What is the problem with Induction-Recursion?

Or: Hank's latest obsession

Thorsten Altenkirch

Functional Programming Laboratory, School of Computer Science,
University of Nottingham

to Peter Hancock at his 60th birthday seminar

December 19, 2011

An inductive definition

Rose trees:

```
data R : Set where
    leaf: R
    node : (n:\mathbb{N})(f: Fin n }->R)->
```

We can represent R as a functor.

$$
\begin{aligned}
& F: \text { Set } \rightarrow \text { Set } \\
& F X=\top \uplus \Sigma \mathbb{N}(\lambda n \rightarrow \text { Fin } n \rightarrow X)
\end{aligned}
$$

T is the initial algebra of F.

An inductive recursive definition

A universe closed under \mathbb{N} and Π :

```
data U : Set
El : U }->\mathrm{ Set
data U where
    nat:U
    \pi : ( a : U ) \rightarrow ( E \| ~ a \rightarrow U ) \rightarrow U
El nat =\mathbb{N}
El (\piab) =(x:Ela) ->El(bx)
```

We also have an initial algebra semantics here.

The category of Families

We define the category of families.
Objects are given as:

$$
\begin{aligned}
& {\text { record Fam }\left(D: \text { Set }_{1}\right): \text { Set }_{1} \text { where }}^{U: \text { Set }} \\
& T: U \rightarrow D
\end{aligned}
$$

and morphisms as:

$$
\begin{aligned}
& \text { record Fam } \rightarrow\left((U, T)\left(U^{\prime}, T^{\prime}\right): \text { Fam } D\right): \text { Set }_{1} \text { where } \\
& \quad f: U \rightarrow U^{\prime} \\
& \Delta:(x: U) \rightarrow T x \equiv T^{\prime}(f x)
\end{aligned}
$$

Note that this not equivalent to Set/ D because D is large!

An Endofunctor on Fam Set

Our inductive recursive definition corresponds to an endofunctor on Fam Set:

$$
\begin{aligned}
& F_{U}: \text { Fam Set } \rightarrow \text { Set } \\
& F_{U}(U, T)=T \uplus \Sigma U(\lambda x \rightarrow T x \rightarrow U) \\
& F_{T}:(U T: \text { Fam Set }) \rightarrow F_{U} U T \rightarrow \text { Set } \\
& F_{T}(U, T)(\text { inj } 1 \text { tt })=\mathbb{N} \\
& F_{T}(U, T)(\text { inj } 2(a, b))=(x: T a) \rightarrow T(b x) \\
& F: \text { Fam Set } \rightarrow \text { Fam Set } \\
& F U T=\text { record }\{ \\
& U=F_{U} U T ; \\
& \left.T=F_{T} U T\right\}
\end{aligned}
$$

$(U, E I)$ is the initial algebra of F.

Representing inductive definitions

Not every functor defines a data type.
We are only interested in strictly positve inductive definitions.
We can codify inductive definitions as follows:

$$
\begin{aligned}
& \text { data ID: Set }{ }_{1} \text { where } \\
& \iota: I D \\
& \sigma:(S: S e t) \rightarrow(\phi: S \rightarrow I D) \rightarrow I D \\
& \delta:(P: \text { Set }) \rightarrow(\phi: I D) \rightarrow I D
\end{aligned}
$$

Each code gives rise to an endofunctor:

$$
\begin{aligned}
& \llbracket \rrbracket: I D \rightarrow \text { Set } \rightarrow \text { Set } \\
& \llbracket \llbracket \rrbracket \quad X=T \\
& \llbracket \sigma S \phi \rrbracket X=\Sigma S(\lambda s \rightarrow \llbracket \phi s \rrbracket X) \\
& \llbracket \delta P \phi \rrbracket X=(P \rightarrow X) \times \llbracket \phi \rrbracket X \\
& R: I D \\
& R=\sigma \text { Bool }(\lambda b \rightarrow \text { if } b \text { then } \iota \\
& \quad \text { else } \sigma \mathbb{N}(\lambda n \rightarrow \delta(\text { Fin } n) \iota))
\end{aligned}
$$

