
VISUALIZATION OF VERSION VARIATION

Majedah Mohammad Alrehiely

715803@swansea.ac.uk

October 2014

Project Dissertation document submitted to the University of Wales,
Swansea, in fulfillment of the requirements for the Degree of Master of Science

Department of Computer Science;

Department of Computer Science

Swansea University

Declaration
This work has not previously been accepted in substance for any degree and is not being
currently submitted for any degree.

Date:

Signed:

Statement 1
This dissertation is being submitted in partial fulfillment of the requirements for the degree
of a MSc in Advanced Computer Science.

Date:

Signed:

Statement 2
This dissertation is the result of my own independent work/investigation, except where
otherwise stated. Other sources are specifically acknowledged by clear cross referencing
to author, work, and pages using the bibliography/references. I understand that failure to
do this amounts to plagiarism and will be considered grounds for failure of this disserta-
tion and the degree examination as a whole.

Date:

Signed:

Statement 3
I hereby give consent for my dissertation to be available for photocopying and for inter-
library loan, and for the title and summary to be made available to outside organisations.

Date:

Signed:

Abstract

Over the past few years, the size of data has increased dramatically. Big data
sets are an issue in certain domains. There are a huge number of studies that have
taken place to address this issue. Visualizing the data is an effective way for data
representation due to the fact that we use our sight as one of the main senses to
understand information. In this project, we concentrate on the visualization of textual
data, which is in demand these days. A group of researchers in the College of Art
and Humanities at Swansea University has collected different German translations
of Shakespeare’s play, Othello, which have evolved over a long period of time. The
aim of their research is to study the variations between these different translations,
and understand how the translations have evolved throughout this period of time.
Furthermore, how they vary from one author translator to another. Our goal in the
visualization of version variation project is to develop an interactive visualization
system that applies effective visualization techniques in such a way that helps the
researchers in the College of Art and Humanities to analyze, explore and identify the
variations of theses large textual data.

Acknowledgements

Mostly, I wish to express my gratitude and appreciation to my supervisor Dr.
Robert Laramee for his guidance, support and valuable feedback. I have really ap-
preciated his patience and his positive criticism during this project. Furthermore, I
would like to thank him for his effort and motivation that encouraged me to improve
my research and programming skills. I would like to express my deepest gratitude
to my family for their endless encouragement and support throughout my life. In
addition to these people, I would like to express my appreciation to my sponsor,
the Ministry of Higher Education of Saudi Arabia, for its financial support. I thank
James Walker, a PhD candidate, for his helpful information about the visualization
of the project and the Qt GUI library. I thank Kevin Flanagan for his valuable discus-
sion and explanation of the project’s application domain. My sincere thanks to Susan
James who assisted me in proofreading my dissertation. Finally, special thanks and
appreciation go to my extended family and friends for their continued encouragement
and support.

Contents

Contents

1 Introduction 1
1.1 Project Scope and Objective . 1

2 Background 4
2.1 Related Work . 4
2.2 Previous Systems . 17

3 Data Characteristics 20
3.1 Data Source and type . 21
3.2 Data Description . 22

3.2.1 All Documents Element . 23
3.2.2 Single Document Element . 23

4 Project Specification 27
4.1 Feature Specification . 27

4.1.1 Basic Features . 28
4.1.2 Additional Features . 29
4.1.3 User Characteristics . 29

4.2 Technology Choices . 30
4.2.1 The programming Language . 30
4.2.2 GUI programming . 30
4.2.3 Additional Tools . 31

5 Visualization Using Existing Visualization Tools 33
5.1 Many Eyes Visualization Tool . 33

5.1.1 Tag Cloud . 33
5.1.2 Customizing Word Cloud Generator 34
5.1.3 Word Tree Visualization . 37

6 Project design 40
6.1 Reading and Storing the Data . 42
6.2 Visualization Generation . 48
6.3 GUI . 50

7 Project Plan and Timetable 51
7.1 Software Process Model . 51
7.2 Coding Conventions . 52
7.3 Timetable . 53

iii

Contents

7.4 Risk Assessment . 53

8 Project Implementation 55
8.1 Basic Features . 55

8.1.1 The XML File Reader . 55
8.1.2 The Parallel Text Visualization 56
8.1.3 The Actual Text Visualization 60
8.1.4 Basic User Interaction Options 60

8.2 Additional Features . 62
8.2.1 Additional User Interaction Options 62

9 Verification of Correctness 64
9.1 Visualization Information Tables . 64
9.2 Information of the Visualization Tooltip 66

10 Conclusion 70

11 Supplementary Files 71

Appendices 75

A Appendix : RECORD OF SUPERVISION 75

iv

List of Figures

List of Figures

1 Visualizing Email Content: Portraying Relationships from Conversational
Histories . 5

2 DocuBurst: Visualizing Document Content using Language Structure . . 7
3 Parallel Tag Clouds to Explore and Analyze Faceted Text Corpora 8
4 SparkClouds: Visualizing Trends in Tag Clouds 9
5 ParallelTopics: A Probabilistic Approach to Exploring Document Collec-

tions . 11
6 ShakerVis: Visual Analysis of Segment Variation of German Translations

of Shakespeares Othello . 13
7 ConVis: A Visual Text Analytic System for Exploring Blog Conversations 15
8 Othello Interactive Time-Map of VVV web tool 18
9 Alignment map view of VVV web tool 19
10 The parallel view visualization of VVV web tool 20
11 The Eddy and Viv view of VVV web tool 20
12 Basic structure of the Othello Data XML File 23
13 The structure of <doccontent> element of (Othello Data XML File) . . . 24
14 The structure of the <segmentdefinitions> element of the Othello Data

XML File . 26
15 The structure of the <alignments> element of the Othello Data XML File 27
16 Many Eyes: Tag Cloud visualization 1 35
17 Many Eyes: Tag Cloud visualization 2 35
18 Many Eyes: Word Cloud visualization 36
19 Many Eyes: Word Tree visualization 1 39
20 Many Eyes: Word Tree visualization 2 39
21 Visualization Process Diagram. 41
22 Visualization Pipeline 1 . 41
23 Visualization Pipeline 2 . 42
24 DocumentReader Class Structure . 43
25 DocumentReader Class Inheritance Graph 43
26 DocumentReader Class : ParseXML Method Graph 44
27 Document Class Structure . 45
28 Document Class Diagram . 45
29 Document Class : ReadDocument Method Collaboration Graph 46
30 BlockQuote Class Diagram . 47
31 Segment Class Diagram . 47
32 Alignment Class Diagram . 48

v

List of Figures

33 BlocksVisualization class inheritance diagram 49
34 A class hierarchy diagram of the BlocksVisualization and the custom

tooltip classes . 50
35 A typical Spiral model . 52
36 Illustration of Document Visualization Implementation 58
37 Screen captures of Parallel Text Visualization 59
38 Actual Text Visualization . 61
39 A screen capture of the User Interface. 62
40 Screen captures of the Basic User Interaction Options 63
41 Screen captures of the Additional User Interaction Options 64
42 Screen captures of the Visualization Information Tables. 66
43 The verification of the Visualization Correctness 1 67
44 The verification of the Visualization Correctness 2 68
45 The verification of the Visualization Correctness 3. 69

vi

List of Tables

List of Tables

1 Visualization Techniques Classification for the Literature Review 16
2 The key entries for table 1 . 17
3 Project Timetable . 54
4 Project Implementation Table . 55
5 Visualization Information Table 1 . 65
6 Visualization Information Table 2 . 65
7 Visualization Information Table 3 . 66

vii

1 Introduction

1 Introduction

During the past few years, there has been a dramatic increase in the size of data. Dealing

with theses huge data sets in their various formats has created obstacles in certain do-

mains. The need for presenting the data in a graphical representational format has arisen

to deal with big data sets. Transforming data into a graphical format provides a better rep-

resentation due to the fact that we use our sight as one of the main senses to understand

information.

Data visualization is a modern field which is becoming one of the fundamental re-

quirements to presenting, exploring and analyzing big data sets of various formats in

different fields. Data visualization is defined as “the communication of information using

graphical representations”. It is important for several studies such as decision making

assistance and human interpretation [Ward et al., 2010]. It is also used for many different

purposes and could be applied to different types of data.

In diverse domains such as academic, business, medical, political and commercial,

the number of documents and information are getting larger over time. This has made

it necessary for a variety of studies to take place to find a suitable solution to deal with

this problem. According to [Ward et al., 2010], data visualization provides massive and

helpful assistance in analyzing and exploring textual data. Developing an interactive vi-

sualization system to help in the process of data exploration, analyzing and retrieving is

a necessity these days. In our project we are going to focus mainly on the field of textual

data visualization.

1.1 Project Scope and Objective

William Shakespeare is one of the most famous poets and an English playwright. His

works and plays have been translated and retranslated many times into a variety of foreign

1

1 Introduction

languages, and in many languages, there are several different versions of translations of

each work. These versions of the translated plays have evolved over many decades [Geng

et al., 2013a]. Studying the changes and the way these translations differ is a recent im-

portant topic needed for studying the cultural background in that period. Therefore, the

studying of version variation of German translations of Shakespeare’s Othello play was a

new and interesting research topic for the researchers in the College of Arts and Humani-

ties at Swansea University. The reason why this topic is important for them is because of

their aim to understand how the cultural changes have evolved over space and time, and

studying the variations of the translations will provide assistance in this study. In addition

to this reason, this type of study will contribute and enable new research, new teaching

and new learning [Cheesman et al., 2012].

However, in our project we are working on the data provided by the College of Arts

and Humanities at Swansea University. A team of researchers in this College has worked

on collecting a group of about fifty-five different translated versions of Shakespeare’s

play, Othello. However, only a sub-collection of these translated versions has been con-

verted into a digital form as a parallel corpus [Geng et al., 2013a].

The main objective of this project is to design and develop an interactive visualiza-

tion system for text type data. The user of this system is Dr. Tom Cheesman, a reader

in German in the College of Arts and Humanities, and the principal investigator on the

“Version Variation Visualisation” project [Cheesman et al., 2012]. The purpose of our vi-

sualization system is to make the user able to view, compare and analyze the translations

corpus by providing an effective type of visualization techniques to represent the data.

The visualization will be designed in such a way as to assist in identifying the variations

and help them to extract the required information from the visualized data. The developed

interactive visualization system will involve multiple document visualization that applies

parallel comparison between different documents.

2

1 Introduction

Choosing this project for my dissertation was on account of my interest in the field

of data visualization in general and of my interest in developing an interactive system

that can be used to effectively deal with and represent large textual data in an expressive

format. Developing a project for this purpose is becoming extremely important and has

a huge significance due to the rapid growth of the volume of information and the huge

increase of the size of data sets.

The project that we aim to develop is significant and valuable for the researchers in

the fields of linguistics and translation, and for those in field of Art and Humanities.

We aim to design and build a visual interface system that will enable the users to find

out the essential information about each version of translations, such as the author, date,

genre, description and other related information, and explore the content of that version

of translation, compare it with other versions and identify how it differs from the others

by looking at the visualization made.

The information extracted from the graphical representation made by visualizing the

data should be helpful in understanding the role of world culture, cross cultural dynam-

ics and the perception of the history of translating cultures. It will also assist in finding

out how a piece of work would be delivered into other foreign languages and how the

same piece of work will vary when retranslated into the same language over space and

time [Cheesman et al., 2012]. Moreover, developing a system to visualize the transla-

tions of Shakespeare’s Othello will lead to developing more effective visualization tools

to represent other large data of textual form including books, newspapers, journal articles,

scripts and many others to extract and get the required information.

The remainder of this document is organised as follows: The second section presents

the background, which discusses the work related to my project and the previous system.

3

2 Background

The third section discusses the application domain and data characteristics in detail. The

fourth section presents the project’s feature specification and requirements and the choices

of technology. The fifth section examines the use of the existing visualization tools and

their limitation. Section six discusses the project design. The seventh section reviews the

plan and timeline. Section eight demonstrates the project implementation and the result

and finally the conclusion.

2 Background

The background section includes two main sub-sections. The first one presents the litera-

ture work that was most related to our project. It includes the sources and research papers

that the project relies on. The second sub-section contains a detailed description of the

previous system. The background section has been updated from the final report of my

project.

2.1 Related Work

In this section, we will discuss the main literature that was most related to our project, and

on which it basically relies. We will present the main concept of each of these researches,

application domain and dataset, and the applied visualization techniques. We also men-

tion other, closely related work.

Visualizing Email Content: Portraying Relationships from Conversational Histories

The objective of Themail [Viegas et al., 2006] is to design a tool for visualizing the content

of the archives of individual emails, throughout a period of time. It produces a visualiza-

tion of textual data gained from processed email files, starting with email archives, and

shows the relationships that will be produced according to the analysis of email archive

4

2 Background

content.

