figure 1: Classification of flow visualization tech-
niques – (left) direct, (middle-left) texture-based, (middle-
right) based on geometric objects, and (right) feature-based.

ometric objects are based on integration as opposed to
other geometric objects, like isosurfaces, that may also be
useful for visualization. A description of geometric tech-
niques is presented by Post et al. 55

� Feature-based flow visualization: Another approach
makes use of an abstraction and/or extraction step which
is performed before visualization. Special features are ex-
tracted from the original dataset, such as important phe-
nomena or topological information of the flow. Visualiza-
tion is then based on these flow features (instead of the
entire dataset), allowing for compact and efficient flow
visualization, even of very large and/or time-dependent
datasets. This can also be thought of as visualization of
derived data. Post et al. 56 cover feature-based flow visu-
alization in detail.

Figure 1 illustrates a classification of the aforementioned
classes and Figure 2 shows three typical examples. Note that
there are different amounts of computation associated with
each category. In general, direct flow visualization tech-
niques require less computation than the other three cate-
gories, whereas feature-based techniques require the most
computation. This overview focuses on the body of research
related to dense, texture-based techniques.

1.2. Spatial, Temporal, and Data Dimensionality

Solutions in flow visualization differ with respect to the di-
mensionality of the flow data. Useful techniques for 2D flow
data, like color coding or arrow plots, sometimes lack simi-
lar advantages in 3D. Here, the spatial dimensionality of the
flow data is indicated as either 2D, 2.5D, or 3D. In our clas-
sification the dimensionality of the results from each tech-
nique is marked with a corresponding label indicating di-
mensionality (see Figure 4).

By 2.5D we mean flow visualization restricted to surfaces
in 3D. We draw attention to the notion that in many cases
like CFD, the simulation sets all velocities on a surface to
zero. One way to approach this is to extrapolate the vector

field just inside the surface to the boundary. In any case,
the vector component normal to the surface is usually lost
in the visualization. Furthermore another vector field can be
calculated on a surface, such as skin friction.

In addition to spatial dimension, temporal dimension (di-
mensionality with respect to time) is of great importance.
Firstly, velocity incorporates a notion of time – flows are of-
ten interpreted as differential data with respect to time (cf.
Equation 1), i.e., when integrating the data, instantaneous
paths such as streamlines may be obtained (cf. Equation 3).
We call this steady velocity time. Additionally, the flow data
itself can change over time resulting in time-dependent (or
unsteady) flow. We refer to this as unsteady velocity time.
The visualization must carefully distinguish between both.
Performing integration in the case of unsteady data results
in pathlines or streaklines as opposed to streamlines.

The distinction between steady and unsteady velocity
time is important especially when animation is used in the
visualization. Then, even a third notion of time, i.e., anima-
tion time, may affect the visualization. Animation time can
be an arbitrary feature added to the visualization in order to
create motion. Sometimes, geometric objects like stream-
lines are animated in order to show flow orientation, e.g.,
the motion of color controlled by a color-table 31. Anima-
tion is also often added to texture-based methods with the
same goal in mind. Special attention is required for correct
interpretation of animation time.

In many cases, further data dimensions, i.e., attributes,
are supplied with the data, such as temperature, pressure,
or vorticity in addition to spatial and temporal dimensions.
The dimension of the data values is also associated with the
terms multivariate and multi-field data. Flow visualization
may also take these values into account, e.g., by using color
or isosurface extraction.

Although we do not have space to focus on experimen-
tal flow visualization, it is interesting to recognize that many
computational solutions more or less mimic the visual ap-
pearance of well-accepted techniques in experimental visu-
alization (cf. particle traces, dye injection, or Schlieren tech-
niques 77).

1.3. Data Sources

Computational flow visualization, in general, deals with data
that exhibits temporal dynamics like the results from (a) flow
simulation (e.g., the simulation of fluid flow through a tur-
bine), (b) flow measurements (possibly acquired through
laser-based technology), or (c) analytic models of flows
(e.g., dynamical systems 1, given as set of differential equa-
tions).

We focus on visualization of data from computational
flow simulation, i.e., flow data given as a set of samples on
a grid. In many cases, the velocity information in a flow
dataset (encoded as a set of velocity vectors) represents the
focus. Therefore, flow visualization is strongly related to
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Figure 2: An example of circular flow at the surface of a ring to help illustrate our flow visualization classification: (left) direct
visualization by the use of arrow glyphs, (middle) texture-based by the use of LIC, and (right) visualization based on geometric
objects, here streamlines.

vector field visualization, which may also deal with vector
fields other than velocity fields.

The relation of computational and experimental visualiza-
tion is worthy of mention. Experimental flow visualization,
as in a wind tunnel, is also used to validate computational
flow simulation. In such a case the computational visualiza-
tion needs to be set up in a way such that results can be easily
compared.

2. Fundamentals

Before outlining some of the most important texture-based
techniques, a short overview of common mathematics as
well as some general concepts with regard to the compu-
tation of results are presented.

Flow simulations are often solutions to systems of PDEs,
such as the Navier Stokes, Euler, or Advection-Diffusion
equations 82. In general, discretized solution methods are
used. Noteworthy are finite volume (FV) and finite element
(FE) analysis, which subdivide the domain into small ele-
ments like hexahedral or tetrahedral cells. A solution is de-
fined on the computation grid in physical space: unstruc-
tured for FE and structured curvilinear for FV solutions. In
the discussion that follows, we assume that vector data are
defined on the grid nodes (cell vertices).

2.1. Reconstruction of Flow Data

An inherent characteristic of flow data is that derivative in-
formation is given with respect to time, which is laid out
with respect to an n-dimensional spatial domain Ω �

Rn,
e.g., n � 3 for representing 3D fluid flow. Temporal deriva-
tives v of nD locations p within the flow domain Ω are n-
dimensional vectors:

v � dp � d t � p � Ω �
Rn � v � Rn � t � R (1)

A general formulation of (possibly unsteady) flow data v is

v � p � t � : Ω � Π 	 Rn (2)

where p � Ω �
Rn represents the spatial reference of the flow

data and t � Π �
R represents the system time. For steady

flow data, the simpler case of v � p � : Ω 	 Rn is given (v not
dependent on t).

