Weak ω-Groupoids in Type Theory
 Based on joint work with Ondrej Rypacek

Thorsten Altenkirch

Functional Programming Laboratory
School of Computer Science
University of Nottingham
April 2, 2012

Question

Can we understand a concept by describing it categorically?

- Category theory helps us to structure and relate concepts.
- True understanding must come form somewhere else.
- Set theory?
- There is something better!

Type Theory

Per Martin-Löf

- Propositions are types
- Basic constructions on types: functions, tuples, enumerations, ...
- Implementations of Type Theory: Coq, Agda, ...
- Informal understanding of Type Theory!

Basic ingredients of Type Theory

Π-types dependent function types functions, implication, universal quantification
\sum-types dependent pair types tuples, conjunction, existential quantification
Finite types 0,1,2
Equality types Given $a, b: A, a \equiv b$ is the type of proofs that a is equal to b.
Inductive and coinductive types Finite and infinite trees.
Universes Set $_{0}:$ Set $_{1}: \ldots$

Example: Axiom of choice

$$
\begin{aligned}
& \text { ac }:((a: A) \longrightarrow \Sigma[b: B] R a b) \\
& \longrightarrow \Sigma[f:(A \longrightarrow B)]((a: A) \longrightarrow R a(f a)) \\
& \text { ac } g=\left(\lambda a \longrightarrow \operatorname{proj}_{1}(g a)\right),\left(\lambda a \longrightarrow \operatorname{proj}_{2}(g a)\right)
\end{aligned}
$$

- Follows from the constructive explanation of connectives.
- ac is actually an isomorphism, i.e. there is an inverse:

$$
\begin{aligned}
& a c^{\prime}: \Sigma[f:(A \longrightarrow B)]((a: A) \longrightarrow R a(f a)) \\
& \quad \longrightarrow((a: A) \longrightarrow \Sigma[b: B] R a b) \\
& a c^{\prime}(f, g)=\lambda a \longrightarrow f a, g a
\end{aligned}
$$

Propositional equality

data $\equiv_{-}: A \longrightarrow A \longrightarrow$ Set where

$$
\text { refl : } \quad a \equiv a
$$

Using pattern matching we can show that \equiv_{\ldots} is an equivalence relation:

$$
\begin{aligned}
& -^{-1}: a \equiv b \longrightarrow b \equiv a \\
& \text { refl }^{-1}=r e f l \\
& __{0}: b \equiv c \longrightarrow a \equiv b \longrightarrow a \equiv c \\
& \text { refl } \circ q=q
\end{aligned}
$$

The eliminator J

Instead of pattern matching we can use the eliminator:

$$
\begin{aligned}
& J:(P:\{a b: A\} \longrightarrow a \equiv b \longrightarrow \text { Set }) \\
& \quad \longrightarrow(\{a: A\} \longrightarrow P\{a\} r e f l) \\
& \quad \longrightarrow\{a b: A\} \longrightarrow(p: a \equiv b) \longrightarrow P p \\
& J P m \text { refl }=m \\
& -^{-1}: a \equiv b \longrightarrow b \equiv a \\
& -^{-1}=J(\lambda\{a\}\{b\}-\longrightarrow b \equiv a) \text { refl } \\
& --_{-}: b \equiv c \longrightarrow a \equiv b \longrightarrow a \equiv c \\
& -_{0}-\{a\}=J(\lambda\{b\}\{c\}-\longrightarrow a \equiv b \longrightarrow a \equiv c)(\lambda p \longrightarrow p)
\end{aligned}
$$

Uniqueness of Identity Proofs?

Question

Can all pattern matching proofs done using the eliminator?

UIP

Can we prove that all identity proofs are equal?
uip : $(p q: a \equiv b) \longrightarrow p \equiv q$
uip refl refl $=$ refl

Groupoids

Groupoid

A groupoid is a category where every morphism is an isomorphism.

- Categories are the generalisation of preorders and monoids.
- Groupoids are the generalisation of equivalence relations and groups.