The Themail system provides various visualization techniques. It includes an email

contacts list direct visualization 1, and a Visualization panel, which displays the history of

conversations between the owner of the input email and user’s selected contact in parallel

tags, which provides direct visualization, in addition to the use of coloured circles that

provides indirect visualization to show the sent and received email messages during every

month [Viegas et al., 2006].

In Themail Visualization System [Viegas et al., 2006], the application domain is an

individual email messages. Conversation Map [Sack, 2001] is the most related literature

to Themail [Viegas et al., 2006].

Figure 1: Visualizing Email Content: Portraying Relationships from Conversational His-
tories. This figure views a screenshot of Themail Visualization System [Viegas et al.,
2006]. It shows a user”s email conversations with a friend over 18 months. Image
credit: [Viegas et al., 2006].

Mapping Text with Phrase Nets

Mapping Text with Phrase Nets [van Ham et al., 2009] paper presents a new visualization

technique for unstructured text mapping, which is named Phrase Nets. The aim of the
1Direct visualization means that the actual text appears in the visualization where it does not appear in

the indirect visualization.

5

2 Background

Phrase Nets visualization is to look for a balance in analysis and display of the targeted

text. The analysis process is based on “phrase”, which is used as analysis unit. The

‘phrase’ is the relationship between words within the text and it could be defined by

pattern matching or by syntactic analysis.

The application domain for Phrase Nets [van Ham et al., 2009] is unstructured large

textual data. It has been applied to books, poems and novels such as “Pride and Prejudice”.

The data goes through analysis and pattern matching processes before the visualizing

process. However, the visualization techniques applied in the Phrase Nets [van Ham

et al., 2009] is phrase nets direct visualization. A simplified version of Phrase Nets has

been deployed to the Many Eyes web site [IBM, nd]. Phrase Nets [van Ham et al., 2009]

was based on the idea of the “Semantic Net” [Shapiro, 1971] of artificial intelligence and

DocuBurst visualization [Collins et al., 2009a].

DocuBurst: Visualizing Document Content using Language Structure

The main concept of DocuBurst [Collins et al., 2009a] is to develop a visualization tool

that creates text summaries for a large textual data set. It provides useful interactive op-

tions, which give the user the ability to decide which text of interest to visualize. This

visualization system visualizes document content according to the annotations of “Is-A”

noun and verb hierarchies of Wordnet [Fellbaum, 1998], which can assist in the compar-

isons between documents [Collins et al., 2009a].

The main visualization techniques developed by DocuBurst [Collins et al., 2009a] are

the visualization of the Generalized Fisheye View. The Fisheye View involves a cumula-

tive view and single-node view and it provides direct and indirect visualization. Another

technique applied is Dynamic Legend indirect visualization. In addition, the Detailed

View of the input text, which is direct visualization [Collins et al., 2009a].

DocuBurst system [Collins et al., 2009a] is designed to produce informative visual-

6

2 Background

Figure 2: DocuBurst: Visual-
izing Document Content using
Language Structure.DocuBurst
visualization [Collins et al.,
2009a] using science textbook
data. The root is the word
“”idea””. Image credit: [Collins
et al., 2009a].

ization for data with large textual content for example, books and electronic resources and

any other large textual data, and is for multiple documents visualization. The most relative

work to the DocuBurst system [Collins et al., 2009a] are Generalized Fisheye Views [Fur-

nas, 1986]; Treejuxtaposer, Scalable tree comparison using focus+context with guaran-

teed visibility [Munzner et al., 2003] and WordNet, an electronic lexical database [Fell-

baum, 1998].

Parallel Tag Clouds to Explore and Analyze Faceted Text Corpora

Parallel Tag Clouds visualization (PTC) [Collins et al., 2009b] is a novel approach for

visualizing the variations between different large text corpora. The visualization methods

applied in [Collins et al., 2009b] system are the Parallel tag clouds direct visualization,

Tooltip (direct), Document Browser indirect visualization and Data-Rich Tooltip, which

provides both direct and indirect visualization [Collins et al., 2009b]. PTC [Collins et al.,

2009b] is applied to a domain that consists of a collection of more than six hundred

thousand documents of the United States Circuit Court decisions. The dates of these doc-

uments cover a period of fifty years. However, only 13 documents from that collection

are visualized by the PTC system.

7

2 Background

Parallel tag cloud system [Collins et al., 2009b] is based on Themail Visualization

System [Viegas et al., 2006], which basically aims to discover significant words from

email messages and then visualizes them as tags in parallel columns along a time axis.

The similarity between the two systems is in the concept. They are both looking for

significant words within a corpus in order to create a graphical representation of these

words in parallel columns. However, PTC provides an additional important feature that

identifies the presence or absence of a selected word. It shows precisely how frequently a

specific word is used within the visualized text [Collins et al., 2009b].

Figure 3: Parallel Tag Clouds to Explore and Analyze Faceted Text Corpora [Collins
et al., 2009b]. This shows the significant words in each document in parallel. Colours are
used to distinguish between high and low significant words. Image credit: [Collins et al.,
2009b].

SparkClouds: Visualizing Trends in Tag Clouds

The SparkClouds paper [Lee et al., 2010] introduces SparkClouds visualization, which is

a new class of the typical tag cloud visualization. SparkClouds visualization is a com-

bination of Sparklines and the basic features of typical tag cloud. This is to transfer the

changes across several tag clouds. However, Sparklines are line graphs where the axes

are implicit, rather than being drawn explicitly.

It also introduces a guided study, which aims to perform a comparison between the

proposed SparkClouds visualization, Parallel Tag Clouds (PTCs) visualization [Collins

et al., 2009b], the multiple line graphs visualization and the visualization of stacked bar

8

2 Background

Figure 4: SparkClouds: Visualizing
Trends in Tag Clouds. SparkClouds Vi-
sualization System [Lee et al., 2010]:
shows the top (25) words in a series. Im-
age credit: [Lee et al., 2010].

charts. This comparison of these four types of visualization is performed in term of accu-

racy and speed in supporting specific tasks. The tasks are topic trends, specific data and

providing an overview.

The visualization techniques performed in [Lee et al., 2010] are SparkCloud and Par-

allel Tag Cloud direct visualization and Multiple Line Graph and Stacked Bar Chart,

which both provide direct and indirect visualization [Lee et al., 2010]. The dataset used

in this study consists of five sets of typical tag clouds. The data of these tag clouds are the

most frequent seventy-five words selected from the first chapter of five different books.

The most related previous literature are Parallel Tag Clouds (PTCs) [Collins et al., 2009b]

and the Sparklines [Tufte, 2006] since it incorporates theses two visualizations.

ParallelTopics: A Probabilistic Approach to Exploring Document Collections

The concept of the ParallelTopics [Dou et al., 2011] research paper is to develop a tech-

nique for analyzing and summarizing large text corpora. It presents the ParallelTopics

Visualization System, which is an interactive analytical visual system. The proposed

system is an integration of an interactive visualization and a probabilistic topic model.

ParallelTopics uses the topic model to provide summaries of text corpora and to intro-

9

2 Background

duce the possible distribution of each individual document across the corpora. The aim of

ParallelTopics [Dou et al., 2011] is to detect the topics that are related to a document of

interest and how important each of these topics is to that document [Dou et al., 2011].

ParallelTopics involves text processing before the visualization and it requires user

interaction to answer questions for topic extraction and other tasks. The visualization

techniques applied in ParallelTopics [Dou et al., 2011] are Topic Cloud which presents

the extracted topics as direct tag clouds visualization, Document Distribution, Document

Scatterplot and Temporal View indirect visualization, and it includes actual text and De-

tailed Text View direct visualization in addition to View Coordination and Interactions,

which provides direct and indirect visualization [Dou et al., 2011].

The application domain for ParallelTopics consists of two text corpora. The first is

composed of a collection of proposals that were favoured by the National Science Foun-

dation, and the second is a collection of the publications of the period between 2006 and

2010 in the IEEE VAST proceedings [Dou et al., 2011]. The most related previous work

to ParallelTopics [Dou et al., 2011] is TIARA, the visual text analysis system [Wei et al.,

2010]. ParallelTopics [Dou et al., 2011] adds a description of topic evolution over a period

of time and it provides documents characteristics according to their topical distribution,

while TIARA [Wei et al., 2010] provides a less clear relationship between documents and

extracted topics [Dou et al., 2011].

Hierarchical Topics: Visually Exploring Large Text Collections Using Topic Hierar-

chies

The Hierarchical Topics Visualization System [Dou et al., 2013] introduces a visualization

of a big number of topics either titles or subtitles, which are contained in huge textual col-

lections. The visualization techniques used by this visualization system are tree indirect

visualization, ThemeRivers indirect visualization and the actual text direct visualization.

10

2 Background

Figure 5: ParallelTopics: A Probabilistic Approach to Exploring Document Collections.
Overview of ParallelTopics Visualization System [Dou et al., 2011]: Document Distri-
bution view top left, Temporal view top right, Topic Cloud bottom left and Document
Scatterplot bottom right [Dou et al., 2011]. Image credit: [Dou et al., 2011].

The application domain is a big textual data set of CNN news articles. The visualization

system proposed by [Dou et al., 2013] can visualize a group of 2453 different news ar-

ticles. The system is based on many previous systems including TIARA, the visual text

analysis system [Wei et al., 2010]; (hLDA) hierarchical topic model [Griffiths et al., 2004]

and LeadLine, a method to detect “Bursts” from topic streams [Wenwen Dou and Xiaoyu

Wang and Drew Skau and William Ribarsky and Michelle X. Zhou, 2012].

The main feature in the hierarchical topics visualization tool [Dou et al., 2013] is that

it has the ability to visualize large numbers of documents where the previous systems

(hLDA) [Griffiths et al., 2004]; TIARA [Wei et al., 2010] and LeadLine [Wenwen Dou

and Xiaoyu Wang and Drew Skau and William Ribarsky and Michelle X. Zhou, 2012]

are limited to a smaller number of documents. However, the (hLDA) topic hierarchies

visualization [Griffiths et al., 2004] is a based fixed size structure were the number of

topics is predefined, while the visualization in [Dou et al., 2013] system is built on a multi

level hierarchical structure with the number of topics of user selection.

11

2 Background

Visualizing Translation Variation: Shakespeare’s Othello

The purpose of Visualizing Translation Variation [Geng et al., 2011] is to design and

develop a visualization system that can be used to interactively view, explore and analyze

the differences between the German translations of Shakespeare’s play, Othello. The

application domain of [Geng et al., 2011] is a collection of German translations of Othello.

Different visualization techniques are applied to get an appropriate visualization in this

system. These techniques involve Parallel coordinates, which produce both direct and

indirect visualization in addition to Tree map and DOI-tree direct visualization and the

view of Detailed text direct visualization [Geng et al., 2011].

The system [Geng et al., 2011] visualizes eight different documents of the play. The

related work to [Geng et al., 2011] is the Parallel Tag Clouds PTC [Collins et al., 2009b].

The [Geng et al., 2011] visualization system adds a feature that enables the user to brush

any number of words to present them in the parallel tag cloud instead of presenting only

one single word, as in PTC [Collins et al., 2009b] system.

ShakerVis: Visual Analysis of Segment Variation of German Translations of Shake-

speare’s Othello

The main concept of [Geng et al., 2013a] is to design an interactive system for visual-

izing version variations. The system is used to view and compare different translations

based on analyzing segments variations [Geng et al., 2013a]. The ShakerVis visualization

tool [Geng et al., 2013a] applies several visualization techniques. Shakervis performs Par-

allel Coordinate visualization, Scatterplot View and Heat Map visualization, all provide

indirect visualization. On the other hand, the system includes Document Control Panel

and Actual Text visualization, which are direct visualization. In the ShakerVis visual-

ization tool, the application domain consists of a group of different German versions of

Othello. However, only small amount of the text of eight translations are visualized [Geng

et al., 2013a].

12

2 Background

The previous system on which ShakerVis is built is the “version variation visualiza-

tion” web tool [Cheesman et al., 2012]. In addition to the VVV web tool, ShakerVis

is based on visualizing translation variation: Shakespeare’s Othello [Geng et al., 2011].

The system proposed in [Geng et al., 2011] provides a visualization that shows how each

term would differ in each translated text, whereas in ShakerVis it shows a visualization

of segments or speeches of the translations. Moreover, ShakerVis applies the Heat Map

visualization and the Scatterplot view visualization.

Figure 6: An overview of ShakerVis Visualization System [Geng et al., 2013a]. (A)
Parallel Coordinates View (B) Heat Map visualization. (C) A Scatterplot View (D) The
Document Control Panel (E) The Actual Text. Image credit: [Geng et al., 2013a].