Representing inductive recursive definitions

Following Dybjer/Setzer:
data $I R\left(D:\right.$ Set $\left._{1}\right):$ Set $_{1}$ where

$$
\begin{aligned}
& \iota: D \rightarrow I R D \\
& \sigma:(S: \text { Set }) \rightarrow(\phi: S \rightarrow I R D) \rightarrow I R D \\
& \delta:(P: \text { Set }) \rightarrow(\phi:(P \rightarrow D) \rightarrow I R D) \rightarrow I R D
\end{aligned}
$$

UEI : IR Set
$U E I=\sigma$ Bool $(\lambda b \rightarrow$ if b then $\iota \mathbb{N}$
else $\delta \top(\lambda \boldsymbol{a} \rightarrow \delta$ (att)
$(\lambda b \rightarrow \iota((x: a t t) \rightarrow b x)$

Semantics

$$
\begin{aligned}
& \mathbb{\llbracket} \|: \forall\{D\} \rightarrow \mathbb{R} D \rightarrow \text { Fam } D \rightarrow \text { Set } \\
& \llbracket \iota-\mathbb{l}_{\nu}(U, T)=T \\
& \llbracket \sigma S \phi \rrbracket_{u}(U, T)=\Sigma S\left(\lambda s \rightarrow \llbracket \phi s \rrbracket_{u}(U, T)\right) \\
& \llbracket \delta P \phi \rrbracket_{U}(U, T)= \\
& \Sigma(P \rightarrow U)\left(\lambda u s \rightarrow \mathbb{L} \phi(\lambda p \rightarrow T(u s p)) \rrbracket_{u}(U, T)\right) \\
& \llbracket \rrbracket_{T}: \forall\{D\} \rightarrow(\phi: \mathbb{R} D)(U T: F a m D) \rightarrow \mathbb{L} \rrbracket_{U} U T \rightarrow D \\
& \llbracket \iota d \mathbb{\rrbracket}_{T} \quad(U, T)_{-}=d \\
& \llbracket \sigma S \phi \rrbracket_{T}(U, T)(s, x)=\llbracket \phi s \rrbracket_{T}(U, T) x \\
& \llbracket \delta P \phi \rrbracket_{T}(U, T)(u s, x)=\llbracket \phi(\lambda p \rightarrow T(u s p)) \rrbracket_{T}(U, T) x \\
& \mathbb{\llbracket} \rrbracket: \forall\{D\} \rightarrow \mathbb{R} D \rightarrow \text { Fam } D \rightarrow \text { Fam } D \\
& \llbracket \phi \rrbracket(U, T)=\left(\mathbb{I} \phi \rrbracket_{U}(U, T)\right),\left(\llbracket \phi \rrbracket_{T}(U, T)\right)
\end{aligned}
$$

So far so good

- So far we have been able to develop inductive-recursive definitions in analogy to inductive definitions.
- Both give rise to an initial algebra semantics.
- Both can be codified using Dybjer-Setzer codes.

Container

We can compute a normal form for inductive definitions:

```
record Cont : Set, where
    constructor _ \triangleleft_
    field
        S:Set
        P:S->Set
\llbracket_\rrbracket :Cont }->\mathrm{ Set }->\mathrm{ Set
\llbracketS\triangleleftP\rrbracketA=\SigmaS(\lambdas->Ps->A)
```

Container can be coerced into ID:
emb : Cont $\rightarrow I D$
$e m b(S \triangleleft P)=\sigma S(\lambda s \rightarrow \delta(P s) \iota)$

Container normal form

Any inductive definition can be normalized to a container:

$$
\begin{aligned}
& \iota_{C}: \text { Cont } \\
& \iota_{C}=\mathrm{T} \triangleleft \lambda-\rightarrow \perp \\
& \sigma_{C}:(S: \text { Set }) \rightarrow(S \rightarrow \text { Cont }) \rightarrow \text { Cont } \\
& \sigma_{C} S F=\Sigma S(\lambda s \rightarrow \text { Cont.S }(F s)) \\
& \quad \triangleleft \lambda s^{\prime} \rightarrow \text { Cont. } P\left(F\left(\text { proj } s_{1} s^{\prime}\right)\right)\left(\text { proj }_{2} s^{\prime}\right) \\
& \delta_{C}:(P: \text { Set }) \rightarrow \text { Cont } \rightarrow \text { Cont } \\
& \delta_{C} P(S \triangleleft Q)=S \triangleleft(\lambda s \rightarrow P \uplus(Q s)) \\
& \operatorname{cnf}: I D \rightarrow \text { Cont } \\
& \text { cnf } \iota \quad=\iota_{C} \\
& \operatorname{cnf}(\sigma S \phi)=\sigma_{C} S(\lambda s \rightarrow \operatorname{cnf}(\phi s)) \\
& \operatorname{cnf}(\delta P \phi)=\delta_{C} P(\text { cnf } \phi)
\end{aligned}
$$