Groupoid laws

Laws

$$
\begin{aligned}
& r e f l \circ p \equiv p \\
& p \circ r e f l \equiv p \\
& p \circ(q \circ r) \equiv(p \circ q) \circ r \\
& p \circ p^{-1} \equiv r e f l \\
& p^{-1} \circ p \equiv r e f l
\end{aligned}
$$

- Using only J we can establish the groupoid laws.

$$
\begin{aligned}
& \rho:(p: a \equiv b) \longrightarrow p \circ r e f l \equiv p \\
& \rho=J(\lambda p \longrightarrow p \circ r e f l \equiv p)(\lambda\{-\} \longrightarrow r e f l)
\end{aligned}
$$

Hofmann/Streicher

Hofmann/Streicher 94

Groupoids form a model of Type Theory in which uip doesn't hold. Hence uip is not derivable from J only.

Consider the functions

$$
\begin{aligned}
& f: \mathbb{N} \longrightarrow \mathbb{N} \\
& f=\lambda n \longrightarrow n+0 \\
& g: \mathbb{N} \longrightarrow \mathbb{N} \\
& g=\lambda n \longrightarrow n
\end{aligned}
$$

We can show

$$
\begin{aligned}
& \text { exteq }:(n: \mathbb{N}) \longrightarrow f n \equiv g n \\
& \text { exteq } n=\text { addOlem } n
\end{aligned}
$$

but we cannot show

$$
e q: f \equiv g
$$

because if such a proof exists.
Then there is one in normal from (refl).
And f and g would have to be convertible (same normal form). However, $n+0$ and n are not convertible.

Extensionality

This shows that the principle:

$$
\begin{aligned}
& \text { ext : }(f g: A \longrightarrow B) \\
& \quad \longrightarrow((a: A) \longrightarrow f a \equiv g a) \longrightarrow f \equiv g
\end{aligned}
$$

is not provable in Type Theory.

Equality of functions

- What should be equality of functions?
- All operations in Type Theory preserve extensional equality of functions.
The only exception is intensional propositional equality.
- We would like to define propositional equality as extensional equality.

Setoids

- Setoids are sets with an equivalence relation.
record Setoid : Set ${ }_{1}$ where
field
\quad set $:$ Set
eq : set \longrightarrow set \longrightarrow Prop
- I write Prop to indicate that all proofs should be identified.
- This seems necessary for the construction.

Function setoids

- A function between setoids has to respect the equivalence relation.

$$
\begin{aligned}
& \text { record }_{-} \Rightarrow \text { set_ }_{-}(A B: \text { Setoid }): \text { Set where } \\
& \text { field } \\
& \quad \text { app : set } A \longrightarrow \text { set } B \\
& \quad \text { resp }: \forall\{a\}\left\{a^{\prime}\right\} \longrightarrow \text { eq } A \text { a } a^{\prime} \longrightarrow \text { eq } B\left(\text { app a) }\left(\text { app } a^{\prime}\right)\right.
\end{aligned}
$$

- Equality between functions is extensional equality:

$$
\begin{aligned}
& -\Rightarrow \quad: \text { Setoid } \longrightarrow \text { Setoid } \longrightarrow \text { Setoid } \\
& A \Rightarrow B=\text { record }\{ \\
& \quad \text { set }=A \Rightarrow \text { set } B ; \\
& \text { eq }=\lambda f f^{\prime} \longrightarrow \\
& \left.\quad \forall\{a\} \longrightarrow \text { eq } B(\text { app } f a)\left(\text { app } f^{\prime} a\right)\right\}
\end{aligned}
$$

Eliminating extensionality

- Adding principles like ext as constants destroys basic computational properties of Type Theory.
- E.g. there are natural numbers not reducible to a numeral.
- We can eliminate ext by translating every type as a setoid see my LICS 99 paper: Extensional Equality in Intensional Type Theory.
- This construction only works for a proof-irrelevant equality (UIP holds).

Equality of types

- When should two types be provably equal?
- All operations in Type Theory preserve isomorphisms.
- Unlike Set Theory, e.g. $\{0,1\} \simeq\{1,2\}$ but $\{0,1\} \cup\{0,1\} \not 千\{0,1\} \cup\{1,2\}$.
- Indeed, isomorphic types are propositionally indistinguishable in Type Theory.
- Leibniz principle: isomorphic sets should be equal!?

Univalent Type Theory

- Vladimir Voevodsky proposed a new principle for Type Theory: the univalence principle.
- This is inspired by models of Homotopy theoretic models of Type Theory.
- He defines the notion of weak equivalence of types.