Visualizing Translation Variation of Shakespeare’s Othello: A Survey of Text Visu-

alization and Analysis Tools

The objective of [Geng et al., 2013b] research paper is to study and survey the freely

available text visualization tools that are suitable for visualizing the different translations

of Shakespeare’s Othello and compare these different tools. This research paper presents

a specialized comparison and it performs two types of them. The first one is the compari-

son of research prototypes, which aims to compare the visualization techniques used. The

second one is the comparison of the freely available software, which is based on compar-

ing the user interaction options each of theses tools provides.

13

2 Background

It proposes using a visualization method, which is designed for producing a special

type of analysis. This way of analyzing the data makes the user able to zoom into the

document and precisely to the segment selected by the user. The zoom-in option assists

in providing in-depth reading.

The supplementary material related to the [Geng et al., 2013b] paper, presents the

investigation applied to the state-of-the-art text visualizations from two different per-

pectives: the research prototypes for visualizing textual data and it involves the: Par-

allel Tag Clouds; ThemeRiver; TextArc; Document Contrast Diagram; SparkClouds and

DocuBurst. The second is the free off-the-shelf text visualization tools, and involves the:

ManyEyes visualization tool; Tagline Generator and TokenX. These visualization soft-

ware apply various types of text visualization techniques [Geng et al., 2013b].

ConVis: A Visual Text Analytic System for Exploring Blog Conversations

The ConVis research paper [Hoque and Carenini, 2014] presents a novel visualization

technique designed to explore and analyze blog conversations. The proposed approach

integrates new data mining methods with interactive visualization to provide effective

exploration for large textual data [Hoque and Carenini, 2014]. The main goal of the

ConVis [Hoque and Carenini, 2014] is to assist the user in identifying and extracting the

topics, views and opinions in the blog conversations.

It applies the following visualization techniques: The Thread Overview indirect vi-

sualization, The Facet Overview direct visualization and the Conversation View direct

visualization that displays the text of the actual conversation. The application domain

in ConVis [Hoque and Carenini, 2014] mainly consists of two sources, which are totally

different blogs. These blogs are Slashdot [Slashdot, nd], a blog site for technology news

and Daily Kos, a blog site for political analysis [Daily Kos, nd]. The previous work,

14

2 Background

which is more related to ConVis [Hoque and Carenini, 2014], is Pivotpaths [Dörk et al.,

2012] since they both provide Facet Overview visualization and allow the user to view

and access the relationships between the facets.

Figure 7: ConVis: A Visual Text Analytic System for Exploring Blog Conversations. A
screenshot of ConVis visualization system [Hoque and Carenini, 2014]: This shows the
visualization result of exploring blog conversation. The Thread Overview visualization
is presented in the middle; Facet Overview visualization views the topic and the authors
around the Thread Overview; and on the right the Conversation View that displays the
actual conversation. Image credit: [Hoque and Carenini, 2014].

15

2 Background

Table 1: Visualization Techniques Classification for the Literature Review: This table
shows the classification of the literature review according to the type and the visualization
techniques used.

No of Documents

Direct

1-9 10-19 20-29 30 and more

[Geng et al.,
2013a]: (DTV).

[Collins et al.,
2009b]: (PTC)
(TT) (DTT) .

[Dou et al.,
2013]: (DTV).

[Geng et al.,
2011]: (PC)
(DTV) (TM)
(DOI-tree).

[Viegas et al.,
2006] (EL)

[Lee et al.,
2010]: (PTC)
(SC) (MLG)
(SBC)

[Dou et al.,
2011]: (TC)
(DTV) (VCI)

[van Ham et al.,
2009]: (PN)

[Hoque and
Carenini, 2014]:
(FO) (CV)

Indirect

[Geng et al.,
2013a]: (PC)
(HM) (SP).

[Collins et al.,
2009b]: (DB)
(DTT).

[Dou et al.,
2013]: (TM)
(THT)

[Geng et al.,
2011]: (PC)

[Viegas et al.,
2006]: (CC)

[Collins et al.,
2009a]: (FE)

[Lee et al.,
2010]: (MLG)
(SBC)

[Dou et al.,
2011]: (DD) (SP)
(TMP) (VCI)

[Hoque and
Carenini, 2014]:
(TO)

16

2 Background

Table 2: The key entries for table 1 (The shortcut for the visualization techniques)

(CC) Color Circles (PC) Parallel Coordinate

(DB) Document Browser (PTC) Parallel Tag Clouds

(DTV) Detailed Text View (SP) Scatterplot view

(DTT) Data-Rich Tool Tip (THR) ThemeRiver

(EL) Email List View (TT) Tool Tip

(FE) Fisheye view (TM) Tree Map

(HM) Heat Map (SP) Spark Clouds

(MLG) Multi Line Graph (SBC) Stacked Bar Chart

(PN) Phrase Nets (TC) Topic Clouds

(DD) Document Distribution (TMP) Temporal View

(VCI) View Coordination and Interaction (TO) Thread Overview

(FO) Facets Overview (CV) Conversation View

2.2 Previous Systems

In the previous systems section we are going to discuss the VVV visualization tool, which

stands for the Version Variation Visualization. The VVV tool is an interactive web visu-

alization tool. The concept of the VVV project was produced by Dr. Tom Cheesman, a

reader in German, Languages, Translation and Communication in the College of Arts and

Humanities at Swansea University [Cheesman et al., 2012].

The VVV tool was developed to find out the variations between various translations

of the same literary work. The translations are different versions of translations in one

language or in different languages. It has an interactive visual interface, which is sup-

ported by an analysis tool. The application domain for this project is an experimental

corpus of various translations of the Othello play . The system was launched in Septem-

ber 2012 [Cheesman et al., 2012].

17

2 Background

Figure 8: Othello Interactive Time-Map of version variation visualization VVV web tool
[Cheesman et al., 2012]. It is an interactive map that allows the user to view the place,
date and author translator of each of the German translations of the Othello play.

The tool has some interesting features and consists of four main visualizations. They

are: the Othello Time-Map; the alignment maps; parallel views and Eddy and Viv view.

These visualizations will be discussed in the following paragraphs.

Firstly, the Othello Time-Map, which is presented in Figure 8, is an interactive map

that is used to visualize the information of all the versions of the Othello German trans-

lations. It shows the places where each of the translations was created and it displays

the author’s name. The user can explore all the versions on the map, click on each ver-

sion and then view the date, the location and the author translator name of that translation.

Secondly, the Alignment map view, shown in Figure 9. The alignment map view en-

ables the user to compare the original English text and the German Translated text. The

system views the original English text of Act 1 scene 3 of the Othello play (on the left as

shown in figure 9) and enables the user to select the targeted version of translations from

a drop-down list to view it on the right as shown in figure 9. Then the visualization is

created in the middle between both texts. The visualization consists of a list of bars, each

represents a single segment. The height of each bar expresses the length of that segment.

This shows how each author translator expands or shrinks the original text when translat-

ing. The comparison applied is segment by segment. The user can select a segment and

compare the two documents based on the selected segments.

18

2 Background

Figure 9: The Alignment map view of VVV web tool [Cheesman et al., 2012]. It enables
the user to select a version of translations from the drop-down list to start the comparison
with the original English text of the Othello play segment by segment.

The VVV web tool applies a visualization of a parallel view (shown in Figure 10)

that assists in comparing the original English text of Othello with a single version of the

German translated texts. The user can select one segment at a time for comparison. The

text presented can be sorted based on the speaker, text length or text flows. The user is

able to click on any segment of the original text to view the corresponding translated seg-

ment. The visualization shown in Figure 10 is a group of bars, each represents the length

of each segment. However, the parallel view is a very effective visualization technique in

the process of comparing and identifying variation, and it could be applied for multiple

document comparisons. This visualization technique is suitable for my project and it will

be implemented because of its efficiency.

Finally, the system implements the visualization of Eddy and Viv value, clarified in

Figure 11. It allows the user to select the Viv type, Viv value and the sorting order and

then apply them to the text.

19

3 Data Characteristics

Figure 10: The parallel view visualization of Version Variation Visualization VVV tool
[Cheesman et al., 2012]. It gives the user the ability to compare the original text of Othello
with a single version of the translated texts. The user can select one segment at a time for
comparison.

Figure 11: The Eddy and Viv view of VVV web tool [Cheesman et al., 2012]. It allows
the user to select the Viv type, Viv value and the sorting order and then apply them to the
text.

3 Data Characteristics

The data is the fundamental part in any visualization project. Since the aim of the visual-

ization is to convert the data from its original form to a graphical form in order to provide

a better understanding and representation of the data. Good understanding of data be-

haviour leads to more efficient and accurate results. In this chapter, the data relevant to

20

3 Data Characteristics

this project is discussed in detail, this includes the data source, data type and files and data

description.

3.1 Data Source and type

The type of data this project visualizes is textual type data and, as declared in the intro-

duction, it is a collection of different German translations of Shakespeare’s play, Othello.

The data was given to us by the Art and Humanities Department at Swansea University.

The evolution of these translations has been done over a long period of time. They date

from the period between 1760 and 2010. A team of researchers in the College of Art and

humanities collected these versions of translations and worked on processing and convert-

ing the data into a digital text form.

However, only a sub-collection has been digitalized and preprocessed in order to be

used with different software. This resulted in different file formats, so the data we have

is in various types. There is a group of about thirty-four different translations of the same

segment of the play in Microsoft word format, a collection of plain text files, each con-

tains a single speech from different translations, and a group of pdf files and text files of

a scene from the play.

In addition to those different files, there is an XML file that contains thirty-eight dif-

ferent German translations of a single scene of the Othello play. The data in this file is

cleaned, preprocessed and organized in a positive way by providing all the meta-data that

would be needed for further data processing.

Since our project is interested in identifying and representing the versions variations

by comparing the translations using data visualization, the XML file is the most appro-

priate data source to use. It was decided to work with the provided XML file for many

reasons. First of all, because of its well formed structure that we will discuss in the next

21

3 Data Characteristics

section. The second reason is because it includes the required information about each

version and its content. Another reason is the use of segment identification in each doc-

ument definition. In addition, the XML files can be read and processed efficiently by the

computer.

A segment refers to a smaller portion of the document, which could be as a small as

a line of text or a single word or could be a scene or paragraph of the play. Identifying

each segment and defining its related attributes is very important when we are applying

parallel comparisons between documents.

In the XML file there are thirty eight different translations plus the original English

document. The translations are for Act 1 scene 3 of the play. Each document is composed

of two main sections. The first one is the document content section, which is referred to

by the tag <docontent>. The second is the segment definitions section, which is referred

to by a <segmentdefinitions> tag and includes the meta-data related to each of the

segments presented in the first section. In the following each of these tags content and

attributes is presented.

3.2 Data Description

The XML file starts with <eblacorpus> start tag and ends with the matching end tag.

This is the essential element that includes other tags inside it. According to T. Cheesman

(personal communication, Jun 19, 2014) ebla is a “Historical name: ancient city with

one of the world’s first libraries”, and the corpus is a collection of documents [Ward

et al., 2010]. The tag has two attributes, name, which is “Othello, Act 1 Scene 3” and

description. The other tags are dicussed in the following sections.

22

3 Data Characteristics

Figure 12: The Basic structure of the Othello Data XML File. This is an example of the
main elements and attributes that are interested in this project.

3.2.1 All Documents Element

All the translations are enclosed within <documents> start and end tags, which includes

a number of <document> tags. Each document element represents a single translation

file and has a number of attributes declaring essential information about that version.

These attributes are name, author translator, copyright information, genre (book, script.

etc.), reference date, description, language code, “eng” for English and “deu” for German

language, and version information.

3.2.2 Single Document Element

Each <document> element consists of two parts <doccontent> and <segmentdefinitions>,

in addition to the <alignments> tag, which is included in all the versions of translations,

but is not included in the original English text.

1. <doccontent> element:

• It is composed of a number of <blockquote> tags.

23

3 Data Characteristics

• Each <blockquote> tag has a number of <q> tags, which refer to a “quote”.

Each quote tag indicates the beginning and the end of each segment within a

BlockQuote.

• Every <q> tag has two main attributes: data-eblatype, which could have one

of two values, either “startmarker” or “endmarker” and “data-eblasegid” that

stores the segment id. The text between the <q> start tag with the “start-

marker” and the <q> start tag with “endmarker” attribute value with the same

id is considered to be the text of that segment.

Figure 13: The structure of the <doccontent> element of the Othello Data XML File.
This is a screenshot of the original XML file presenting the <doccontent> element and
its nested elements and attributes.

2. <segmentdefinitions> element: this element is for the meta-data related to each

of the segments in the <doccontent> section.