In results from nD flow simulation, such as from automo-
tive applications or airplane design, vector data v is usually
not given in analytic form, but requires reconstruction from
the discrete simulation output. The numerical methods used
for the flow simulation, such as finite element methods, out-
put simulation values usually on large-sized grids of many
sample vectors vi, which discretely represent the solution of
the simulation process. Furthermore, it is assumed that the
flow simulation is based on a continuous model of the flow
allowing continuous reconstruction of the flow data v. One
option is to apply a reconstruction filter h : Rn 	 R to com-
pute v � p �
� ∑i h � p � pi � vi. For practical reasons, filter h
usually has only local extent. Efficient procedures for find-
ing flow samples vi, which are nearest to the query point p,
are needed to do proper reconstruction.

2.2. Grids

In flow simulation, the vector samples vi usually are laid out
across the flow domain with respect to a certain type of grid.
Grid types range from simple rectilinear or Cartesian grids
to curvilinear grids to complex unstructured grids (cf. Fig-
ure 3). Typically, simulation grids exhibit large variations
in cell sizes. This variety of cell sizes stems from the in-
fluence of grid generation onto the flow simulation process.
The quality of the grid model and its implementation impact
the quality of the simulation results.

Although the principal theory of reconstruction from dis-
crete samples does not exhibit many differences with respect
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Figure 3: Grids involved in flow simulation – (a) Cartesian,
(b) regular, (c) general rectilinear, (d) structured or curvilin-
ear, (c) unstructured, and (f) unstructured triangular 37 � 89.

to grid cell types, the practical handling does. While neigh-
bor searching might be trivial in a rectilinear grid, it usually
is not in a tetrahedral grid. Similar differences hold for the
problems of point location and vector reconstruction. In the
following we shortly describe some fundamental operations
which form the basis for visualization computations on sim-
ulation grids.

Starting with point location, i.e., the problem of finding
the grid cell in which a given nD-point lies, usually two
cases are distinguished. For general point location, special
data structures can be used that subdivide the spatial do-
main to speed up the search. For iterative point location,
often needed during integral curve computation, algorithms
are used that efficiently exploit spatial coherence during the
search. One kind of such algorithms starts with an initial
guess for the target cell, checks for point-containment and
refines accordingly afterward. This process is iterated until
the target cell is found. More details can be found in text
books about flow visualization fundamentals 53 � 68.

Beside point location, flow reconstruction, or interpola-
tion, within a cell of the dataset is a crucial issue. Often,
once the cell containing the query location is found, only
the sample vectors at the cell’s vertices are considered for
reconstruction. The approach used most often is first-order
reconstruction by performing linear interpolation within the
cell. For example, trilinear flow reconstruction may be used
within a 3D hexahedral cell.

After point location and flow reconstruction, visualization
begins: vectors can be represented with glyphs, virtual parti-
cles can be injected and traced across the flow domain. Nev-
ertheless, the computation of derived data may be necessary
to do more sophisticated flow visualization. Usually, the first
step is to request second-order gradient information for arbi-

trary points in the flow domain, i.e., 
 v � p, which gives infor-
mation about local properties of the flow (at point p) such as
flow convergence and divergence, or flow rotation and shear.
For feature extraction, flow vorticity ω � 
 � v can be of
high interest. Further details about local flow properties can
be found in previous work 45 � 54.

2.3. Integration

Recalling that flow data in most cases is derivative informa-
tion with respect to time, the idea of integrating flow data
over time is natural to provide an intuitive notion of evolu-
tion induced by the flow. One example is visualization by the
use of particle advection. A respective particle path p � t � –
here through unsteady flow – can be defined by

p � t ��� p0 �
� t

τ � 0
v � p � τ ��� τ � dτ (3)

where p0 represents the location of the particle path at seed
time 0. Note that Equations 1 and 3 are complimentary to
each other. For other types of integral curves, such as streak-
lines see previous work 36 � 68.

In addition to the theoretical specification of integral
curves, it is important to note that respective integral equa-
tions like Equation 3 usually cannot be resolved for the
curve function analytically, and thereby numerical integra-
tion methods are employed. The most simple approach is
to use a first-order Euler method to compute an approxima-
tion pE � t � – one iteration of the curve integration is specified
by

pE � t � ∆ t ��� p � t � � ∆ t � v � p � t ��� t � (4)

where ∆ t usually is a very small step in time and p � t � de-
notes the location to start this Euler step from. A more ac-
curate but also more costly technique is the second-order
Runge-Kutta method, 57 which uses the Euler approxima-
tion pE as a look-ahead to compute a better approxima-
tion pRK2 � t � of the integral curve:

pRK2 � t � ∆ t ���
p � t � � ∆ t � � v � p � t ��� t � � v � pE � t � ∆ t ��� t ����� 2 (5)

Higher-order methods like the often used fourth-order
Runge-Kutta integrator utilize more such steps to better ap-
proximate the local behavior of the integral curve. Also,
adaptive step sizes are used to compute smaller steps in re-
gions of high curvature.

3. Dense and Texture-Based Flow Visualization

Dense, texture-based techniques in flow visualization gener-
ally provide full spatial coverage of the vector field. In our
classification we group these methods into the following cat-
egories based on their respective primitive: the fundamental
object upon which the algorithm is based. Our classification
subdivides the techniques based on their similarity.
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� Spot Noise techniques: These methods (Section 3.1) are
based on a technique introduced by Van Wijk 78. In this
category, the basic primitive on which the algorithms op-
erate is the so-called spot: an ellipse or other shape that is
warped and distributed in order to reflect the characteris-
tics of a vector field.� LIC techniques: The methods in this category (Sec-
tion 3.2) are derived from an algorithm introduced by
Cabral and Leedom 8, namely, Line Integral Convolution
(LIC). The basic primitive here is a noise texture: the
properties of texture are convolved, or smeared, using a
kernel filter in the direction of the underlying vector field.� Texture advection and GPU-based techniques: The prim-
itive in this case (Section 3.3) is a moving texel 50. Individ-
ual texels/texel properties, or groups of texels are advected
in the direction of the vector field. Many of the tech-
niques in this category utilize more computation on the
GPU (Graphics Processing Unit) – rather than the CPU –
in order to realize performance gains.� Related techniques: Most of the dense, texture-based
flow visualization research falls into one of the previous
categories. Related research that does not fit cleanly into
one of the previous classifications is discussed in Sec-
tion 3.4.

We have included a section of meta-research papers in Sec-
tion 4 after the individual research techniques. These papers
attempt to provide an alternative, higher-level framework
that incorporates many of the techniques discussed here.