Equality of types is weakly equivalent to weak equivalence

- Using this principle we can show that isomorphic types are equal.
- It also implies ext.
- However, it is incompatible with uip.

The question

- Can we eliminate univalence?
- We cannot use setoids because they rely on UIP.
- Groupoids are better.
- But Groupoids still rely on proof-irrelevance for the equality of equality proofs ...
- Hence we need ω-groupoids.
- Since the equalities are not all strict we need weak ω-groupoids.

What are weak ω-groupoids?

- There are a number of definitions in the literature, e.g. based on contractible globular operads.
- We need to formalize them in Type Theory ...
- Formalizing the required categorical concepts creates a considerable overhead.
- Also it is not always clear how to represent them in the absence of UIP.
- E.g. what are strict ω-groupoids?

Globular sets

We define a globular set G : Glob coinductively:

$$
\begin{aligned}
\text { obj }_{G} & : \text { Set } \\
\operatorname{hom}_{G} & : \text { obj }_{G} \rightarrow \text { obj }_{G} \rightarrow \infty \text { Glob }
\end{aligned}
$$

Given globular sets A, B a morphism $f: \operatorname{Glob}(A, B)$ between them is given by

$$
\begin{aligned}
\operatorname{obj}_{f} & : \\
\operatorname{hom}_{f} \quad & \text { obj }_{A} \rightarrow \text { obj }_{B} \\
& \\
& \text { Пa, } b: \text { obj }_{A} . \\
& \operatorname{Glob}\left(\operatorname{hom}_{A} a b, \operatorname{hom}_{B}\left(\text { obj }_{f} a, \text { obj }_{f} b\right)\right)
\end{aligned}
$$

As an example we can define the terminal object in $\mathbf{1}_{\text {Glob }}$: Glob by the equations

$$
\begin{aligned}
\mathrm{obj}_{\mathbf{1}_{\text {Glob }}} & =\mathbf{1}_{\text {Set }} \\
\text { hom }_{\mathbf{1}_{\text {Glob }}} x y & =\mathbf{1}_{\mathrm{Glob}}
\end{aligned}
$$

The Identity Globular set

More interestingly, the globular set of identity proofs over a given set A, $\mathrm{Id}^{\omega} A$: Glob can be defined as follows:

$$
\begin{aligned}
\mathrm{obj}_{\mathrm{Id}}{ }^{\omega} A & =A \\
\operatorname{hom}_{\mathrm{Id}^{\omega} A} a b & =\mathrm{Id}^{\omega}(a=b)
\end{aligned}
$$

Globular sets as a presheaf

Our definition of globular sets is equivalent to the usual one as a presheaf category over the diagram:

$$
0 \underset{t_{0}}{\stackrel{s_{0}}{\longrightarrow}} 1 \underset{t_{1}}{\stackrel{s_{1}}{\longrightarrow}} 2 \ldots n \underset{t_{n}}{s_{n}}(n+1) \ldots
$$

with the globular identities:

$$
\begin{aligned}
t_{i+1} \circ s_{i} & =s_{i+1} \circ t_{i} \\
t_{i+1} \circ t_{i} & =s_{i+1} \circ t_{i}
\end{aligned}
$$

A syntactic approach

- When is a globular set a weak ω-groupoid?
- We define a syntax for objects in a weak ω-groupoid.
- A globular set is a weak ω-groupoid, if we can interpret the syntax.
- This is reminiscient of environment λ-models.

The syntactical framework

Contexts

$$
\begin{gathered}
\text { Con : Set } \\
\frac{C: \text { Con } \Gamma}{(\Gamma, C): \text { Con }}
\end{gathered}
$$

Categories

$$
\begin{array}{ll}
& \frac{\Gamma: \text { Con }}{} \begin{array}{l}
\text { Cat } \Gamma: \text { Set } \\
\bullet: ~ C a t ~ \\
\end{array} \\
\frac{C: \operatorname{Cat} \Gamma \quad a, b: \text { Obj } C}{C[a, b]: \operatorname{Cat} \Gamma}
\end{array}
$$