• It is composed of a number of <segmentdefinition> elements. Each has

three main attributes: the “id”, which is the id of the segment that the def-

24

3 Data Characteristics

inition is related to; the “length”, which is the number of characters of that

segment; and finally the “startpos” which shows the start position, the number

of characters before the segment, of that segment in the document.

• Each <segmentdefinition> element has a <segmentattributes> element

that has one or two <segmnetattribute> elements.

• The <segmentattribute> element has two main attributes. The first is “at-

tribname” which refers to the attribute name, and can have one of two values,

type or speaker. The second attribute is “attribval” that identifies the value of

the attribute name depending on its type. If “attribname” value is “speaker”, it

identifies the name of the speaker of the related segment. By contrast, if “at-

tribname” value is “type”, it identifies the type of that segment. For example,

the type could be a speech or S.D. According to T. Cheesman (personal com-

munication, Jun 19, 2014), S.D is a stage direction, which, in a play, could be

”Enter a Clown” or ”Sound of thunder”.

3. The <alignments> element: the alignment element is an element that is included

only in the translated documents and not in the base text. It is for mapping each seg-

ment of the original English text with the corresponding segment in the translated

text for comparison purposes.

• The <alignments> tag consists of a number of <alignment> tags.

• Each <alignment> has five attributes. These attributes are: id to give the

alignment a unique number; notes; status; BaseTextSegIds that stores the ids

of the segment in the base text and VersionSegIds that stores the ids of the

same segment in that version of translation. This assists in mapping all the

segments of the translated text with the corresponding segments in the original

text.

25

3 Data Characteristics

Figure 14: The structure of <segmentdefinitions> element of the Othello
Data XML File. This is a screenshot of the original XML file presenting the
<segmentdefinitions> element and its nested elements and attributes.

There are a number of HTML elements such as <p>,
, <i> and , which are

not stored and only the text between them is.

26

4 Project Specification

Figure 15: The structure of the <alignments> element of the Othello Data XML File.
This is a screenshot of the original XML file presenting the <alignments> element and
its nested elements and attributes.

4 Project Specification

In the project specification section, the features specification of our visualization system

will be discussed. The feature specification will include the basic features that the system

should have and the additional optional features. The user characteristics for the system

will also be presented. In addition, the technology choices for developing the software

will be discussed. However, the project specification, discussed in the interim document

and will be modified and updated here in final dissertation.

4.1 Feature Specification

The main goal of my project is to develop an interactive visualization system for visualiz-

ing a group of different text documents. The result of this visualization should assist the

user in identifying and discovering the variations between these documents easily and ef-

ficiently. The aim is to develop a visualization system for that purpose with the following

27

4 Project Specification

features.

4.1.1 Basic Features

1. An interactive user interface should be implemented in our visualization system.

2. The user interface should include an option that makes the user able to select the

file that will be read by the software. This option should allow the user to browse

and select the data source by using open file dialog.

3. Only the XML file format is acceptable to be opened.

4. The system should support reading and parsing XML file format.

5. After reading and parsing the XML file, the user should be able to select the differ-

ent translations in the file. A drop-down list, with items names refers to different

versions of translations and gives the user the ability to select between the transla-

tions.

6. When a version of translation is selected a visualization of that version will be dis-

played in the window in addition to the actual text of that version in a text browser.

7. The user should be able to view two different translations at the same time in parallel

view.

8. Single document and multiple documents visualization will be provided.

9. For multiple documents visualization, the comparisons between documents will be

based on blocks and segments.

10. The visualization represents the overall size of the document, based on the num-

ber of characters and the size of segments within that document. It is composed

of coloured individual rectangular blocks, each of which represents a single Block-

quote of a document and its height shows its size compared to the document size.

28

4 Project Specification

A further description about the visualizations that will be implemented and the

techniques that will be used are presented in the project design section.

4.1.2 Additional Features

1. In the case of multiple documents visualization, the ability to visualize more than

two documents in parallel will be studied. Two documents visualization will be

implemented and considered as a basic feature of our visualization system.

2. View a brief summary of the selected version of the translation. This summary

provides the user with basic information about the selected translation such as the

author translator name, date, genre, description and so on. A summary about a

translation is viewed when the translation is selected.

3. Provide alignment visualization, which is composed of numbers of lines that are

painted between the corresponding segments of the base-text and the translation.

4. Add an option to view and hide the segment ids before each segment text in the text

area.

5. Add On-Mouse-Over feature to the visualization to show the segment id and the

segment text when the mouse moves over the visualization of a specific segment.

4.1.3 User Characteristics

The idea and the requirement of this project, discussed in the introduction, indicate who

will use and evaluate the developed visualization tool. The researchers in the College of

Art and Humanities at Swansea University are the users of version variation translation

visualization system.

29

4 Project Specification

4.2 Technology Choices

According to the project specification and the required features presented previously, the

selection of the technology needed to develop our software was made. The programming

language and the additional tools selected are best suited to the development framework.

The tools needed, beside the programming language are: the GUI library to support user

interaction with the program; graphics library for creating visualization; backing up tool

and code commenting. In the following, our choices of technology are going to be dis-

cussed.

4.2.1 The programming Language

C++ programming language is the language chosen to be used to build our software. C++

was basically developed from C. It is a general-purpose and powerful programming lan-

guage that was developed to be used in a conventional compilation and runtime environ-

ment, which is the C programming environment. C++ has the advantage of the efficiency

of low-level programming; it has features of manipulating hardware facilities directly and

efficiently [Stroustrup, 1997]. Moreover, it was decided to use C++ programming because

of its support to a variety of libraries, especially graphics and the GUI programming li-

braries.

4.2.2 GUI programming

In building our system C++ programming language with the Qt library for GUI program-

ming support will be used. Qt is a development framework, which is considered to be

comprehensive. However, there are a variety of quite good features in Qt making it a

more preferable framework to be used in developing our system than other frameworks.

Its good features are:

• It is well documented. A helpful and inclusive documentation is available on the Qt

project/ documentation website [Qt, nd].

30

4 Project Specification

• It is a free and open source platform.

• A lot of advanced features are provided by Qt, and all the features we need for

building our project are available in Qt. For example for reading and manipulating

the XML file format, there are built-in functions in Qt for reading and writing XML

files.

• It has the advantage of platform independency, the graphical applications gener-

ated by Qt are using the “write once, compile anywhere” approach [Blanchette and

Summerfield, 2008].

• Moreover, Qt libraries and tools are not restricted, they can be used and run on var-

ious environments and on various operating systems [Blanchette and Summerfield,

2008].

4.2.3 Additional Tools

In addition to the basic programming tools that are necessary for building the basic spec-

ification of our project, the following supplementary tools were chosen.

4.2.3.1 Doxygen: While designing and developing a software project, it is very impor-

tant to take into account the source code documentation. The source code should be well

commented and explained to facilitate the modification and maintenance processes.In our

project, Doxygen is used for source code documentation. Doxygen is a widely used tool

for generating documentation for C++ source code. It also supports many other program-

ming languages.

Doxygen generates documentation in different formats including pdf and HTML for-

mats [Doxygen, nd]. The Doxygen tool is provided by Qt creator. Doxygen is used to

create source code documentation in HTML format and to create the collaboration and

hierarchy diagram.

31

4 Project Specification

4.2.3.2 Git Repository: For source code backup requirement, a remote repository that

is hosted on BitBucket website will be used. This helps in organizing the development

process of our software and in keeping an updated version of the software available.

QT creator supports the use of the “Distributed Version Control System” tool Git that

enables the user to push the project code into the remote repository, clone it, modify it,

and commit some changes to the repository.

32

5 Visualization Using Existing Visualization Tools

5 Visualization Using Existing Visualization Tools

Visualizing textual data is in demand in many different fields due to the dramatic increase

in the size of data. Visualizing texts helps in exploring the content, analyzing the text and

understanding the data generally. However, before starting to design our visualization

tool. It is useful to explore and use the free available text visualization tool with the

Othello data. Using these tools with our dataset and looking at the applied visualization

techniques will assist us in the process of selecting and implementing the appropriate

visualization techniques for our tools. In the following, the advantages and the limitations

of the tested tools will be discussed.

5.1 Many Eyes Visualization Tool

ManyEyes is a web visualization tool developed by IBM. This tool provides variant types

of visualization that could work with different types of data sets. The web tool allows the

user either to choose from the existing data sets or upload his/her own. Using ManyEyes

requires user registration for a free membership in order to benefit from its services.

ManyEyes offers a range of services for users including choosing a data set, selecting

a visualization method, creating the visualization and saving it. It allows the user to pro-

vide his feedback about the tools. However, this is a public tool that is available online

at [IBM, nd].

5.1.1 Tag Cloud

Tag Cloud is a common type of text visualization that visualizes the words in the docu-

ment according to their frequency in that document. The visualization technique depends

on changing the size and the colour of the words in the document depending on their fre-

quency. This tool was used with one German translation document of Othello. The result

of the visualization is shown in figure 16 .

33

5 Visualization Using Existing Visualization Tools

As presented in figure 16, the system lists the words in the document in parallel rows

based on their appearance in the document. The colour and size of each word represent

the word frequency in the text. The user is able to search for a word of interest within

the visualized text. The system offers a feature for displaying the original context of the

word and the number of its occurrences when the user moves the mouse over the word as

presented in figure 17. There are no additional features provided such as elimination of

unwanted words or a group of words selected.

The benefits of using this tool with Tag Cloud visualization is the fact that it provides

fast exploring of the text content. The user can identify the most and least common words

in the document, the number of occurrences of each word, viewing its context within the

text and search for a specific word.

There are some limitations of this tool. It visualizes all the words in the document

without any exclusion. The user will not be able to eliminate the words which are not of

interest or the very common words. There is no feature enabling the user to select a group

of words. The user can only look up one word at a time. Since the Tag Cloud visualization

is a single document visualization technique, this will not be a very effective technique if

the objective is to compare the different translations.

5.1.2 Customizing Word Cloud Generator

This is similar to the previous Tag Cloud visualization, but with more customization and

interaction options. The layout of the visualization can be changed. The appearance and

the content of the layout can be adjusted according to the user settings. For appearance

changes, the user can choose: the colour theme and variance; the direction of the words

in the cloud such as horizontally, vertically etc.; the font and change the words’ cases.

For the content, the system detects the language of the data set entered by the user.

34

5 Visualization Using Existing Visualization Tools

Figure 16: Many Eyes: Tag Cloud visualization. The visualization of Tag Cloud on Many
Eyes web visualization tool [IBM, nd] using the data set (Act 1 scene 3 of Othello) of one
version of the German translations. All the words in the text are listed and visualized by
diiferent colours and sizes according to their frequency in the document.

Figure 17: Many Eyes: Tag Cloud visualization. The visualization of Tag Cloud on Many
Eyes web visualization tool [IBM, nd] using the data set (Act 1 scene 3 of Othello) of one
version of the German translations. This shows the result of the user search for a specific
word. The number of occurrences and the word context in the original text is shown.

It overcomes the main the limitation of tag cloud by providing a feature for excluding

the most common words for each language. Furthermore, it allows the user to ban some

words of his/her selection. Figure 18 examples of these options.

35

5 Visualization Using Existing Visualization Tools

(a) The visualization layout with the default settings

(b) The visualization layout for the same data, but with changing the number of words,
the words direction, the colour theme and the word cases.

Figure 18: Many Eyes: Word Cloud visualization [IBM, nd]. Both of the visualizations
use the same data set, which is one version of the German translation of Othello.

36

5 Visualization Using Existing Visualization Tools

5.1.3 Word Tree Visualization

Word tree visualization is a visualization technique that represents the frequency of a term

of interest and its context within a single document. The term is represented as the root

of the tree and the branches of the tree are the different contexts of this term in the doc-

ument [Ward et al., 2010]. In the word tree visualization provided by Many Eyes [IBM,

nd] shown in figure 19, after selecting the data set, the user has to select a specific word

“a term of interest” to start the visualization process. This term becomes the root of the

tree, and the branches of the tree contain the context in which that term is presented in the

document. The number of occurrences of the term is displayed on the top. However, the

the branches show the different contexts, while the size represents the frequency of the

root term within the data set.

The user interaction options applied are:

• Term of interest selection i.e. selecting the root of the tree.

• Moving backward and forward through the root and its branches.

• The user is able to select the tree direction, start or end. Start means that the

branches show the text, context, after the selected word. And end means that the

branches show the text, context, before the selected root. The difference is clarified

in figures 19a and 19b.

• Sort the branches according to their occurrences, frequency or their alphabetical

order as shown in figure 20a.

• Select the view modes, the highlighter and clicks will zoom, as shown in figure 20b.

The word tree visualization in the Many Eyes web tool has many benefits. This in-

cludes: the useful user interaction options presented above; the direct visualization fea-

ture; exploring sentences that contain the word’s of interest and identifying the words’

37

5 Visualization Using Existing Visualization Tools

frequencies, which is a general advantage of the word tree technique.