3.1. Spot Noise

Spot noise, introduced by Van Wijk 78, was one of the first
dense, texture-based techniques for vector field visualiza-
tion. Spot noise generates a texture by distributing a set of
intensity functions, or spots, over the domain. Each spot rep-
resents a particle warped over a small step in time and results
in a streak in the direction of the local flow from where the
particle is seeded. A spot noise texture is defined by: 78

f � x ��� ∑aih � x � xi � v � xi ��� (6)

in which h ��� is called the intensity function, ai is a scaling
factor, and xi is a random position. A spot is a function with
unity intensity value for the spot, e.g., a ellipse and its inte-
rior, and zero everywhere else. The summation denotes the
blending of each instance of the intensity function at random
positions.

The hierarchy shown in Figure 4 illustrates the relation-
ship amongst spot noise related methods. Follow-up re-
search that builds upon a previous technique is shown as a
child in the hierarchy. Children that share a common par-
ent are presented in chronological order of appearance when
reading from left to right. Each node in the hierarchy is la-
beled and the corresponding description can be matched in
the text of this article. The dimensionality of the flow data
used to generate the results is indicated for convenience. The
time dimension label is given a different shape to distinguish

Spot Noise

Enhanced
Spot Noise

Experimental
Flow Simulation

Parallel Unsteady
Spot Noise Spot Noise

2D

2.5D

3D

LEGEND

Unsteady

Figure 4: The Spot Noise hierarchy of related research.
Children in the hierarchy build upon the work of their par-
ent.

Figure 5: A snapshot of the unsteady spot noise algo-
rithm 16. Image courtesy of De Leeuw and Van Liere.

it from the spatial dimensions. We believe the spot noise hi-
erarchy (Figure 4) and the LIC hierarchy (Figure 7) will be
valuable assets in helping the reader navigate the related re-
search literature. In what follows, we visit each node in the
hierarchy in depth-first-search order.

Comparative Visualization – Spot noise has been used to
simulate the results from the field of experimental flow visu-
alization 14. First the parameters of the spot noise technique
are tuned in order to simulate the smearing of oil on a sur-
face. A post-processing step is then added to enhance the
visualization result such that it looks closer to the smearing
of real oil from experimental flow visualization.

Enhanced Spot Noise – One limitation of the original spot
noise algorithm was the inability to represent high, local ve-
locity curvature especially with high speeds. Enhanced spot
noise 12 by De Leeuw and Van Wijk addresses these chal-
lenges through the use of bent spot primitives.

Parallel and Unsteady Spot Noise – In order to accelerate
the performance of enhanced spot noise towards interactive
frame rates, a parallel implementation of the algorithm was
introduced by De Leeuw 13. The parallel implementation
was applied to the steering of a smog prediction simulation
and searching a very large data set resulting from a numeri-
cal simulation of turbulence.
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Figure 6: Visualization of flow past a box using (left) spot noise and (right) LIC.

The first application of spot noise to unsteady flow is pre-
sented by De Leeuw and Van Liere 16 (Figure 5). The motion
of spots is modeled after particles in unsteady flow. In order
to visualize unsteady flow, the distribution of spots with re-
spect to the temporal domain is discussed. Unsteady spot
noise also introduces support for zooming views of the vec-
tor field. Spot noise with zooming is also utilized by De
Leeuw and Van Liere when visualizing topological features
of 2D flow 10.

Spot Noise Related Literature – A combination of both
texture-based FlowVis on 2D slices and 3D arrows for 3D
flow visualization is employed by Telea and Van Wijk 74.
Arrows denote the main characteristics of the 3D flow after
clustering and a 2D slice with spot noise visualization serves
as context. The focus of this work is on vector field cluster-
ing.

Löffelmann et al 44 use anisotropic spot noise created
from a grid-shaped spot to visualize streamlines and time-
lines concurrently on stream surfaces. Another interesting
application of spot noise is its use for the depiction of dis-
crete maps (non-continuous flow) 43.

Spot noise has also been applied to the visualization of
turbulent flow 15 and in combination with the visualization
of flow topology 10 � 11. We refer the reader to Post et al. 55 � 56

for more on the subject of flow topology.

Spot Noise vs. LIC – A visual comparison of LIC (the fo-
cus of the next section) and spot noise is shown in Figure 6.
Spot noise is capable of reflecting velocity magnitude within
the amount of smearing in the texture, thus freeing up hue
for the visualization of another attribute such as pressure,

temperature, etc. On the other hand, LIC is more suited for
the visualization of critical points which is a key element
in conveying the flow topology. The vector magnitudes are
normalized thus retaining lower spatial frequency texture in
areas of low velocity magnitude. De Leeuw and Van Liere
also compare spot noise to LIC 17. They report that LIC is
better at showing direction than spot noise, but it does not
encode velocity magnitude. By flow direction, we refer to
the path along which a massless particle follows when in-
jected into the flow.

3.2. Line Integral Convolution

Line integral convolution (LIC), first introduced by Cabral
and Leedom 8, has spawned a large collection of research as
indicated in Figure 7. The original LIC method takes as in-
put a vector field on a 2D, Cartesian grid and a white noise
texture of the same size. Texels are convolved (or correlated)
along the path of streamlines using a filter kernel in order to
create a dense visualization of the flow field. More specif-
ically, given a streamline σ, LIC consists of calculating the
intensity I for a pixel located at x0 � σ � s0 � by: 70

I � x0 ���
s0 � L � 2 

s0 ! L � 2
k � s " s0 � T � σ � s ��� ds (7)

where T stands for an input noise texture, k denotes the filter
kernel, s is an arc length used to parameterize the stream-
line curve, and L represents the filter kernel length. See Fig-
ure 2 (middle) for a result. LIC was one of the first dense,
texture-based algorithms able to accurately reflect velocity
fields with high local curvature.
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Figure 7: The LIC hierarchy of related research. Node labels correspond to paragraphs in the text, which then lead to specific
entries in the bibliography.

The research in LIC-based flow visualization described
here extends LIC in several directions: (1) adding flow orien-
tation cues, (2) showing local velocity magnitude, (3) adding
support for non-rectilinear grids, (4) animating the result-
ing textures such that the animation shows the upstream and
downstream flow direction, (4) allowing real-time and inter-
active exploration, (5) extending LIC to 3D, and (6) extend-
ing LIC to unsteady vector fields. In the following, we visit
the LIC hierarchy of Figure 7 in depth-first-search order.