Applications of containers

Using containers to represent inductive definitions we can
(1) Derive a semantically complete, small representation of morphisms
(2) Show that inductive definitions are closed under composition (giving rise to a 2-category)

Container morphisms

We can calculate the representation using Yoneda:
record ContM $((S, P)(T, Q)$: Cont $)$: Set where field

$$
\begin{aligned}
& f: S \rightarrow T \\
& r:(s: S) \rightarrow Q(f s) \rightarrow P s
\end{aligned}
$$

Horizontal composition

$$
\begin{aligned}
& \text { I: Cont } \\
& I=T \triangleleft(\lambda-\rightarrow T) \\
& -\quad: \text { Cont } \rightarrow \text { Cont } \rightarrow \text { Cont } \\
& (S \triangleleft P) \circ(T \triangleleft Q)=(\Sigma S(\lambda s \rightarrow P s \rightarrow T)) \\
& \quad \triangleleft\left(\lambda s f \rightarrow \Sigma\left(P\left(\text { proj }_{1} s f\right)\right)\left(\lambda p \rightarrow Q\left(\text { proj}_{2} \text { sf } p\right)\right)\right)
\end{aligned}
$$

Containers for IR?

- We cannot computer a container normal form for IR since σ and δ do not commute.
- Can we still establish the same results as for inductive definitions?
(1) a complete notion of morphisms
(2) composition of IR definitions

Recursive definitions of morphisms

- Neil and Hank showed that IR morphisms can be calculated recursively.
- For illustration I show how this works for ID (without calculating the container normal form).

$$
\begin{aligned}
&-\Rightarrow \quad: I D \rightarrow I D \rightarrow \text { Set } \\
& \iota \Rightarrow \iota \quad=\top \\
& \iota \Rightarrow \sigma S \phi= \Sigma S(\lambda s \rightarrow \iota \Rightarrow \phi s) \\
& \iota \Rightarrow \delta P \phi=(P \rightarrow \perp) \times \iota \Rightarrow \phi \\
& \sigma S \phi \Rightarrow \psi=(s: S) \rightarrow \phi s \Rightarrow \psi \\
& \delta P \phi \Rightarrow \psi=\phi \Rightarrow(\psi \circ P+) \\
&-\circ++: I D \rightarrow \text { Set } \rightarrow I D \\
& \quad=\iota \\
& \iota \circ P+\quad \\
& \sigma S \phi \circ P+=\sigma S(\lambda s \rightarrow(\phi s) \circ P+) \\
& \delta Q \phi \circ P+=\sigma(Q \rightarrow \operatorname{MaybeP}) \\
&(\lambda f \rightarrow \delta(\Sigma Q(\lambda q \rightarrow f q \equiv \text { nothing }))(\phi \circ P+))
\end{aligned}
$$

Recursive composition?

The question remains can we define horizontal composition recursively?
Again we only look at ID only (but do not exploit container normal form).

$$
\begin{aligned}
& -\times I D _I D \rightarrow I D \rightarrow I D \\
& \iota \times I D \psi=\psi \\
& \sigma S \phi \times I D \psi=\sigma S(\lambda s \rightarrow \phi s \times I D \psi) \\
& \delta P \phi \times I D \psi=\delta P(\phi \times I D \psi) \\
& -\circ _I D \rightarrow I D \rightarrow I D \\
& \iota \circ \psi=\iota \\
& \sigma S \phi \circ \psi=\sigma S(\lambda s \rightarrow(\phi s \circ \psi)) \\
& \delta P \phi \circ \psi=(P \Longrightarrow \psi) \times I D(\phi \circ \psi)
\end{aligned}
$$

But how to define $P \Rightarrow$?

Summary

- We don't have a normal form for IR codes.
- We can define a complete notion of morphisms by recursion.
- But it is not clear wether IR codes are closed under composition.