On the other side, there are some limitations: it only shows a small part of the context

of the root; the system gives no recommendation about what terms the user can start with;

it does not give the most common words in the document. In general, the word tree is

for single document visualization and is effective for exploring texts and identifying the

frequencies of terms.

38

5 Visualization Using Existing Visualization Tools

(a) Start: The root term is at the start in the context

(b) End: The root term is at the end in the context

Figure 19: Many Eyes: Word Tree visualization. The visualization of Word Tree on the
Many Eyes web visualization tool [IBM, nd] using the data set (Act 1 scene 3 of Othello)
of one version of the German translations. The root of the tree is selected by the user, the
branches show the contexts.

(a) Branches Sort
Options

(b) View Modes
Options

Figure 20: Many Eyes: Word Tree visualization [IBM, nd]. This figure shows the user
interactive options.

39

6 Project design

6 Project design

According to the type of the data that needs to be visualized, data visualization has three

main fields .These three fields are: volume and flow visualization, considered as scientific

visualization, and information visualization. In scientific visualization the data is spatial

data where the data in information visualization is abstract and does not exist in a spatial

domain. In our project, the data that we work on is abstract data. There are two main

issues which make the field of information visualization more complex and challenging.

The first is the complexity of the data which means the data may come in varied forms

and structures. The second is the scalability which is related to dealing with a big amount

of information.

Developing a process for a computer-based visualization system according to, [Ware,

2004], goes through four basic stages: The four basic stages according to [Ware, 2004]

are:

1. Data collecting and storing.

2. Data processing and transformation.

3. Produce graphics and display the visualization output.

4. Human perception and cognitive processing, observation.

These stages are joined together in a series of feedback loops, as illustrated in figure

21.

The visualization pipeline clarifies the visualization process, see figure 22, and clearly

defines the stages of designing and developing the visualization system. It provides a set

of organized stages for generating a visual representation of data. According to [Ward

et al., 2010], the visualization pipeline is described as “the process of starting with data

and generating an image, a visualization, or a model via the computer”, this process ends

40

6 Project design

Figure 21: Visualization Process Diagram [Ware, 2004]: This schematic diagram shows
the basic stages of the visualization process [Ware, 2004].

with the user interacting with the data. The stages of the visualization pipeline are illus-

trated in figure 22.

Figure 22: The Visualization Pipeline. Image Credit: based on the Visualization Pipeline
in [Ward et al., 2010].

In designing and developing our visualization software two main stages are required.

The first stage is reading the different translations from the data source XML File, which

is described in detail in the data characteristics section, and the second is the visualization

generation stage. These two stages will be discussed in the following subsection. In

addition, class and collaboration diagrams of the software are included.

41

6 Project design

Figure 23: An example of the visualization pipeline. There are different visualization
pipeline, but they are all composed of a number of steps to transform data into graphical
representation and display it on the screen. Image credit: [Ward et al., 2010].

6.1 Reading and Storing the Data

As discussed in the data characteristics section, the data source is an XML file that in-

cludes thirty eight German translations of (act 1, scene 3) of Othello together with the

original English text. An appropriate design using the concept of object-oriented pro-

gramming has been developed to read, properly and efficiently, the required data and

meta-data from the data source. This object-oriented structure facilitates maintaining, en-

hancing and modifying the system during the development process. In the following, the

structure of the main classes that are used to read and store the data will be presented.

• DocumentReader Class:

The DocumentReader class is the base class that is designed mainly for reading the

translations and parsing the XML file. Document class is part of the Documen-

tReader class. During the process of parsing the XML file, a new Document class

object is created for reading each translation’s content and metadata. The structure

of the DocumentReader class is presented in figure 24.

42

6 Project design

Figure 24: DocumentReader Class Structure : DocumentReader class parses the XML file
and creates a Document class object for each translation. Each Document class object is
composed of a number of BlockQuote class objects. Each BlockQuote object is composed
of a number of Segment class objects.

Figure 25: DocumentReader Class Inheritance Graph.

• Document Class:

The Document class reads the basic information about each document such as: the

43

6 Project design

Figure 26: DocumentReader Class : The collaboration graph for ParseXML method of
DocumenReader class, which is the base method for analysing the XML file content as
generated by Doxygen.

document name; author translator name; copyright information; genre; reference

date; language code and description. In addition, it reads the content of the doc-

ument. Each document in the XML file has three main sections: the first is the

document content; the second is the segment definitions and the third is the align-

ments section, except for the original English document, it does not contain an

Alignments section. Since the document content section is composed of a group

of Blockquotes, the Document class creates a new BlockQuote class object to read

every Blockquote. The segment definition section is read by the Segment class, be-

cause it is additional information about the segments. For the alignments section, a

new Alignment class object is created. The Document class structure is illustrated

44

6 Project design

Figure 27: Document Class Structure :
Document content in a group of Block-
Quote objects and alignments is a group
of Alignment Objects.

in Figure 27.

Figure 28: Document Class Diagram as generated by Doxygen.

• BlockQuote Class:

The BlockQuote class is designed to read the quotes in each document and is part

of the Document class. Each quote is composed of a number of segments. The

45

6 Project design

Figure 29: Document Class : The collaboration graph for ReadDocument method, which
is the base method for reading each document in the XML file as generated by Doxygen.

BlockQuote class creates a Segment class object for each segment. Each segment

inside the Blockquote has a text and unique Id. The segment Id is used for many

purposes, including getting the additional segment information from the segment

definitions section of the document and getting the segment alignment information.

• Segment Class:

46

6 Project design

Figure 30: BlockQuote Class Diagram as generated by Doxygen.

The Segment class is part of the BlockQuote class and basically it is used to store all

the information related to one segment such as segment Id, text or content, speaker,

length, start position and end position. Furthermore, it stores the embedded seg-

ments information in case the segment contains embedded segments.

Figure 31: Segment Class Diagram as generated by Doxygen.

• Alignment Class:

The Alignment class is part of Document class, since the alignments come in a

separate part or element in each document. The Alignment class stores the align-

ment information of the document, where each “Alignments” section is composed

47

6 Project design

of a list of Alignments. Each Alignment has an Id to define the Alignment, version

segment ids and the corresponding base text segment ids that are related to that par-

ticular segment. This information assists in connecting each segment of a version

of translations with the corresponding segment or segments in the base English text.

Figure 32: Alignment Class Diagram as generated by Doxygen.

6.2 Visualization Generation

The Visualization Generation Stage comes after reading and storing the data. The classes

being designed for rendering the visualization are inherited from the QWidget class,

which is the Qt base class for all the Qt GUI objects. Inheriting the visualization classes

from the QWidget class allows them to paint themselves on the screen, which is the pur-

pose of the visualization class, and it makes them receive the system events such as the

mouse events, important to provide user interaction. The visualization widget is made to

be a part of the main interface, and it will be generated and rendered after reading the data

from the selected file.

However, as presented in the Project Specification Section, a parallel visualization of

the translations is needed in order to show the variation between them. Our visualiza-

tion method is based on the BlockQuotes and Segments of each translation. A detailed

description about the visualization classes is presented in the following sections:

48

6 Project design

• BlocksVisualization Class: The BlocksVisualization class inherits the QWidget

class of the Qt Library. It provides the parallel text visualization, which is the basic

visualization in our project. The theoretical concept of this visualization is to cal-

culate the length of each Blockquote, including all the segments contained within

it, in the document i.e. the number of characters in the Blockquote and then paint

them as rectangular blocks, where the height of each block is calculated accord-

ing its length. Furthermore, it renders the alignments between the corresponding

segments of the selected version of the translation and the base-text based on the

alignment information given in the document. The class hierarchy of the BlocksVi-

sualization class is shown in figure 34.

Figure 33: BlocksVisualization class inheritance diagram as generated by Doxygen.

• CustomizedToolTip Class: The CustomizedToolTip class inherits the QWidget

class. It is designed to provide the user with the required information about the

visualization when he/she moves the mouse over specific areas of the visualization

widget. The class hierarchy of CustomizedToolTip class is shown in figure 34.

49

6 Project design

• ColorsCollection Class: This is a simple class that stores colour values to be used

later in rendering the visualization. The purpose of this class is to avoid the re-

dundancy of colour definitions and to facilitate accessing the required colour by its

name rather than its actual value.

Figure 34: A class hierarchy diagram of the BlocksVisualization and the Custom Tooltip
classes.

Further description about these classes is discussed in the project implementation section.

6.3 GUI

For the Graphical User Interface, there is one main class, which is the MainWindow GUI

class.

• MainWindow Class: is a class for creating the main window in our software and

it contains the essential graphical user interface. The GUI provided by the Main-

Window class allows the user to select the data source to start the data analysis

process and visualization rendering. This class connects the user interface with the

other classes in the software such as DocumentReader class, which is responsible

for parsing the XML file.

50

7 Project Plan and Timetable

7 Project Plan and Timetable

The project plan section reviews the timeline of the project and discusses the methods used

to evaluate the progression throughout the development process. It involves: the software

process model; the coding conventions; project timetable and finally risk assessment. The

project plan and timetable section was discussed previously in the interim document.

7.1 Software Process Model

The software process model is the development strategy that guides the software engineers

during the project development. This development strategy is described as a problem-

solving loop that starts with a defined problem, develops a solution and terminates with

a complete system. However, choosing the proper software process model depends on:

the nature of the project; the kind of application needed to be developed and the method

needed to be applied [Pressman, 2001]. The process model is composed of a set of phases,

each of which has to be accomplished before moving to the next phase. The software pro-

cess model is an iterative process that allows each phase to be modified and edited many

times until the project is completed.

There are many different software process models, each of which has different char-

acteristics. The focus will be on the chosen model. However, in order to decide which

software model is the most suitable for developing this project, the pros and cons of dif-

ferent types of software process models had to be taken into consideration. This resulted

in using the Spiral model.

The Spiral model, which is presented in figure 35, was mainly developed to combine

the iterative feature of the Prototyping model with the systematic, controlled features of

the Waterfall model. It was decided to use the Spiral model because it assists in providing

a rapid development process of incremental versions of the developed software, which

51

7 Project Plan and Timetable

can be modified during the software process life cycle.

During the early stages of the software process, the incremental version could be just

a prototype of the software. A complete version of this prototype is increasingly produced

during the later stages of the process [Pressman, 2001].

A Spiral model consists of many tasks. The number of these tasks ranges between

three to six task areas. Figure 35 shows a typical Spiral model consisting of six task

areas. These tasks are: customer communication; planning; risk analysis; engineering;

construction and release and customer evaluation [Pressman, 2001].

Figure 35: A typical Spiral model. Image credit: [Pressman, 2010].

7.2 Coding Conventions

It is significantly important to have a well designed and structured code. Following an

appropriate coding convention helps to keep the software source code organized, and

makes it much easier to manage, modify, and update the code. In coding the software

system, “Bob’s Concise Coding Conventions (C3)” [Laramee, 2010a] is followed. Bob’s

Concise Coding Conventions is a set of ten concise rules that are simple and easy to

52

7 Project Plan and Timetable

follow. These rules are applied during the software design and implementation processes

to keep the source code in an organized format. Following these rules assists in producing

a successful software project and helps in writing a professional code that is easy to read

and modify.

7.3 Timetable

In planning the project, the time required for each task to be completed is specified and

it is a very important aspct of the project. Bob’s minutes of meeting protocol [Laramee,

2010b], which is very useful to manage, organize and give the meetings a structure, is fol-

lowed. All the project’s tasks are broken down into smaller tasks and assigned a deadline

for them to be accomplished before the next meeting. Table 3 shows the timetable that

reviews the progression of the project and the deadlines. This will help in evaluating the

progression we make throughout the project’s development.

7.4 Risk Assessment

Risk management is a significant field that is a requirement in different domains such

as: the national security; chemical industry; nuclear power reactors; financial investments

and many others. In 1989, the risk management field of software project development

was acknowledged as an independent field.

The role of risk management of a software project is to continuously: indicate; anal-

yse; trace and control the risks related to the software development process. Risk man-

agement provides a significant contribution in the success of the software development

process. In contrast, perceiving risks in a non systematic manner leads to reducing the

effectiveness and the sufficiency of the software project [Sarigiannidis and Chatzoglou,

2011].