Curvilinear Grids and Unsteady LIC – Forssell 20 was
early to extend LIC to surfaces represented by curvilinear
grids. The original LIC method portrays a vector field with
uniform velocity magnitude. Forssell introduces a technique
for displaying vector magnitude. She also describes one ap-
proach to animate the resulting LIC textures. Forssell and
Cohen extend this work to visualize unsteady flow 21. Their
approach modifies the convolution such that the filter ker-
nel operates on streaklines rather than streamlines. In other
words, they modify the LIC algorithm to trace a path that
incorporates multiple time steps.

Fast LIC – Many algorithms are built on fast LIC intro-
duced by Stalling and Hege 70. Fast LIC is approximately
one order of magnitude faster than the original. The speedup
is achieved through two key observations: (1) fast LIC min-
imizes the computation of redundant streamlines present in
the original method and (2) fast LIC exploits similar con-
volution integrals along a single streamline and thus re-
uses parts of the convolution computation from neighboring
streamline texels. They also introduce support for filtered
images at arbitrary resolution.

Parallel Fast LIC – Amongst the first parallel implementa-
tions of fast LIC is that of Zöckler et al. 90. The proposed al-
gorithm computes animation sequences on a massively par-
allel distributed memory computer. Parallelization is per-
formed in image space rather than in time in order to take
advantage of the strong temporal coherence between frames.
Luckily, as we shall see later, flow visualization research in
this area has evolved far enough such that expensive paral-

lel processing hardware is not always necessary to achieve
interactive visualization 28 � 29 � 38 � 79. However, for 3D and un-
steady flow there is still need for parallelization. For the sake
of completeness, we also mention the work of Cabral and
Leedom on parallelization of LIC 7 although this is a paral-
lel processing version of the original LIC algorithm, not fast
LIC.

Fast LIC on Surfaces – Battke et al. 2 extend fast LIC to
surfaces represented by arbitrary grids in 3D. The approach
by Forssell and Cohen 21 was limited to surfaces represented
by curvilinear grids. The method works by tessellating a
given surface representation with triangles. The triangles are
packed (or tiled) into texture memory and a local LIC texture
is computed for each triangle. The results presented here
are limited to relatively small simple surface representations
composed of equilateral triangles (1,600–4,000 triangles).

Volume LIC – Interrante and Grosch 25 � 26 visualize true 3D
flow using the fast LIC algorithm as a starting point. Clearly,
there are perceptual challenges related to 3D flow visualiza-
tion such as occlusion, depth perception, and visual com-
plexity. Volume LIC introduces the use of halos in order
to enhance depth perception such that the user has a bet-
ter chance at perceiving the 3D space covered in the visual-
ization (Figure 8). Areas of higher velocity magnitude are
mapped to higher texture opacity. It is interesting to note
that with the introduction of halos, we are then able to iden-
tify distinct entities in the 3D field, a property generally not
present in other LIC techniques. Thus the 3D LIC takes a
step in the direction of being a geometric flow visualization
technique where discrete integral objects such as streamlines
can be distinguished. Without introducing some notion of
sparseness into the visualization, the results would not be
very useful. However, with the introduction of sparseness, a
trade-off is made between flow field coverage and reducing
occlusion.

Enhanced Fast LIC and LIC with Normal – Two use-
ful extensions to the fast LIC algorithm are introduced by
Hege and Stalling 22 and Scheuermann et al. 64 Hege and
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Figure 8: A result from the Volume LIC method 25 � 26. Image
courtesy of Interrante and Grosch.

Stalling 22 experiment with higher order filter kernels in or-
der to enhance the quality of the resulting LIC textures.

In the case of slices, vector components orthogonal to the
slice are removed when using texture-based and geometric
methods for visualization results. Scheuermann et al. 64 ad-
dress this missing orthogonal vector field component by ex-
tending fast LIC to incorporate a normal component into the
visualization.

DLIC – Sundquist 71 presents an extension to fast LIC,
DLIC (Dynamic LIC), in order to visualize time-dependent
electromagnetic fields. According to Sundquist, the motion
of the field is not necessarily along the direction of the field
itself in the case of electromagnetic fields. The algorithm
proposed here handles the case of when the vector field and
the direction of the motion of the field lines are indepen-
dent. Conceptually, there are two vector fields used in this
approach: (1) the electromagnetic field itself and (2) the vec-
tor field that describes the evolution of streamlines as a func-
tion of time.

Multivariate LIC – Urness et al. 76 present an extension to
fast LIC that incorporates a new coloring scheme that can be
used to incorporate multiple 2D scalar and vector attributes.
Color weaving assigns a specific attribute represented by a
color to an individual streamline thread in the visualization.
The streamline patterns may interweave and thus so may the
color patterns. Using multiple colors allows visualization of
more than one variate in the result. Their second contribu-
tion is called texture stitching: an extension to the idea pre-
sented by Kiu and Banks 34, namely multi-frequency LIC.
However, in the case of Urness et al. 76 the multi-frequency
noise textures are used to highlight regions of interest as op-
posed to velocity magnitude as by Kiu and Banks 34.

Dye Injection – Shen et al. address the problem of direc-
tional cues in LIC by incorporating animation and introduc-
ing dye advection into the computation 66. The simulation
of dye may be used to highlight features of the flow. In ad-
dition, they incorporate volume rendering methods that map

Figure 9: Dye injection is used to highlight areas of the flow
in combination on the boundary surface of an intake port
and combustion chamber.

a LIC texture onto a 3D surface. Thus the user is able to vi-
sualize the dye throughout the volume. We point out that the
modeling of dye transport is not always physically correct
since dye is dispersed not only by advection, but also by dif-
fusion. Note that dye advection techniques can be classified
differently. Dye injection can result in discrete geometric
objects used to visualize the flow, and thus, could be classi-
fied as a group of geometric visualization techniques. Dye
injection is also implemented by some of the texture advec-
tion and GPU-based techniques described in Section 3.3.

Again, in Shen et al. we see the notion of a sparser visu-
alization in order to see into the 3D flow. The resulting 3D
visualization approaches that of a geometric technique such
as the use of streamsurfaces. And just as with the other geo-
metric techniques, the notion of where to place or inject the
dye into the flow becomes important. Figure 9 illustrates the
use of dye injection.

Multi-Frequency LIC – Kiu and Banks propose to use a
multi-frequency noise for LIC 34. The spatial frequency of
the noise is a function of the magnitude of the local velocity.
Long, fat streaks indicate regions of the flow with higher
velocity magnitude.

