
From High School to University Algebra

Thorsten Altenkirch

1 Introduction

Wilkie showed that there are identities in Tarski’s Highschool Algebra which are
not provable from the laws. At the core of his counterexample is the observation
that AD = BC implies

(Ay +By)x(Cx +Dx)y = (Ax +Bx)y(Cy +Dy)x

but this is unprovable with the laws. Di Cosmo et al observed that this identity
corresponds to an isomorphism present in all bicartesian closed categories, i.e.
typed λ-calculus with →, 1,×,+ which cannot be decomposed into the basic
isomorphisms of biCCCs.

The situation becomes different, if we move to a setting with dependent
types, i.e. we consider locally cartesian closed categories with a disjoint boolean
object — this corresponds to Type Theory withΠ,Σ, 1, 2. We give a collection of
isomorphisms for this Type Theory, which we call University Algebra and show
that Wilke’s counterexample can be derived. We conjecture that this collection
is complete for deriving isomorphisms and decidable.

By moving from equations to isomorphisms we move from ordinary algebra to
a form of 2-algebra, where we don’t only state that an equation hold but also use
constants (i.e. isomorphisms) witnessing equations on which further equations
may depend.

2 University algebra

University algebra is presented in the language of finitary Type Theory with
Π,Σ, 1, 2. The Type Theory is extensional, i.e. all the η-rules are present. We
conjecture that equality is decidable (in the presence of type variables), the idea
is to extend the technique we have explored for simple types with strong sums
(e.g. Altenkirch et al) to dependent types. Adding 0 would make the theory
undecidable, because the equations tt = ff only holds in inconsistent contexts
which can be used to encode consistency of first order intuitionistic logic.

Disjointness of 2 corresponds to the existence of a large if, i.e. if there are
types A,B : Type and b : 2 we can form a new type: if bAB : Type.

University algebra is given by the following basic isomorphisms:

Φ2C : 2 ' 2
Φ2A : Σx : 2.if xAΣy : 2.if y B C ' Σx : 2.if x (Σy : 2.if y AB)C
ΦΣA : Σa : A.Σb : B a.C a b ' Σ(a, b) : (Σa : A.B a).C a b
ΦΠ1 : Π− : A.1 ' 1
Φ1Π : Πx : 1.B x ' B ()
Φ2Π : Πb : 2.B b ' (B tt)× (B ff)
Φ1Σ : Σx : 1.B x ' B ()
ΦΣΠ : Πa : A.Πb : B a.C a b ' Π(a, b) : (Σa : A.B a).C a b
ΦΠΣ : Πa : A.Σb : B a.C a b ' Σf : (Πa : A.B a).Πa : A.C a (f a)

All the isomorphisms are definable in the language and give rise to definitional
isomorphisms, i.e. there is φ : A→ B and φ−1 : B → A such that φ−1 ◦ φ = IA
and φ ◦ φ−1 = IB , which can be expanded to λa : A.φ−1(φa) = λa : A.a
and λb : B.φ(φ−1 b). We sketch this construction by giving the left-to-right
morphisms:

Φ2C tt = ff
Φ2C ff = tt
Φ2A (tt, a) = (tt, (tt, a))
Φ2A (ff, (tt, b) = (tt, (ff, b))
Φ2A (ff, (ff, c) = (ff, c)
ΦΣA (a, (b, c)) = ((a, b), c)
Φ1Π f = f ()
Φ2Π f = (f tt, fff)
ΦΣ1 ((), b) = b
ΦΠΠ f = λ(a, b).f a b
ΦΠΣ f = (λa.π0 (fa), λa.π1 (f a))

We also introduce structural operators which allow us to derive isomorphisms
for complex types from isomorphisms for simpler ones:

φ : A ' A′ ψ : Πa : A.B a ' B′ (φa)

ΨΣ φψ : Σa : A.B a ' Σa′ : A′.B′ a′
φ : A′ ' A ψ : Πa : A′.B (φa) ' B′ a

ΨΠ φψ : Πa : A.B a ' Πa′ : A′.B′ a′

The rules for Π and Σ show that we have to define isomorphims wrt. a context
of assumptions. To complete the list we also have:

IA : A ' A

b : 2 φ : A ' A′ ψ : B ' B′

Ψif b φψ : if bAB ' if bA′B′

3 Deriving High School Algebra

We represent the operations of High School algebra — there are two isomorphic
choices (using 2Π) for ×:

A+B = Σb : 2.if bAB
A×B = Πb : 2.if bAB

' Σ− : A.B
A→ B = Π− : A.B

The isomorphisms of High School Algebra are:

Φ+C : A+B ' B +A
Φ+A : A+ (B + C) ' (A+B) + C
Φ×1 : 1×A ' A
Φ×A : B ×A ' B ×A
Φ×+ : A× (B + C) ' (A×B) + (A× C)
Φ→1 : A→ 1 ' 1
Φ1→ : 1 → A ' A
Φ+→ : (A+B) → C ' (A→ C)× (B → C)
Φ→× : A→ (B × C) ' (A→ B)× (A→ C)
Φ×→ : (A×B) → C ' A→ (B → C)

These isomorphisms are easily derivable from the ones in University Algebra:
Φ+C and Φ×C follow from Φ2C . Φ+A can be derived from Φ2A. Φ×+ follows from
ΦΣA :

A× (B + C) ' Σ:A.Σb : 2.if bB C
' Σb : 2.Σ:A.if bB C (ΦΣA)
= Σb : 2.if b (Σ− : A.B) (Σ− : A.C)
' (A→ C)× (B → C)

Φ→1 is ΦΠ1 and Φ1→ is an instance of ΦΠ1. Φ+→ can be constructed from ΦΣΠ :

(A+B) → C ' Π− : (Σb : 2.if bAB).C
' Πb : 2.Π− : if bAB.C (ΦΣΠ)
= Πb : 2.if b (Π− : A.B) (Π− : A.C)
' (A→ C)× (B → C)

Φ→× and Φ×→ are instances of ΦΠΣ and ΦΣΠ respectively.

4 Deriving the Wilkie isomorphism

We can derive a number of useful isomorphisms, essential for the Wilkie isomor-
phism is the following:

X → (Y → A+ Y → B)
≡ X → Σb : 2.if b (Y → A) (Y → B)
' Σf : X → 2.Πx : X.if (f x) (Y → A) (Y → B) (ΨΣΠ)
≡ Σf : X → 2.Πx : X.Y → if (f x)AB

Writing both sides of the Wilkie equality as types we can normalize both
sides so that they only differ in the assumed isomorphism φ : A×D ' B × C:

(X → (Y → A+ Y → B))× (Y → (X → C +X → D)
' (Σf : X → 2.Πx : X.Y → if (f x)AB)× (Σg : Y → 2.Πy : Y.X → if (g y)C D)
' Σf : X → 2.Σg : Y → 2.

(Πx : X.Y → if (f x)AB)× (X → Πy : Y.if (g y)C D) (ΣΣ,×C))
' Σf : X → 2.Σg : Y → 2.

(Πx : X.Πy : Y.(if (f x)AB))× (if (g y)C D)) (ΠΣ)
≡ Σf : X → 2.Σg : Y → 2.

Πx : X.Πy : Y.(if (f x) (if (g y) (A× C) (A×D)) (if (g y) (B × C) (B ×D))

(X → (Y → A+ Y → B))× (Y → (X → C +X → D)
' (Σg : Y → 2.Πy : Y.X → if (g y)AB)× (Σf : X → 2.Πx : X.Y → if (f x)C D)
' Σf : X → 2.Σg : Y → 2.

(X → Πy : Y → if (g y)AB)× (Πx : X.Y → if (f x)C D) (ΣΣ,×C))
' Σf : X → 2.Σg : Y → 2.

(X → Πy : Y → if (g y)AB)× (Πx : X.Y → if (f x)C D) (ΠΣ)
≡ Σf : X → 2.Σg : Y → 2.

Πx : X.Πy : Y.(if (f x) (if (g y) (A× C) (B × C)) (if (g y) (A×D) (B ×D))

This development raises a number ofquestions:

– Can we use dependent types to present a complete collection of isomor-
phisms, i.e. that we can derive an isomorphism syntactically if it exists se-
mantically wrt. the category of finite sets.

– To derive the isomorphism it seems to be essential that we have used ΣΠ
which corresponds to the axiom of choice. Does this lead to an alternative
proof of the incompleteness of High School algebra?

– Can we devise a decision procedure to decide whether isomorphisms exist
by normalising types? This would also require to decide definitional equality,
but it seems plausible that the existent approaches for deciding equality with
strong sums can be extended to dependent types.

5 Normal types

We define types in normal form NF by the following grammar:

NF :: Σx : NFΠ .NF | NFΠ

NFΠ :: Πx : NF.NFΠ | NF0

NF0 :: X|n|T[NF]

where T[X] stands for non-trivial, redundancy-free case trees whose leaves are
in X.

We need to show: Every type is isomorphic to one in normal form. Using this
lemma we know that we only have to consider isomorphsims between normal
types.

To show completeness we have to show that every isomorphism between
normal types is of a particular form. It should be possible to show this directly
by analyzing normal forms. A semantic alternative (using sheaves ?) would be
preferable.