53

7 Project Plan and Timetable

Table 3: Project Timetable

Description Date

1 Initial document deadline 12 March 2014
2 Update the literature review to follow a specific structure

[Laramee, 2011]
4 April 2014

3 Start writing the final report + update the literature review 11 April 2014
4 Read the translations of txt file format 17 April 2014
5 Project plan and timetable 2 May 2014
6 Final report deadline 6 May 2014
7 Study the XML file structure + using the existing visualiza-

tion tools
4 June 2014

8 The project object-oriented design 16 June 2014
9 Read a single document from the XML file 23 June 2014
10 Extract specific information about the document 9 July 2014
11 Read segments and blockquotes of the document 23 July 2014
12 Read segments definitions and embedded segments 30 July 2014
13 Read all the translations and their meta-data 6 August 2014
14 Display the documents content on the GUI + add user op-

tions
13 August 2014

15 Parallel text visualization 27 August 2014
16 Read the translations alignments 19 September

2014
17 Draw the alignments between the corresponding segments 30 September

2014
18 Add some interaction features +writing the dissertation 6 October 2014
19 Add tables for testing the visualization +writing the disser-

tation
14 October 2014

20 Add customized tooltip to show information about the visu-
alized text

20 October 2014

21 Proofread the dissertation 23 October 2014
22 Dissertation document deadline 31 October 2014

However, discovering and specifying the risks in the early stages of the software pro-

cess is the key for an efficient risk management. Since the Spiral model for the software

development process is used, it necessitates a direct consideration of potential technical

risks at all stages of the software development. Implementing the Spiral model accurately

should decrease potential technical risks before they become more complex [Pressman,

2001].

54

8 Project Implementation

8 Project Implementation

In the project implementation section, the project specification section and discuss the

project application of the project requirements is extended. The requirements changed

during the project development process. The implementation of basic and additional fea-

tures are presented in table 4. In the following, the details of the implementation of the

project features are illustrateed.

Table 4: Project Implementation Table

Implementation Progression
Basic Features Level
1) XML File Reader Done
2) Parallel Text Visualization Done
3) Alignments Visualization Done
4) Actual Text Visualization Done
5) Single and multiple documents visualization. Done
Additional Features Level
1) User interaction options:

a) Show/hide segment ids before segment text. Done
b) Show segment Id and text on-mouse-moves over. Done
c) Document summary on-mouse-over Done

2) Visualize more than two documents in parallel. Done
3) Visualization Information Tables. Incomplete

8.1 Basic Features

This section includes a detailed description of the implementation of the must-have fea-

tures of the software. It involves the implementation of the XML file reader, the visualiza-

tion rendering and the implementation of the user interaction options. In addition, screen

captures of the software interface are added to provide further illustration.

8.1.1 The XML File Reader

The greatest challenge in this project is reading and parsing the XML file properly. As

the structure of the XML file discussed in the data characteristics section shows, there are

many elements and nested elements and a lot of attributes that need to be stored correctly,

55

8 Project Implementation

in order to move to the next step, which is the visualization rendering step. Good object-

oriented design of the software definitely helps in completing this task correctly and leads

to the creation of a successful software project. The proposed design for the file reader

makes the process of reading and refining the data and the meta-data easier to manage and

modify.

Qt, which is the framework being used with C++ programming language to build our

software, includes and supports different libraries for reading data from different files for-

mat. QFile and QXmlStreamReader are the libraries used in our project. QFile is a class

that supports many methods such as: opening, closing, reading and writing the different

files. QXmlStreamReader class also has many methods that assist in reading the elements

of the XML file. It reads the XML file as a stream of tokens, and facilitates the process of

identifying the token name, attributes and type.

The main class that is responsible for opening and reading the data source file is the

DocumentReader class. This class analyses the XML file and creates a Document class

object for every document element. Each document represents a version of the transla-

tions and contains document content and meta-data. The object-oriented design of the file

reader i.e. the DocumentReader class is illustrated in the project design section.

A GUI has been designed to allow the user to load the file and interact with the data

after the file content has been processed by selecting the document to display. More details

about the output of reading the data will be provided in the actual text visualization section

and in the user interaction options section.

8.1.2 The Parallel Text Visualization

The main visualization in our project is the Parallel Text Visualization, which is designed

to help in comparing the base text with the other translations and in comparing each

56

8 Project Implementation

translation with the others. The concept of this visualization is to draw the document,

base-text or translation, and its BlockQuotes based on their length, which is the number

of characters. Three documents are visualized in parallel. The base-text document is

drawn in the middle and the other two documents,selected by the user, are drawn on each

side of it. Each document is drawn as a list of blocks, each visualized block represents

a single BlockQuote of the document. The height of each block in the visualization is

calculated from the number of characters of the related BlockQuote in the document, and

expresses the percentage of that block relative to the whole document. The parallel text

visualization is created by the BlocksVisualization class. The visualization generation

process goes through the following steps:

1. Specify the height and the width of the widget in order to scale the visualization to

be painted within the widget area.

2. Specify the document drawing area. This is to specify the maximum and minimum

possible height for a document according to the height of the widget.

3. Calculate the block length. Since the block is a BlockQuote composed of a number

of segments, then the block length is calculated by the equation:

blockLength =
n
Â

i=0
segment(i).getLength() (1)

Where n = the number of segments in the BlockQuote and getLength() method

return the number of characters in the specified segment.

This process is repeated for all Blockquotes in the document. The result of each

“blockLength” is then added to a list called blockLengths that stores the lengths of

all the blocks.

4. Calculate the document total length from the sum of all blocks lengths by the equa-

tion:

documentLength =
n
Â

i=0
blockLengths(i) (2)

57

8 Project Implementation

Where n = the number of BlockQuotes in the document, blockLengths(i).size().

5. Draw the blocks of the documents. This method is firstly invoked to draw the base

text document blocks and then to draw the two other documents based on the user

selection.

6. The visualization is changed according to the user selection of the documents.

Figure 37a and figure 37b show the result of the Parallel Text Visualization for differ-

ent translations.

Figure 36: Illustration of Document Visualization Implementation.

The Alignments Visualization:

The Alignments Visualization is part of the Parallel Text Visualization, and is created

by the same class. The Alignments Visualization draws the lines between the transla-

tions and the base-text. The implementation of this visualization is performed during

the implementation of the Parallel Text Visualization. During the drawBlocks method,

Qhash tables are created to store the segments Ids and their coordinates values. Qhash is

a Qt class, which generates a dictionary to store the information on key and value format.

These tables are used to create the alignments between the documents and they are also

58

8 Project Implementation

(a) Parallel Text Visualization 1. (b) Parallel Text Visualization 2.

Figure 37: Screen captures of Parallel Text Visualization.

used later in the VisInfoTable class, which shows the information used in alignments vi-

sualization.

Three QHash tables are created from information based on the alignments part of each

document. These tables are generated when the user selects a document from the list, and

they are:

1. Table (1): is to store the version segments ids of the selected translation and the

corresponding base-text segments ids. This table stores all the alignments imported

from the alignments part in the selected document.

2. Table (2): is to store the version segments ids of the selected translation and the

Y coordinate values of where these segments have been painted on the widget in

parallel text visualization.

3. Table (3): is to store the base-text segments ids and the Y coordinate values of

where these segments have been painted on the widget in parallel text visualization.

These tables are used as the follows:

1. Start with table number 1 and get the version segments id.

59

8 Project Implementation

2. Get the Y coordinate of this segment from table number 2.

3. Get the corresponding base-text segment id for this version segment id from table

number 1.

4. Get the Y coordinate of base-text segment id from table number 3.

5. Draw the alignment lines between the correspondence segments based on this in-

formation.

6. This process is repeated until all the alignments are drawn.

The result of the alignments is shown in figure 37a and figure 37b.

8.1.3 The Actual Text Visualization

In the main user interface, actual text of the document selected by the user tis allowed o

be displayed in a text browser. The user can select the document from a drop-down list.

The drop-down list items are filled directly after the user selects the data source file. This

is performed by counting the number of documents in the file and adding the documents

referring to the authors’ names and the reference dates as items.

The text is displayed according to the segments in the document. The segment speaker

and the segment text of all the document’s segments is extracted and displayed on the

text browser relative to their order in the document. There is an additional option that

enables the user to show and hide segments ids as a part of the text. Moreover, additional

information about the document is presented in a tooltip that is shown when the mouse

moves over the text browser, presented in figure 38b.

8.1.4 Basic User Interaction Options

In this section, the user interaction options implemented in our software are illustrated.

The main user interface is shown in figure 39, followed by a detailed description of all of

its component.

60

8 Project Implementation

(a) Actual Text Visualization 1:
Shows the segments text and the
speaker (in blue).

(b) Actual Text Visualization 2:
Shows the segments text, the
speaker (in blue) and the segments
id (in red).

Figure 38: Actual Text Visualization

61

8 Project Implementation

Figure 39: A screen capture of the User Interface.

1. Load Button: this push button starts the process of reading the data.

2. Drop-down List: there are two drop-down lists to enable the user to select a docu-

ment, either base-text or translation, to display its content and its visualization.

3. Scroll Area: allows the user to scroll up and down to view the text presented in the

text browser.

8.2 Additional Features

The main additional feature for the visualization is the ability to visualize more than two

documents in parallel. As dicussed previously, currently three documents are visualized

in parallel at the same time. In addition, the user is allowed to read and visualize all the

documents in the XML file, which is composed of thirty-nine documents. These docu-

ments are the original English text and the thirty-eight German translations of that text.

Beside this additional feature, the following user interaction options are implemented.

8.2.1 Additional User Interaction Options

The additional User Interaction Options are displayed in the following:

62

8 Project Implementation

(a) Load Button.

(b) Scroll Area of the text
browser.

(c) Drop-Down List that con-
tains the list of the documents

Figure 40: Screen captures of the Basic User Interaction Options.

1. Show segments ids checkbox: allows the user to show/hide the segments ids in the

text browser. Each segment id is displayed before the segment text.

2. Show Tables checkbox: allows the user to show the visualization information tables,

a description of these tables is in the verification of correctness section.

3. On the Mouse-Moves-Over the text browser that views the document’s content, a

tooltip appears which displays the basic information about that document i.e. the

document name, author translator, date, and genre. A screen capture of this tooltip

is shown in figure 41b.

4. On the mouse moves over the visualization, a tooltip appears. The tooltip infor-

mation is based on the cursor position. If the cursor moves over the visualization

of the base-text document that is drawn in the middle of the visualization area, the

tooltip will show the id and the text of the base-text segment that is painted in that Y

coordinate. If the cursor moves over the visualization of the other two documents,

the tooltip will show the id and the text of the translated segment that is painted

in that Y coordinate in addition to the base-text segment id that corresponds to that

translated segment.Screen captures of this tooltip are shown in figure 41b and figure

41d.

63

9 Verification of Correctness

(a) Show/hide Checkbox and
Show Tables Checkbox.

(b) Document Summary
Tooltip.

(c) Visualization tooltip:
when the cursor moves over
the base-text visualization

(d) Visualization tooltip:
when the cursor moves over
the translation visualization

Figure 41: Screen captures of the Additional User Interaction Options.

9 Verification of Correctness

In order to verify the correctness of our visualization, two methods are proposed. The first

is to show the visualization information tables that the visualization of the alignments is

based on. The second is to show the visualized segment text and its id when the mouse

moves over the visualized segment. In this section, the results of these two verification

methods are presented.

9.1 Visualization Information Tables

The purpose of showing the basic information about the visualization is to know the cor-

respondence segments i.e. the segment id of the selected document and the corresponding

segment in the English document and the Y coordinates of each segment, which are used

to verify that the alignments drawn between the documents are correct. This informa-

tion is limited to the segments that exist in the Alignments section of the document data.

VisInfoTable class is created to provide this information. The VisInfoTable class, with

its own GUI, inherits the QWidget Qt class in order to benefits from its features. It is

designed to display the tables produced during the process of parallel text visualization

and it provides the following:

64

9 Verification of Correctness

• Allows the user to display the required table. The class provides the following three

tables:

1. Table (1) : is to show the version segments ids and the corresponding base-text

segments ids. An example of this table is illustrated in table 5.

2. Table (2) : is to show the version segments ids and the Y coordinate values of

where these segments have been painted on the widget in parallel text visual-

ization. An example of this table is illustrated in table 6.

3. Table (3) : is to show the base-text segments ids and the Y coordinate val-

ues of where these segments have been painted on the widget in parallel text

visualization.An example of this table is illustrated in table 7

Focus is only on the Y coordinate because it is a variable value, while the X coor-

dinate is fixed for all the segments in the document.

• Display the selected table.

Table 5: Visualization Information Table no.1: An example of the table that shows the
version segment ids and the corresponding base-text segment ids.

Version Segment Ids - Base-Text Segment Ids Table
Version Segment Ids (VIds) Base-Text Segment Ids (BIds)

38565 37251
38129 37253

Table 6: Visualization Information Table no.2: An example of the table that shows the
version segments ids and the Y coordinate values where these segments have been painted
on the widget in parallel text visualization.