One problem with many curvilinear grid LIC algorithms
is that the resulting LIC textures may be distorted after being
mapped onto the geometric surfaces, since a curvilinear grid
usually consists of cells of different sizes. Mao et al. propose
a solution to the problem by using multi-granularity noise as
the input image for LIC 46.

OLIC and FROLIC – Wegenkittl et al. address the prob-
lem of direction of flow in still images with their OLIC (Ori-
ented LIC) approach 84. By orientation, they mean the up-
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stream and downstream directions of the flow, not visible in
the original LIC implementation. Conceptually, the OLIC
algorithm makes use of a sparse texture consisting of many
separated spots that are smeared in the direction of the lo-
cal vector field through integration. A fast version of OLIC,
called FROLIC (Fast Rendering of OLIC), is achieved by
Wegenkittl and Gröller 83 via a trade-off of accuracy for
time. FROLIC approximates the simulated droplet trace re-
sulting from OLIC with a sequence of disks of varying inten-
sity, with disk intensity increasing towards the downstream
direction.

Animated FROLIC 4 achieves animation of the result via
a color-table and is based on the observation that only the
colors of the FROLIC disks need to be changed. Each pixel
is assigned a color-table index that points to a specific entry
in the color-table. Color-table animation then changes the
entries of the color-table itself rather than the pixels of the
corresponding image.

LIC on Surfaces – Mao et al.47 extend the original LIC
method by applying it to surfaces represented by arbitrary
grids in 3D. Former LIC methods targeted at surfaces were
restricted to structured grids 20 � 21 � 66. Also, mapping a com-
puted 2D LIC texture to a curvilinear grid may introduce
distortions in the texture. Mao el al. propose solutions to
overcome these limitations. The principle behind their algo-
rithm relies on solid texturing 52. The convolution of a 3D
white noise image, with filter kernels defined along the local
streamlines, is performed only at visible ray-surface inter-
sections.

This idea has an advantage over that of Battke et al. 2 in
that it avoids what can be a timely and complex assembly
of triangles into texture space. However, ray-tracing is also
costly. The method here is view-point dependent and re-
quired relatively lengthy processing time for an unstructured
mesh composed of 10,000 triangles.

A significant body of research is dedicated to the exten-
sion of LIC onto boundary surfaces. Teitzel et al. 73 present
an approach that works on both 2D unstructured grids and
directly on triangulated grids in 3D space. This topic itself
is the subject of a survey by Stalling 69.

UFLIC – Shen and Kao 67 extend the original LIC algo-
rithm to handle unsteady flows. Their extension, called
UFLIC (Unsteady Flow LIC), handles the case of unsteady
flow fields by introducing a new convolution filter that bet-
ter models the nature of unsteady flow. The convolution is
done along pathlines (as opposed to streamlines). They im-
prove upon the shortcomings of the previous unsteady LIC
attempt presented by Forssell and Cohen 21. According to
Shen and Kao, Forssell and Cohen’s approach has multiple
limitations including: (1) lack of clarity with respect to spa-
tial coherence, (2) deriving current flow values from future
flow values, (3) unclear exposition with respect to temporal
coherence, and (4) lack of accurate time stepping. All of

Figure 10: An LIC visualization showing a simulation of
flow around a wheel. 59 The appropriate choice of transfer
function results in a sparser noise texture. Image courtesy of
Rezk-Salama et al. 59

these problems are addressed by UFLIC. Shen and Kao also
apply UFLIC to the visualization of time-dependent flow to
parameterized surfaces. UFLIC is also extended using a par-
allel implementation by Shen and Kao 65.

AUFLIC – AUFLIC (Accelerated UFLIC) is an extension
to UFLIC that enhances performance times 41. The princi-
ple behind AUFLIC is to save, re-use, and update pathlines
in a vector field seeding strategy. AUFLIC requires approxi-
mately one half of the time required by UFLIC and generates
similar results.

3D LIC – Rezk-Salama et al. 59 propose rendering methods
to effectively display the results of 3D LIC computations.
They utilize texture-based volume rendering in an effort to
provide exploration of 3D LIC textures at interactive frame
rates. Like Interrante 26, they address the perceptual prob-
lems posed by dense, 3D visualization. They approach these
challenges through the use of transfer functions and clipping
planes, as in Figure 10. Transfer functions allow the user to
see through portions of the LIC textures deemed uninterest-
ing by the user. In addition to conventional clipping planes,
Rezk-Salama et al. also use clipping with arbitrary closed-
surface geometries.

The use of transfer functions and geometric clipping ob-
jects are interesting choices for dealing with the perceptual
problems associated with 3D. In some sense, these can be
compared with the seeding problem of the geometric class of
visualization techniques. Seeding strategies address where
to start streamlines and other integration-based geometric
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Figure 11: A comparison of 3 LIC techniques: (left) UFLIC 65, (middle) ELIC 51, and (right) PLIC 81. Image courtesy of Verma
et al. 81.

objects. Selective seeding of geometric objects in 3D is of-
ten considered a key to successful visualization. However,
knowledge of the proper seed locations is a requisite for this
approach. And just as proper seed placement is a requi-
site when using geometric objects, knowledge of the transfer
function(s) and closed-object clipping geometries is required
in the case of 3D LIC.

Geometric LIC – We make a distinction between geomet-
ric flow visualization and dense, texture-based flow visual-
ization. However, these two topics are closely coupled. Con-
ceptually, the path from using geometric objects to texture-
based visualization is obtained via a dense seeding strategy.
That is, densely seeded geometric objects result in an im-
age similar to that obtained by dense, texture-based tech-
niques 30. Likewise, the path from dense, texture-based visu-
alization to visualization using geometric objects is obtained
using something such as a sparse texture for texture advec-
tion 84.

Here we have grouped together techniques that synthesize
LIC results by mapping a pre-computed LIC texture onto ge-
ometric primitives such as streamlines. By using geometric
primitives, researchers hope to speed up performance times
of the LIC results. The drawback of these methods is that
they require careful seeding strategies to gain the complete
coverage of the flow field offered by traditional LIC tech-
niques.

Motion Map – Jobard and Lefer use a motion map 31 in or-
der to animate 2D steady flows. First, the domain is covered
completely with streamlines. Next, a color is mapped to the
streamlines and a color-table animation technique is used to
animate the flow. It offers the advantage of saving memory
and computation time since only one image of the flow has
to be computed and stored in the motion map data structure.
This technique is not applicable to unsteady flow however. It
relies on a one-time cost of computing a set of streamlines.

