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What is a container?

A container type is given by:

A set of shapes, e.g.

}, ,{
For any shape a set of positions , e.g.
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What to do with a container?

Given some payload , e.g. we can instantiate a container by

Choosing a shape, e.g.

Filling the positions with payload, e.g. e.g. 1 4 0
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Extension of a container type

The extension of a container is given by an endofunctor
:

where
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Example of a container type

data where
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Example of a container type

data

$% &'(*)  $% & where + ( ,% '( )  $ -% $ -. % '(*)  $

-% % -. % '(*)  $
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9-ary containers

An -ary container is given by

Its extension is an endofunctor is:
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� � :�

is given by
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� :�% 6 � � � ��� �
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Morphisms of containers

Given containers

a morphism is given by
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Representation theorem

Theorem : Every natural transformation (i.e. polymorphic function)
between containers can be represented as a container morphisms.

is full and faithful.

Example: any natural transformation is given
by:
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Representation theorem

Theorem : Every natural transformation (i.e. polymorphic function)
between containers can be represented as a container morphisms.� �

is full and faithful.

Example: any natural transformation N � < � � OPRQ S � � O PQ S �

is given
by:

B % 
��  � 
�� 

C % <6 % 
 �  � � B 6 � � 6

APPSEM 05 – p.8/19



Strictly positive types

Strictly positive types are generated by , , , ,
(constant exponentation), (initial algebra) and (terminal

coalgebra).

A Martin-Löf category is an extensive, locally cartesian closed
category with W-types.

Theorem: All strictly positive types are representable as

containers in any Martin-Löf category.

Corollary : All closed strictly positive types are representable in
any Martin-Löf category.
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any Martin-Löf category.

APPSEM 05 – p.9/19



Strictly positive types

� Strictly positive types are generated by

T

,

1

,

2

,

3

,
U ��V

(constant exponentation), / (initial algebra) and W (terminal

coalgebra).
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Observations

Framework to define and reason about datatype generic
programming, e.g. see our papers on derivatives of containers.

Martin-Löf categories have representations of all strictly positive
non-dependent inductive and coinductive types.

We have developed a theory of non-dependent datatypes in a
dependently typed framework.
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Dependently typed programming

data where

data where

let

case

case

case
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Dependently typed programming

data

X% 
 �  $% &Y�Z[ X $% & where + ( ,% Y�Z[ \ $ -% $ -. % Y�Z[ X $

-% % -. % Y�Z[ �] 2 X � $

data

X% 
 � ^( + X% & where \% ^( + � ] 2 X �

_% ^( + X] 2 _% ^( + �] 2 X �

let

-. % Y�Z[ X $ _% ^( + X

` F � a -. _% $

` F � a -. _ b

case

_

` F � a -. \ b

case -.

` F � a -% % -. \ c -

` F � a -. ] 2 d b

case -.

` F � a -% % -. ] 2 d c ` F � a -. d
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Dependent datatypes

Given we define the slice category as:

Objects

Morphisms

Dependent (inductive) datatypes arise as initial algebras of
endofunctors on slice categories.

E.g. , where
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E.g.

^( + 	 / =% 
 �  � ��� � � @ghji =

, where

@ghji % ��� � f 
��  � ��� � f 
 � 

@ghji = 6 	 ��k % 
 �  � 6 	 12 k

2 ��k % 
��  � �K6 	 12 k � 3 � = k �
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Dependent Containers

Given a dependent container is given by

, a family of shapes,

, an indexed family of positions.

The extension of a dependent container is a functor on slices, that is

, on objects
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Morphisms of dependent containers

Given two dependent containers a morphism

is given by

The extension of a container morphism is a natural transformation
which is given by the following family of maps (for ):
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Given two dependent containers
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Morphisms of dependent containers

Given two dependent containers

� � �� @ � A% D�E F � e� l �
a morphismB �C is given by

� B% <m % l� � � m � � @ m

� C � <7 % e � <m % l� < �% � m � A m � 7 � � m � 7
The extension of a container morphism is a natural transformation
which is given by the following family of maps (for

=% l � ��� �

):

� B � C � = % <m % l� � � � � � = m � � @ � A � = m

� B � C � = m � �� I � 	 � B m �� n7 � � I 7 � L �C 7 � �

APPSEM 05 – p.14/19



Representation theorem

Theorem : Every natural transformation (i.e. polymorphic function)
between dependent containers can be represented as a dependent

container morphisms.� �

is full and faithful.
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Strictly positive dependent types?

Theorem: ? All strictly positive dependent types are
representable as dependent containers in any Martin-Löf category.

What is a dependent strictly positive type?

Inductive Schemes, as in Luo’s UTT or COQ’s Type Theoy give
rise to dependent containers.

Better: define a collection of combinators to generate strictly

positive dependent types.
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Application to schema checking

Systems based on Type Theory like COQ, Agda, Epigram use
schemes to characterize sound definitions of datatypes.

Schema checking is complex, incomplete and potentially
unsound.

Using dependent containers we can implement extensible

schemes which produce evidence by translating the scheme into
core Type Theory with W-types.

This requires a Type Theory with an extensional propositional
equality (under development).
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Dependent Signatures?

Our current approach doesn’t capture inductive definitions like the
definition of the syntax of Type Theory which simultanbously
introduces:

oqpr % ��� �

sut % oqpr � vqw S

s�x % <y % oqpr � � st y � � ��� �
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Related work

Dependent containers are closely related to polynomial functors,
which have been investigated by Gambino and Hyland.

Initial algebras of unary dependent containers correspond to the
Petersson and Synek’s tree types.

The categoy of dependent containers is equivalent to the category
of Interaction Structures investigated by Hancock,Hyvernat and
Setzer.
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