Version Segment Ids - Y Coordinate Values Table
Version Segment Ids (VIds) Y Coordinate Value)

35008 497.311
35009 497.618

However, the implementation of showing these tables on the screen is not fully com-

plete and therefore they are not used for the verification process. Instead, the content of

65

9 Verification of Correctness

Table 7: Visualization Information Table no.3: An example of the table that shows the
base-text segments ids and the Y coordinate values where these segments have been
painted on the widget in parallel text visualization.

Base-Text Segment Ids - Y Coordinate Values Table
Base-Text Segment Ids (BIds) Y Coordinate Values)

38117 498.107
38153 389.095

Figure 42: Screen captures of the Visualization Information Tables.

the tables is printed on the console for verification and the information of the visualization

tooltip is used. Figure 42 shows screen captures of theses tables.

9.2 Information of the Visualization Tooltip

The information of the visualization tooltip displays the segment text, the segment id, and

the corresponding segment id of the segment painted in the same position as the mouse.

The implementation of this tooltip is discussed in the Project Implementation Section.

This section presents screen captures of this tooltip from our software user interface and

screen captures of the data source in order to show the conformity between the data and

the visualization.

66

9 Verification of Correctness

(a) The segment text of the segment with the id (49207) is the
same for both the visualization and the text browser..

(b) The segment text of the segment with the id (49207) from
the data source file.

(c) The alignment information of the segment with the id (49207). It has the same corresponding
base-txt segment id (38665) as presented in the tooltip.

Figure 43: The verification of the Visualization Correctness 1.Version name “Buhss” and
authortranslator “Buhss”.

67

9 Verification of Correctness

(a) The segment text of the segment with the id (48889) is the
same for both the visualization and the text browser.

(b) The segment text of the segment with the id (48889) from
the data source file.

(c) The alignment information of the segment with the id (48889). It has the same corresponding
base-txt segment id (38566) as presented in the tooltip.

Figure 44: The verification of the Visualization Correctness 2. Version name “Fried” and
authortranslator “Erich Fried”.

68

9 Verification of Correctness

(a) The segment text of the segment with the id
(37241) is the same for both the visualization and
the text browser. This segment has no corresponding
base-text segment id.

(b) The segment text of the seg-
ment with the id (37241). The seg-
ment (37241) has embedded seg-
ments.

(c) The segment text of the segment with the id (37241) from the data
source file. This segment has embedded segments. The embedded seg-
ments are presented in the text browser with their text and ids after the
segment (37241). The data from the source file matches with the data
from the visualization in the software.

Figure 45: The verification of the Visualization Correctness 3. Version name “Bärfuß”
and authortranslator “Lukas Bärfuss”.

69

10 Conclusion

10 Conclusion

To conclude, data visualization is defined as “the use of computer graphics to illustrate

information”. Nowadays, it is becoming a fundamental necessity in different fields due to

the need to understand the massive growth in the amount of information. Although this

project concentrates on visualizing textual data, its main goal is to develop an interactive

visualization system for visualizing the different German translations of Shakespeare’s

play, Othello. A group of researchers in the College of Art and Humanities at Swansea

University has collected different German translations, which have evolved over a long

period of time, of Shakespeare’s play, Othello. The aim of their research is to study the

variations between these different translations and understand how the translations have

differed throughout this period of time. Furthermore, how they vary from one author

translator to another. The goal of the of the visualization of version variation project is to

develop an interactive visualization system that applies effective visualization techniques

in such a way that helps the researchers in the College of Art and Humanities to analyze,

explore and identify the variations of this large textual data.

Working on this project was a great challenge for the author, especially considering

that the field of data visualization was entirely new to her. It has been a very informative

experience with many learning outcomes. Working with C++ programming language, the

Qt GUI library, and following Bob’s Concise Coding Conventions was very helpful and

contributed massively to enhancing the author’s programming skills.

For future development, Parallel Text Visualization could be applied to visualize all

the segments of the document rather than the BlockQuotes; visualizing more than three

documents in parallel and, in addition, to include more interaction options.

70

11 Supplementary Files

11 Supplementary Files

The URL below provides a video demonstration of the developed software and the Doxy-

gen documentation of the source code.

http://cos-ugrad.swansea.ac.uk/715803/

71

http://cos-ugrad.swansea.ac.uk/715803/

References

References
[Blanchette and Summerfield, 2008] Blanchette, J. and Summerfield, M. (2008). C++

Gui Programming with Qt 4, Second Edition. Prentice Hall Press, Upper Saddle River,
NJ, USA, second edition.

[Cheesman et al., 2012] Cheesman, T., Laramee, R., Hope, J., Flanagan, K., and
Thiel, S. (2012). Version variation visualization @ONLINE. http://www.

delightedbeauty.org/vvv/. [last accessed April 2014].

[Collins et al., 2009a] Collins, C., Carpendale, S., and Penn, G. (2009a). Docuburst:
Visualizing document content using language structure. In Proceedings of the 11th
Eurographics / IEEE - VGTC Conference on Visualization, EuroVis’09, pages 1039–
1046, Aire-la-Ville, Switzerland, Switzerland. Eurographics Association.

[Collins et al., 2009b] Collins, C., Viégas, F. B., and Wattenberg, M. (2009b). Parallel
tag clouds to explore and analyze faceted text corpora. In IEEE VAST, pages 91–98.
IEEE.

[Daily Kos, nd] Daily Kos (n.d.). Daily Kos @ONLINE. http://dailykos.com/. [last
accessed September 2014].

[Dörk et al., 2012] Dörk, M., Riche, N. H., Ramos, G., and Dumais, S. T. (2012). Pivot-
paths: Strolling through faceted information spaces. IEEE Trans. Vis. Comput. Graph,
18(12):2709–2718.

[Dou et al., 2011] Dou, W., Wang, X., Chang, R., and Ribarsky, W. (2011). Parallel-
topics: A probabilistic approach to exploring document collections. In IEEE VAST,
pages 231–240. IEEE.

[Dou et al., 2013] Dou, W., Yu, L., Wang, X., Ma, Z., and Ribarsky, W. (2013). Hier-
archicaltopics: Visually exploring large text collections using topic hierarchies. IEEE
Trans. Vis. Comput. Graph, 19(12):2002–2011.

[Doxygen, nd] Doxygen (n.d.). Doxygen website @ONLINE. http://www.stack.nl/
~

dimitri/doxygen/. [last accessed April 2014].

[Fellbaum, 1998] Fellbaum, C., editor (1998). WordNet: an electronic lexical database.
MIT Press.

[Furnas, 1986] Furnas, G. W. (1986). Generalized fisheye views. SIGCHI Bull.,
17(4):16–23.

[Geng et al., 2013a] Geng, Z., Cheesman, T., Laramee, R. S., Flanagan, K., and Thiel,
S. (2013a). Shakervis: Visual analysis of segment variation of german translations of
shakespeare’s othello. Sage: Information Visualization.

[Geng et al., 2013b] Geng, Z., Laramee, R. S., and Cheesman, T. (2013b). Visualizing
Translation Variation of Othello: A Survey of Text Visualization and Analysis Tools.
Technical report, University of Wales, Swansea, UK, Department of Computer Sci-
ence.

72

http://www.delightedbeauty.org/vvv/
http://www.delightedbeauty.org/vvv/
http://dailykos.com/
http://www.stack.nl/~dimitri/doxygen/
http://www.stack.nl/~dimitri/doxygen/

References

[Geng et al., 2011] Geng, Z., Laramee, R. S., Cheesman, T., Ehrmann, A., and Berry,
D. M. (2011). Visualizing translation variation: Shakespeare’s othello. In Bebis, G.,
Boyle, R. D., Parvin, B., Koracin, D., Wang, S., Kim, K., Benes, B., Moreland, K.,
Borst, C. W., DiVerdi, S., Chiang, Y.-J., and Ming, J., editors, ISVC (1), volume 6938
of Lecture Notes in Computer Science, pages 653–663. Springer.

[Griffiths et al., 2004] Griffiths, T. L., Jordan, M. I., Tenenbaum, J. B., and Blei, D. M.
(2004). Hierarchical topic models and the nested chinese restaurant process. In Thrun,
S., Saul, L., and Schölkopf, B., editors, Advances in Neural Information Processing
Systems 16, pages 17–24. MIT Press.

[Hoque and Carenini, 2014] Hoque, E. and Carenini, G. (2014). ConVis: A Visual
Text Analytic System for Exploring Blog Conversations. Computer Graphics Forum,
33(3):221–230.

[IBM, nd] IBM (n.d.). Many Eyes By IBM @ONLINE. http://www-958.ibm.com/

software/data/cognos/manyeyes/. [last accessed August 2014].

[Laramee, 2010a] Laramee, R. S. (2010a). Bob’s concise coding conventions (C3). Ad-
vances in Computer Science and Engineering (ACSE), 4(1):23–26. (available online).

[Laramee, 2010b] Laramee, R. S. (2010b). Bob’s Minutes of Meeting Protocol: Incentive
and a Description @ONLINE. . [last accessed April 2014].

[Laramee, 2011] Laramee, R. S. (2011). How to read a visualization research paper:
Extracting the essentials. IEEE Computer Graphics and Applications, 31(3):78–82.

[Lee et al., 2010] Lee, B., Riche, N. H., Karlson, A. K., and Carpendale, M. S. T. (2010).
Sparkclouds: Visualizing trends in tag clouds. IEEE Trans. Vis. Comput. Graph,
16(6):1182–1189.

[Munzner et al., 2003] Munzner, T., Guimbretière, F., Tasiran, S., Zhang, L., and Zhou,
Y. (2003). TreeJuxtaposer: Scalable tree comparison using focus+context with guar-
anteed visibility. SIGGRAPH 2003, pages 453–462. ACM Transactions on Graphics
22, 3.

[Pressman, 2010] Pressman, R. (2010). Software Engineering: A practitioner’s Ap-
proach. McGraw-Hill higher education. McGraw-Hill Higher Education, seventh edi-
tion edition.

[Pressman, 2001] Pressman, R. S. (2001). Software Engineering: A Practitioner’s Ap-
proach. McGraw-Hill, New York, NY, fifth edition edition.

[Qt, nd] Qt (n.d.). Qt Project @ONLINE. http://qt-project.org/doc/. [last ac-
cessed September 2014].

[Sack, 2001] Sack, W. (2001). Conversation map: An interface for very large-scale con-
versations. J. of Management Information Systems, 17(3):73–92.

[Sarigiannidis and Chatzoglou, 2011] Sarigiannidis, L. and Chatzoglou, P. D. (2011).
Software development project risk management: A new conceptual framework.

73

http://www-958.ibm.com/software/data/cognos/manyeyes/
http://www-958.ibm.com/software/data/cognos/manyeyes/
http://qt-project.org/doc/

References

[Shapiro, 1971] Shapiro, S. C. (1971). A net structure for semantic information storage,
deduction, and retrieval. In Proc. 2nd Int. Joint Conf. Artificial Intelligence, pages
512–523.

[Slashdot, nd] Slashdot (n.d.). Slashdot @ONLINE. http://slashdot.com/. [last
accessed September 2014].

[Stroustrup, 1997] Stroustrup, B. (1997). The C++ programming language (3. ed.).
Addison-Wesley-Longman.

[Tufte, 2006] Tufte, E. R. (2006). Beautiful evidence. Graphics Press, Cheshire (Conn.).

[van Ham et al., 2009] van Ham, F., Wattenberg, M., and Viégas, F. B. (2009). Mapping
text with phrase nets. IEEE Trans. Vis. Comput. Graph, 15(6):1169–1176.

[Viegas et al., 2006] Viegas, B., F., Golder, S., and Donath, J. (2006). Visualizing email
content: portraying relationships from conversational histories. In Proceedings of ACM
CHI 2006 Conference on Human Factors in Computing Systems, volume 1 of Visual-
ization 2, pages 979–988.

[Ward et al., 2010] Ward, M., Grinstein, G., and Keim, D. (2010). Interactive Data Visu-
alization: Foundations, Techniques, and Applications. A. K. Peters, Ltd., Natick, MA,
USA.

[Ware, 2004] Ware, C. (2004). Information Visualization, Second Edition: Perception
for Design (Interactive Technologies). Morgan Kaufmann, 2 edition.

[Wei et al., 2010] Wei, F., Liu, S., Song, Y., Pan, S., Zhou, M. X., Qian, W., Shi, L., Tan,
L., and Zhang, Q. (2010). TIARA: a visual exploratory text analytic system. In Rao,
B., Krishnapuram, B., Tomkins, A., and 0001, Q. Y., editors, KDD, pages 153–162.
ACM.