PLIC – Verma et al. present a method for visual compar-
ison of streamlines and LIC called PLIC 81 (Pseudo-LIC).
They attempt to identify the relevant parameters to generate
LIC-like images from a dense set of streamlines and for gen-
erating streamline-like images through the use of different
filters used for convolution. By experimenting with different
input textures for LIC, both streamline-like images and LIC-
like results can be obtained. ELIC (enhanced LIC), placed
here because of its visual comparison with PLIC, builds on
the original LIC algorithm in four ways: (1) by incorporat-
ing an algorithm to improve the delineation of streamlines,
(2) increasing the image contrast, (3) removing texture dis-
tortion introduced by applying LIC to curvilinear grids, and
(4) using color to highlight flow separation and reattach-
ment boundaries. A visual comparison between UFLIC 65,
ELIC 51, and PLIC is shown in Figure 11.

Hierarchical LIC – Bordoloi and Shen 5 introduce a hier-
archical approach to LIC based on a quadtree data structure
used to support level of detail (LOD). The idea is to replace
portions of the vector field of lower complexity with rectan-
gular LIC texture-mapped patches. The LIC texture is taken
from a previously calculated LIC image of a straight vector
field. Here, complexity is a direct function of the amount of
curl in the local vector field.

Decoupled LIC – Li et al. 40 present a technique for the vi-
sualization of 3D flow based on texture mapped primitives,
namely streamlines. They decouple the visualization into
a pre-processing type stage that computes the streamlines
and a stage which maps various textures to the streamlines
computed in the first stage. The result is volume rendered
at interactive frame rates. To address the perceptual chal-
lenges posed by 3D visualization, depth cues, lighting ef-
fects, silhouettes, shading, and interactive volume culling are
described.
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Figure 12: The classification of texture advection and GPU-based techniques. The columns indicate the primitive used during
advection while the rows indicate the advection scheme.

3.3. Texture Advection and GPU-Based Techniques

In this section we describe research based on moving tex-
els or moving groups of texels, i.e., texture-mapped poly-
gons whose motion is directed by the vector field. Figure 12
shows an overview of the different techniques and classifies
them according to two properties: (1) the advection scheme
used and (2) the primitive used during advection. Some of
the literature focuses mainly on the integration scheme used
to advect textures or texels. By the term texel means texture
element. Some methods focus on the mapping to advected
primitives and some focus on both. Figure 12 also shows
the dimensionality of the flow data. In our discussion, we
visit the methods in clockwise order starting at 12 o’clock.
Within each sub-block the methods are listed in chronologi-
cal order. This is because the mapping of texel properties be-
tween two time steps in the visualization is not 1-to-1 in this
case. For a more detailed discussion see Jobard et al 28 � 29.

One characteristic common to many of the texture ad-
vection techniques in this section 28 � 29 � 38 � 48 is the use of
backward coordinate integration (or backward advection).
None of the methods described here use forward advection
(i.e., forward integration) and individual texels as a primi-
tive. This is because the combination of forward integration
and texel primitives leaves holes in the visual domain after
the forward integration computation 29. Given a position,
x0 � i � j �#�$� i � j � of each particle in a 2D flow, backward in-
tegration over a time interval h determines its position at a
previous time step 28:

x % h � i � j ��� x0 � i � j � �
� h

τ � 0
v % τ � x % τ � i � j ��� dτ (8)

where h is the integration step, x % τ � i � j � represents interme-
diary positions along the pathline passing through x0 � i � j � ,
and vτ is the vector field at time τ. We note that the methods
in this category are generally implemented in an iterative
fashion. That is for each animated frame an integration is
performed over a small time-step h, followed by an update
of visual properties. This is opposed to geometric methods
in which a longer particle path may be computed over sev-
eral time steps before the results are displayed.

Figure 13: A screen shot from the Image Based Flow Visu-
alization algorithm. Image courtesy of Van Wijk 79.

IBFV – Image Based Flow Visualization (IBFV) by Van
Wijk 79 is one of the fastest algorithms for dense, 2D, un-
steady vector field representations (Figure 13). It is based
on the advection and decay of textures in image space. Each
frame of the visualization is defined as a blend between the
previous image, warped according to the flow direction, and
a number of background images composed of filtered white
noise textures. One reason it is faster than many texture-
based flow visualization methods is because it reduces the
number of integration computations that need to be per-
formed via advecting small quadrilaterals rather than indi-
vidual pixels.

Moving Textures – Max and Becker were early to intro-
duce the idea of moving textures in order to visualize vector
fields 48. One of the primary goals of this work was to use
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Figure 14: Snapshots from the visualization of a time-dependent surface mesh composed of 79K polygons with dynamic geom-
etry and topology 38.

textures in motion to produce near-real-time animation of
flow. Texture-mapped triangles are advected, or distorted, in
the direction of the flow. Also, applying this technique to 3D
flows with no modification provides results that are difficult
to perceive, at least in the case of a still image.

ISA and IBFVS – IBFV has been extended to the visualiza-
tion of flow on surfaces 38 � 80. Van Wijk presents an extension
called IBFVS, IBFV for Surfaces. Laramee et al. 38 present a
similar dense, texture-based visualization technique on sur-
faces for unsteady flow called ISA: Image Space Advection.
Both methods produce animated textures on arbitrary 3D
triangle meshes in the same manner as the original IBFV
method. Textures are generated, advected, and blended in
image space. The methods generate dense representations of
time-dependent vector fields with high spatio-temporal cor-
relation. While the 3D vector fields are associated with ar-
bitrary triangular surface meshes, the generation and advec-
tion of texture properties is confined to image space. Both
spot noise and LIC-like results can be attained. In both tech-
niques, 38 � 80 fast frame rates are achieved in part by exploit-
ing the GPU.

Van Wijk’s method is applied to potential field visualiza-
tion and surface visualization. Laramee et al.’s algorithm is
applied to unsteady flow on boundary surfaces of large, com-
plex meshes from computational fluid dynamics, dynamic
meshes with time-dependent geometry and topology. It has
also been applied to medical simulation data as well as iso-
surfaces 39. Figure 14 shows the results applied to a time-
dependent geometry and topology.