Objects

$$
\frac{C: \operatorname{Cat} \Gamma}{\text { Obj } C, \operatorname{Var} C: \operatorname{Set}}
$$

Interpretation

(1) An assignment of sets to contexts:

$$
\frac{\Gamma: \text { Con }}{\llbracket\ulcorner\rrbracket: \text { Set }}
$$

(2) An assignment of globular sets to category expressions:

$$
\frac{C: \text { Cat } \Gamma \quad \gamma: \llbracket \Gamma \rrbracket}{\llbracket C \rrbracket \gamma: \text { Glob }}
$$

(3) Assignments of elements of object sets to object expressions and variables

$$
\frac{C: \operatorname{Cat} \Gamma \quad A: \text { Obj } C \quad \gamma: \llbracket \Gamma \rrbracket}{\llbracket A \rrbracket \gamma: \text { obj }_{\llbracket C \rrbracket \gamma}}
$$

subject to some (obvious) conditions such as:

$$
\begin{aligned}
\llbracket \bullet \rrbracket \gamma & =G \\
\llbracket C[a, b] \rrbracket \gamma & =\operatorname{hom}_{\llbracket C \rrbracket \gamma}(\llbracket a \rrbracket \gamma)(\llbracket b \rrbracket \gamma)
\end{aligned}
$$

Composition

Telescopes

A telescope t : Tel $C n$ is a path of length n from a category C of to one of its (indirect) hom-categories:

$$
\frac{C: \text { Cat } \Gamma \quad n: \mathbb{N}}{\text { Tel } C n: \operatorname{Set}}
$$

We can turn telescopes into categories:

$$
\frac{t: \text { Tel } C n}{C+t: \text { Cat } \Gamma}
$$

Formalizing composition

$$
\frac{\alpha: \operatorname{Obj}(t \Downarrow) \quad \beta: \operatorname{Obj}(u \Downarrow)}{\beta \circ \alpha: \operatorname{Obj}(u \circ t \Downarrow)}
$$

is a new constructor of Obj where

$$
\frac{t: \operatorname{Tel}(C[a, b]) n \quad u: \operatorname{Tel}(C[b, c]) n}{u \circ t: \operatorname{Tel}(C[a, c])}
$$

is a function on telescopes defined by cases

$$
\bullet \circ \bullet C=\bullet \quad u\left[a^{\prime}, b^{\prime}\right] \circ t[a, b]=(u \circ t)\left[a^{\prime} \circ a, b^{\prime} \circ b\right]
$$

Laws

For example the left unit law in dimension 1:

$$
\begin{equation*}
\mathrm{id}_{b} \circ f=f \tag{1}
\end{equation*}
$$

and in dimension 2.

$$
\mathrm{id}_{b}^{2} \circ \alpha=\alpha
$$

where $\mathrm{id}_{b}^{2}=\mathrm{id}_{\mathrm{id}_{b}}$
In the strict case the 2nd equation only type-checks due to the first. In the weak case we have to apply the previous isomorphism explicitely.

Coherence

Example:

In summary and full generality:
For any pair of coherence cells with the same domain and target, there must be a mediating coherence cell.

Formalizing coherence

$$
\begin{gathered}
\frac{x: \text { Obj } C}{\text { hollow } x: \text { Set }} \\
\text { hollow }\left(\lambda_{--}\right)=\top \ldots \\
f g: \text { Obj } C[a, b] \quad p: \text { hollow } f \quad q: \text { hollow } g \\
\operatorname{coh} p q: \text { Obj } C[a, b][f, g]
\end{gathered}
$$

hollow $(\operatorname{coh} p q)=\top$

Summary

- To be able to eliminate univalence we want to interpret Type Theory in a weak ω-groupoid in Type Theory.
- As a first step we need to define what is a weak ω-groupoid.
- Our approach is to define a syntax for objects in a weak ω groupoid.
- A globular set is a weak ω groupoid if we can interpret this syntax.
- See our draft paper for details: A Syntactical Approach to Weak ω-Groupoids

Further work

- The current definition is quite complex - can we simplify it?
- Can we actually show that the identity globular set is a weak ω-groupoid, internalizing results by Lumsdaine and Garner/van de Berg?
- What is a model of Type Theory in a weak ω-groupoid.
- Can we use this construction to eliminate univalence?