[Wenwen Dou and Xiaoyu Wang and Drew Skau and William Ribarsky and Michelle X. Zhou, 2012]
Wenwen Dou and Xiaoyu Wang and Drew Skau and William Ribarsky and Michelle
X. Zhou (2012). LeadLine: Interactive visual analysis of text data through event
identification and exploration. In IEEE VAST, pages 93–102. IEEE Computer Society.

74

http://slashdot.com/

A Appendix : RECORD OF SUPERVISION

Appendices
A Appendix : RECORD OF SUPERVISION
NB: This sheet must be brought to each supervision and submitted with the com-
pleted Dissertation
(to be completed as appropriate by student and supervisor at the end of each supervision
session, and initialed by both as being an accurate record. NB it is the student’s responsi-
bility to arrange supervision sessions and he/she should bear in mind that staff will not be
available at certain times in the summer)

Student Name:
Student Number:
Dissertation Title:
Supervisor:

Supervision Date, du-
ration

Notes Initials Su-
pervisor

Initials
student

1: Brief outline of
research question and
preliminary title (by pre
June)
2: Discussion of de-
tailed plan and bibliog-
raphy (by June)
3: Progress report, dis-
cussion of draft chapter
(by August)
4: (optional) progress
report (by September)
5: Submission (by 31
October)

Statement of originality

I certify that this dissertation is my own work and that where the work of others has
been used in support of arguments or discussion, full and appropriate acknowledgement
has been made. I am aware of and understand the University’s regulations on plagiarism
and unfair practice.

Signed: Date:

75

A Appendix : RECORD OF SUPERVISION

Minutes: Bob, Majedah 7th March 14 11:00

Next Meeting: Friday 14th March 14 11:00

Topic discussed:

• LATEX.

• Coursework submission.

• Large Vs Small document collections

• Concept Vs Implementation.

• Essential: concept, visualization technique used, application, single vs multiple
documents.

• Direct and indirect text visualization.

• Table classification in the article [88]

• Visualization on the physical sciences

• Technology choices: QT.

Progress:

• Summary of visualization of translation variation.

• Start of the summary of chapter 9.

• Read “how to read a visualization research paper”.

TODOD:

• 1 page summary of chapter 9.

• Always write in the present tense.

• Add Shakervis papers to the literature review [91]

• Read “Visualizing Variation in a Shakespeare Re-Translation Corpus”.

• Submit initial document.

The above is only one meeting. “Bob’s Minutes of Meeting Protocol” [Laramee,
2010b] is followed to document the meetings. The URL below contains all the other min-
utes of meetings.

http://cos-ugrad.swansea.ac.uk/715803/Minutes/

76

http://cos-ugrad.swansea.ac.uk/715803/Minutes/

B Appendix : DOXYGEN DOCUMENTATION

Appendices

B Appendix : DOXYGEN DOCUMENTATION

The first ten pages of class documentation chapter of Doxygen documentation is presented
in the following pages. The URL Below contains the full Doxygen documentation:
http://cos-ugrad.swansea.ac.uk/715803/Doxygen/

77

http://cos-ugrad.swansea.ac.uk/715803/Doxygen/

78

Chapter 1

Class Documentation

1.1 Alignment Class Reference

#include <alignment.h>

Collaboration diagram for Alignment:

���������

	
���������
	
�������������������
	
��������������������
	
������������
	
����������
	
����������������
	
�����������������

	
�����������
	
�������
	
�������
	
����������
	
����������
	
������� ���
	
������� ���
	
���!�����"���������
	
���!�����"���������
	
���#�$������������
	
���#�$������������
	
%��������������
	
&$���������������

Public Member Functions

• Alignment ()

Alignment Constructor.
• bool SetId (int id)

79

1.1. ALIGNMENT CLASS REFERENCE CHAPTER 1. CLASS DOCUMENTATION

SetId.

• int GetId ()

GetId.

• bool SetNotes (QString notes)

SetNotes.

• QString GetNotes ()

GetNotes.

• bool SetStatus (QString status)

SetStatus.

• QString GetStatus ()

GetStatus.

• bool SetBaseTextSegIds (QString bsIds)

SetBaseTextSegIds.

• QList< int > GetBaseTextSegIds ()

GetBaseTextSegIds.

• bool SetVersionSegIds (QString vsIds)

SetVersionSegIds.

• QList< int > GetVersionSegIds ()

GetVersionSegIds.

• bool ReadAlignment (QXmlStreamReader &xml)

ReadAlignment.

• void PrintAlignments ()

PrintAlignments prints the information about the alignments.

Static Public Attributes

• static const int DEFAULT_ID = -1

• static const int DEFAULT_NOTES_LENGTH = 0

• static const int DEFAULT_STATUS_LENGTH = 0

• static const int MAX_ALIGN_ID = 99999

• static const int MAX_SEG_ID = 99999

• static const int MAX_NOTES_LENGTH = 999

• static const int MAX_STATUS_LENGTH = 999

1.1.1 Detailed Description

Definition at line 35 of file alignment.h.

1.1.2 Constructor & Destructor Documentation

1.1.2.1 Alignment::Alignment ()

Alignment Constructor.

Definition at line 9 of file alignment.cpp.

80

CHAPTER 1. CLASS DOCUMENTATION 1.1. ALIGNMENT CLASS REFERENCE

Here is the call graph for this function:

���������		���������

���������		
����

���������		
������

���������		
��
�����

1.1.3 Member Function Documentation

1.1.3.1 QList< int > Alignment::GetBaseTextSegIds ()

GetBaseTextSegIds.

Returns

a list of base text segment ids

Definition at line 131 of file alignment.cpp.

Here is the caller graph for this function:

���������		
�������������� ���������		��������������

1.1.3.2 int Alignment::GetId ()

GetId.

81

1.1. ALIGNMENT CLASS REFERENCE CHAPTER 1. CLASS DOCUMENTATION

Returns

the id of the alignment

Definition at line 37 of file alignment.cpp.

Here is the caller graph for this function:

���������		
���� ���������		��������������

1.1.3.3 QString Alignment::GetNotes ()

GetNotes.

Returns

notes

Definition at line 64 of file alignment.cpp.

Here is the caller graph for this function:

���������		
������ ���������		��������������

1.1.3.4 QString Alignment::GetStatus ()

GetStatus.

82

CHAPTER 1. CLASS DOCUMENTATION 1.1. ALIGNMENT CLASS REFERENCE

Returns

status

Definition at line 91 of file alignment.cpp.

Here is the caller graph for this function:

���������		
������� ���������		���������������

1.1.3.5 QList< int > Alignment::GetVersionSegIds ()

GetVersionSegIds.

Returns

list of version segment ids

Definition at line 171 of file alignment.cpp.

Here is the caller graph for this function:

���������		
������������� ���������		��������������

1.1.3.6 void Alignment::PrintAlignments ()

PrintAlignments prints the information about the alignments.

Definition at line 219 of file alignment.cpp.

83

1.1. ALIGNMENT CLASS REFERENCE CHAPTER 1. CLASS DOCUMENTATION

Here is the call graph for this function:

���������		
��������������

���������		����

���������		�������

���������		��������

���������		����������������

���������		���������������

1.1.3.7 bool Alignment::ReadAlignment (QXmlStreamReader & xml)

ReadAlignment.

Parameters

xml

Returns

true on success

Definition at line 182 of file alignment.cpp.

Here is the call graph for this function:

���������		
������������

���������		����

���������		�������

���������		�������

���������		���������������

���������		��������������

84

CHAPTER 1. CLASS DOCUMENTATION 1.1. ALIGNMENT CLASS REFERENCE

Here is the caller graph for this function:

���������		
������������ �������		
���������� �������
�����		��������

1.1.3.8 bool Alignment::SetBaseTextSegIds (QString bsIds)

SetBaseTextSegIds.

Parameters

list of base text segment ids

Returns

true on success

Definition at line 101 of file alignment.cpp.

Here is the caller graph for this function:

���������		
���������
���� ���������		������������� ��������		������������ ��������������		�������

1.1.3.9 bool Alignment::SetId (int id)

SetId.

Parameters

id number of the alignment

Returns

true on success

Definition at line 22 of file alignment.cpp.

Here is the caller graph for this function:

���������		
����

���������		���������

���������		������������ ��������		����������� �������������		��������

1.1.3.10 bool Alignment::SetNotes (QString notes)

SetNotes.

85

1.1. ALIGNMENT CLASS REFERENCE CHAPTER 1. CLASS DOCUMENTATION

Parameters

notes

Returns

true on success

Definition at line 47 of file alignment.cpp.

Here is the caller graph for this function:

���������		
������

���������		���������

���������		������������� ��������		������������ ��������������		�������

1.1.3.11 bool Alignment::SetStatus (QString status)

SetStatus.

Parameters

status

Returns

true on success

Definition at line 74 of file alignment.cpp.

Here is the caller graph for this function:

���������		
��
����

���������		���������

���������		������������� ��������		������������ ��������������		�������

1.1.3.12 bool Alignment::SetVersionSegIds (QString vsIds)

SetVersionSegIds.

Parameters

list of version segment ids

Returns

true on success

Definition at line 141 of file alignment.cpp.

86

CHAPTER 1. CLASS DOCUMENTATION 1.1. ALIGNMENT CLASS REFERENCE

Here is the caller graph for this function:

���������		
��������
���� ���������		������������� ��������		������������ ��������������		�������

1.1.4 Member Data Documentation

1.1.4.1 const int Alignment::DEFAULT_ID = -1 [static]

the default ID at initialization

Definition at line 109 of file alignment.h.

1.1.4.2 const int Alignment::DEFAULT_NOTES_LENGTH = 0 [static]

the default notes length at initialization

Definition at line 111 of file alignment.h.

1.1.4.3 const int Alignment::DEFAULT_STATUS_LENGTH = 0 [static]

the default status length at initialization

Definition at line 113 of file alignment.h.

1.1.4.4 const int Alignment::MAX_ALIGN_ID = 99999 [static]

the maximum possible alignment ID

Definition at line 115 of file alignment.h.

1.1.4.5 const int Alignment::MAX_NOTES_LENGTH = 999 [static]

the maximum possible notes length

Definition at line 119 of file alignment.h.

1.1.4.6 const int Alignment::MAX_SEG_ID = 99999 [static]

the maximum possible segment ID

Definition at line 117 of file alignment.h.

1.1.4.7 const int Alignment::MAX_STATUS_LENGTH = 999 [static]

the maximum possible status length

Definition at line 121 of file alignment.h.

The documentation for this class was generated from the following files:

• /Users/majedahalrehiely/ReadingTranslations/alignment.h
• /Users/majedahalrehiely/ReadingTranslations/alignment.cpp

87

1.2. BLOCKQUOTE CLASS REFERENCE CHAPTER 1. CLASS DOCUMENTATION

1.2 BlockQuote Class Reference

#include <blockquote.h>

Collaboration diagram for BlockQuote:

���������	

��������������

����������	��

��	��	��	��������

�����	�	���	��������

��	��	��������

��	����	��	�����

��	��	��	����

�� �	��	����

�!	" ���������	��

Public Member Functions

• BlockQuote ()

BlockQuote constructor.

• QList< Segment ⇤ > & GetSegmentList ()

getSegmentList

• bool incrementSegCount ()

increment the current segment count -used for debugging

• int getSegCount ()
• int GetNoSegments ()

GetNoSegments.

• Segment ⇤ GetSegment (int i)

GetSegment gets a segment object from the list of segments of the BlockQuote by returning a pointer to that segment.

• bool AddSegment (Segment ⇤segment)

AddSegment add segment object to the segment list.

• bool ReadBlockQuote (QXmlStreamReader &xml)

ReadBlockQuote.

Static Public Attributes

• static const int DEBUG_SEG_COUNT = 30

1.2.1 Detailed Description

Definition at line 36 of file blockquote.h.

88

	Introduction
	Project Scope and Objective

	Background
	Related Work
	Previous Systems

	Data Characteristics
	Data Source and type
	Data Description
	All Documents Element
	Single Document Element

	Project Specification
	Feature Specification
	Basic Features
	Additional Features
	User Characteristics

	Technology Choices
	The programming Language
	GUI programming
	Additional Tools

	Visualization Using Existing Visualization Tools
	Many Eyes Visualization Tool
	Tag Cloud
	Customizing Word Cloud Generator
	Word Tree Visualization

	Project design
	Reading and Storing the Data
	Visualization Generation
	GUI

	Project Plan and Timetable
	Software Process Model
	Coding Conventions
	Timetable
	Risk Assessment

	Project Implementation
	Basic Features
	The XML File Reader
	The Parallel Text Visualization
	The Actual Text Visualization
	Basic User Interaction Options

	Additional Features
	Additional User Interaction Options

	Verification of Correctness
	Visualization Information Tables
	Information of the Visualization Tooltip

	Conclusion
	Supplementary Files
	Appendices
	Appendix : RECORD OF SUPERVISION