3D IBFV – IBFV has also been applied to the visualization
of 3D flow 75. The problem of how to see inside the flow
volume is addressed by varying both the noise sparsity, rem-
iniscent of Interrante and Grosch 26, and through varying the
opacity of the rendered volume similar to Rezk-Salama et
al 59. In order to achieve sparseness, Telea and Van Wijk in-
ject empty holes of noise into the 3D field, in addition to the
noise described by the original IBFV. One important com-
ponent of their method is to define a threshold value which

eliminates all close-to-transparent texel values. One disad-
vantage of the method is that the range of velocity values it
can display is limited: A texel property cannot be advected
by more than one slice along the z axis of the volume in one
animation frame. This problem is addressed by Weiskopf
and Ertl 87.

3D Texture Advection – Kao et al. discuss the use of 3D
and 4D texture advection for the visualization of 3D fluid
flows 32. The results show sparse texture noise in order to vi-
sualize inside the 3D vector field. Formidable challenges are
introduced by the memory requirements involved in using
3D and 4D textures. The proposed method does not work
well for the case of flows containing critical points for in-
coming flows from the grid boundary.

GPU-Based LIC – Heidrich et al. 23 exploit pixel tex-
tures to accelerate LIC computation. Pixel textures are an
OpenGL extension by SGI that provides the functionality of
dependent textures in combination with multi-pass render-
ing. Heidrich et al.’s implementation supports 2D, steady
vector fields only, and achieves sub-second computation
times for LIC image generation. While this method could
be categorized as a GPU-accelerated LIC technique, we po-
sition it here due to its comparability with the following tex-
ture advection techniques 27 � 88 that use the same proposed
OpenGL extension, handle unsteady flow, and thus can be
considered an extension of this technique.

LEA – Jobard et al. 27 introduce a GPU-assisted texture
advection technique for the dense visualization of 2D, un-
steady flow. While the method of Max and Becker 49 ad-
vects textures based on coarse triangular meshes, Jobard et
al. advect textures on a per-pixel basis by means of pixel
textures, which are used in a similar way as by Heidrich et
al 23. The gray-scale texture from the previous time step is
dragged along the flow field by modifying the texture coordi-
nates for the dependent texture lookup according to the flow
data. Nearest-neighbor sampling is combined with an update
of fractional texture coordinates to represent subtexel motion
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Figure 15: Three images taken from an animation of an unsteady vector field created with the Lagrangian-Eulerian advection
algorithm. 28 � 29 Image courtesy of Jobard et al.

and, at the same time, maintain a high contrast. An iterative
injection of additional noise is used to compensate for a pos-
sible loss of contrast over time. Jobard et al. also discuss the
treatment of inflow at boundaries, image enhancement by
color masking, and the use of dye advection. Because of the
limited functionality of the graphics hardware that supports
pixel textures, the implementation requires many rendering
passes and advects a texture of size 2562 at approximately
two frames per second. Moreover, the maximum resolution
of textures is restricted to 2562.

Jobard et al. extend this method to the more flexible
Lagrangian-Eulerian Advection (LEA) scheme 28 for the vi-
sualization of unsteady, 2D flow. Here, they rely on a CPU
implementation that leads to better advection quality, higher
speed, and no limitations of the maximum flow size. Par-
ticle paths are integrated as a function of time, referred to
as the Lagrangian step, while the color distribution of the
image pixels is stored in a texture and updated in place (Eu-
lerian step). The temporal coherence of the advected noise
textures is transformed into spatial coherence by blending
textures from subsequent time steps, i.e., each still frame
depicts the instantaneous structure of the flow, whereas an
animated sequence of frames still reveals the motion of the
advected texture. Jobard et al. demonstrate that the combi-
nation of noise and dye advection is useful for an effective
visualization and exploration of unsteady flow. Some results
from the technique are shown in Figure 15. This work is ex-
tended by Jobard et al. 29 in order to improve the quality of
dye advection.

Weiskopf et al. 86 present a GPU-accelerated version of
the LEA algorithm using per-fragment operations. The
GPU-based texture advection by Weiskopf et al. 88 sup-
ports bilinear dependent texture lookups without taking into
account the update of fractional coordinates. Therefore,
this approach is mainly suitable for dye advection at high
frame rates. Weiskopf et al. also demonstrate how GPU-
accelerated visualization of unsteady, 3D flows can be im-
plemented with pixel textures.

UFAC – Weiskopf et al. 85 introduce a generic texture-
based framework for visualizing 2D, time-dependent vector
fields. They propose Unsteady Flow Advection-Convolution
(UFAC) as an application of the framework for visualizing
unsteady fluid flow. Also, their approach can reproduce
other techniques such as LEA 29, IBFV 79, UFLIC 65, and
DLIC 71. Weiskopf et al. describe a GPU-accelerated imple-
mentation that, among other things, allows the user to trade-
off quality for speed.

3.4. Related Dense, Texture-Based Methods

The literature described here is not, in general, as strongly
inter-related as the literature in the spot noise, LIC, texture
advection, and GPU-based categories. For this reason we
sought an alternative schema in order to relate the different
techniques. Figure 16 shows the related methods and classi-
fies them based on the density of their results. In this case
each technique is given a subjective rating on a sparse-to-
dense scale. Sparse results look more like the results from
flow visualization using geometric objects whereas dense
techniques produce results resembling spot noise or LIC.
These methods do not fit cleanly into one of the previous
categories, nonetheless, they are important to the dedicated
topic and are briefly outlined here. Reading from top to bot-
tom in Figure 16, we visit the techniques in chronological
order.

Texture Splats – As an extension of the technique of splat-
ting from volume rendering, Crawfis and Max 9 introduce
the notion of texture splats for flow visualization. Being a
volume rendering technique, it is targeted at the depiction of
3D vector fields. As with Rezk-Salama et al. 59, it is a selec-
tive transfer function that ultimately decides which subsets
of the 3D data are shown and which are not. The transfer
functions are used to emphasize or suppress spatial regions
as opposed to ranges of data values.

Texture Transport – The texture transport method of
Becker and Rumpf 3 introduces a mathematical framework
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Figure 16: Related dense, texture-based flow visualization
methods. Each method is compared with respect to the den-
sity of the resulting visualization.

based on the solution of a time-dependent transport equa-
tion. Lagrangian coordinates are computed from the trans-
port equation and visualized using a texture mapping. The
results in this case resemble those from the geometric class
of solutions. Individual lines in the texture can be distin-
guished. The major drawback of this approach is the com-
putation time required.

Furlike Texture – Khouas et al. synthesize LIC-like images
in 2D with furlike textures 33. Their technique is able to lo-
cally control attributes of the output texture such as orien-
tation, length, density, and color via a model based on fila-
ments resembling fur.

Diffusion and Unsteady Diffusion – Preußer and Rumpf 58

as well as Diewald et al. 18 borrow a well known technique
from image analysis for visualization of fluid flow. The non-
linear, anisotropic diffusion equations from image analysis
are adopted and applied to vector fields. A noisy texture cov-
ering the domain is strongly smoothed along integral lines
while still retaining and enhancing edges in directions or-
thogonal to the flow, i.e., streamline-aligned diffusion. Suc-
cessively coarse patterns representing the vector field can
also be generated. It is applied to 2D, 2.5D, and 3D vector
fields 18 � 58. In the case of 3D, the resulting enhanced edges
are discretized and resemble streamlines or streamribbons.
In this case, occlusion becomes an important issue because
the 3D results appear somewhat cluttered.

Bürkle et al. extend this technique to the case of time-
dependent flow 6. Instead of streamline-like patterns, streak-
line patterns are generated. A blending strategy, comparable
to noise or dye injection, is introduced in order to provide the
new time-dependent texture necessary for the case of long-
term flow evolution. They propose a solution based on the
blending of different results from the transport diffusion evo-
lution started at successively incremented times. Again, the

disadvantage of this approach is the required computational
time. Also, no attempt is made to apply this method to time-
dependent 3D flow, a formidable challenge.

Contrast Analysis – Sanna et al. 63 focus on the issue of
encoding another scalar value into the texture used to visu-
alize the flow, in addition to flow direction, orientation, and
local magnitude of the field. It is an extension of a previ-
ous technique called TOSL–Thick Oriented Streamline Al-
gorithm 62. Areas of higher scalar values are characterized
by higher contrast levels in the texture and streamline tones
are generated in order to highlight these areas. The goal is
to allow an additional variable into the visualization beyond
previous techniques.

MRF – Taponecco and Alexa apply Markov Random Field
(MRF) texture synthesis methods to vector fields 72. The
results resemble a mixture of traditional texture-based meth-
ods and geometric methods. In the resulting texture, dis-
tinct streamline patterns can be seen. One drawback to this
method is performance. MRF texture synthesis methods
may require hours of computation time. How it may be ap-
plied to unsteady flow is an open question.

4. Comparisons and Discussion

In this section we briefly introduce literature that compares
and discusses dense, texture-based techniques at a meta-
level. Sanna et al. also provide a summary of this area of
research, with a different classification 61. The methods are
classified according to the dimensionality outlined here in
Section 1.2.

Flow Textures – Erlebacher et al. 19 present a class of flow
visualization algorithms called flow textures within a com-
mon conceptual framework. Flow textures are textures that
encode dense, 2D, time-dependent representations of flow.
The framework allows important ingredients of flow texture
algorithms to be understood with respect to spatial and tem-
poral correlation. A subset of the more recent visualization
techniques is described.

User Studies – Laidlaw et al. 35 present one of the few find-
ings related to human-computer interaction (HCI). They at-
tempt to assess some different visualization techniques from
the viewpoint of the user in terms of searching for and clas-
sifying critical points in the flow and predicting where a par-
ticle may end after advection. Error was highest for the LIC
technique in conjunction with classifying critical points and
the prediction of particle advection. This is probably due
to the fact that LIC images do not distinguish between up-
stream and downstream flow. User error was higher than ex-
pected for all methods. Hedgehog techniques and LIC were
also associated with high error for locating critical points.
The authors postulate that this was because in many cases
critical points near the borders of the vector field were diffi-
cult to identify.
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5. Conclusions and Future Prospects

Texture-based flow visualization algorithms are effective,
versatile, and applicable to a wide spectrum of applica-
tions. A large number of techniques have been developed
and refined. In general, which techniques are best depends
strongly on the goal of the visualization, such as for explo-
ration, detailed analysis, or presentation and on the kind of
data involved. Therefore, we believe that a large variety of
techniques should be available in order to allow researchers
to choose the most suitable one.

The problem of dense, 2D, unsteady flow visualization
is close to being solved 79. And with recent follow-up
work 38 � 80, unsteady flow visualization on surfaces is not far
behind. However, the generalization to 3D flow fields is still
unsolved, especially in the case of unsteady flow. Hardware,
arguably, will not be the primary bottleneck to solving this
challenge, but perceptual issues will. Perceiving three spa-
tial and three data dimensions directly is a difficult job for
the human eye and brain. So far, techniques based on geo-
metric objects and particle animation generalize better to 3D
fields.

The scale of numerical flow simulations, and thus the
size of the resulting datasets, continues to grow rapidly -
generally faster than the size of computer memory. For these
reasons more simplification strategies must be conceived,
such as spatial selection (slicing, regions of interest), geom-
etry simplification, and feature extraction.

Slicing in a 3D field reduces the problem to 2D, allowing
use of good 2D techniques, but care must be taken with in-
terpretation, as the loss of the third dimension may lead to
physically irrelevant results and wrong interpretation. Tak-
ing a single 3D time slice from a 3D time-dependent dataset
has similar dangers. Other spatial selections such as 3D
region-of-interest selection are less risky, but may lead to
loss of context. Reduction of data dimension, such as re-
ducing vector quantities to scalars will give more freedom
of choice in visualization techniques (such as using volume
rendering), but will not lead to much data reduction. Ge-
ometry simplification techniques such as polygon mesh dec-
imation, levels-of-detail, or multiresolution techniques will
be effective in managing very large datasets and interactive
exploration, enabling users to trade accuracy with response
time. Some areas that need additional work are:
� dense visualization techniques in 3D� multi-field visualization with scalar, vector, and tensor

data,� handling and exploring huge time-dependent flow
datasets,� user studies for evaluation, validation, and field testing of
flow visualization techniques,� visualization of inaccuracy and uncertainty 42 � 60,� more robust feature extraction techniques, especially in
the case of 3D flow.

We also note that much of the research literature presented

here demonstrates methods operating on structured, uniform
resolution grids. However, the grids used in the private, com-
mercial industry sector are often adaptive resolution and un-
structured, especially in the case of CFD 37 � 38. Thus further
research is necessary in order to integrate many of the these
methods into practical industrial applications.
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