
Dependent Containers
Thorsten Altenkirch

based on joint work with Neil Ghani, Conor McBride and Peter Hancock

University of Nottingham

APPSEM 05 – p.1/19

What is a container?

A container type is given by:

A set of shapes, e.g.

}, ,{
For any shape a set of positions , e.g.

APPSEM 05 – p.2/19

What is a container?

A container type

� � �

is given by:

A set of shapes, e.g.

}, ,{
For any shape a set of positions , e.g.

APPSEM 05 – p.2/19

What is a container?

A container type

� � �

is given by:

� A set

�

of shapes, e.g.

}, ,{

For any shape a set of positions , e.g.

APPSEM 05 – p.2/19

What is a container?

A container type

� � �

is given by:

� A set

�

of shapes, e.g.

}, ,{

� For any shape � � �

a set of positions

� � � � , e.g.

APPSEM 05 – p.2/19

What to do with a container?

Given some payload , e.g. we can instantiate a container by

Choosing a shape, e.g.

Filling the positions with payload, e.g. e.g. 1 4 0

APPSEM 05 – p.3/19

What to do with a container?

Given some payload

�

, e.g.

� 	
��

we can instantiate a container by

Choosing a shape, e.g.

Filling the positions with payload, e.g. e.g. 1 4 0

APPSEM 05 – p.3/19

What to do with a container?

Given some payload

�

, e.g.

� 	
 �

we can instantiate a container by

� Choosing a shape, e.g.

Filling the positions with payload, e.g. e.g. 1 4 0

APPSEM 05 – p.3/19

What to do with a container?

Given some payload

�

, e.g.

� 	
 �

we can instantiate a container by

� Choosing a shape, e.g.

� Filling the positions with payload, e.g. e.g. 1 4 0

APPSEM 05 – p.3/19

Extension of a container type

The extension of a container is given by an endofunctor
:

where

APPSEM 05 – p.4/19

Extension of a container type

The extension

� � � � �

of a container is given by an endofunctor��� � � ��� �

: � � � � � � � � 	 � � � ��� � � � � � �

where

APPSEM 05 – p.4/19

Extension of a container type

The extension

� � � � �

of a container is given by an endofunctor��� � � ��� �

: � � � � � � � � 	 � � � ��� � � � � � �

where ��� � � � � � � � 	 � � ��� � � � � �"! � � � � � �#

APPSEM 05 – p.4/19

Example of a container type

data where

APPSEM 05 – p.5/19

Example of a container type

data

$% &'(*) $% & where + (,% '() $ -% $ -. % '(*) $

-% % -. % '(*) $

APPSEM 05 – p.5/19

Example of a container type

data

$% &'(*) $% & where + (,% '() $ -% $ -. % '(*) $

-% % -. % '(*) $

'(*) � 	 / 0� 12 �43 0

APPSEM 05 – p.5/19

Example of a container type

data

$% &'(*) $% & where + (,% '() $ -% $ -. % '(*) $

-% % -. % '(*) $

'(*) � 	 / 0� 12 �43 0

'(*) � 5 ��6 �
 � � �7 8 6 # � �

APPSEM 05 – p.5/19

Example of a container type

data

$% &'(*) $% & where + (,% '() $ -% $ -. % '(*) $

-% % -. % '(*) $

'(*) � 	 / 0� 12 �43 0

'(*) � 5 ��6 �
 � � �7 8 6 # � �

	 ��6 �
 � � 6 � �

APPSEM 05 – p.5/19

9-ary containers

An -ary container is given by

Its extension is an endofunctor is:

APPSEM 05 – p.6/19

9-ary containers

An 6 -ary container

� � :�

is given by

� �% ��� �

� :�% 6 � � � ��� �

Its extension is an endofunctor is:

APPSEM 05 – p.6/19

9-ary containers

An 6 -ary container

� � :�

is given by

� �% ��� �

� :�% 6 � � � ��� �

Its extension is an endofunctor

��� � ; � ��� �
is:

� � � :� � � � � 	 � � � ��� <7 8 6 � � 7 � � � 7

APPSEM 05 – p.6/19

Morphisms of containers

Given containers

a morphism is given by

APPSEM 05 – p.7/19

Morphisms of containers

Given containers

= � � � 	 � � � ��� � � � � � �

> � � � 	 �? � @� A � ? � � �

a morphism

B �C � D�E F � =� > �

is given by

APPSEM 05 – p.7/19

Morphisms of containers

Given containers

= � � � 	 � � � ��� � � � � � �

> � � � 	 �? � @� A � ? � � �

a morphism

B �C � D�E F � =� > �

is given by

B � � � @

APPSEM 05 – p.7/19

Morphisms of containers

Given containers

= � � � 	 � � � ��� � � � � � �

> � � � 	 �? � @� A � ? � � �

a morphism

B �C � D�E F � =� > �

is given by

B � � � @

C � < � � ��� A � B � � � � � � � � �

APPSEM 05 – p.7/19

Morphisms of containers

Given containers

= � � � 	 � � � ��� � � � � � �

> � � � 	 �? � @� A � ? � � �

a morphism

B �C � D�E F � =� > �

is given by

B � � � @

C � < � � ��� A � B � � � � � � � � �

� B � C �HG � = � � � � > � � �

APPSEM 05 – p.7/19

Morphisms of containers

Given containers

= � � � 	 � � � ��� � � � � � �

> � � � 	 �? � @� A � ? � � �

a morphism

B �C � D�E F � =� > �

is given by

B � � � @

C � < � � ��� A � B � � � � � � � � �

� B � C �HG � = � � � � > � � �

	 � �� I �KJ � � B � � �� IML C � � � �

APPSEM 05 – p.7/19

Representation theorem

Theorem : Every natural transformation (i.e. polymorphic function)
between containers can be represented as a container morphisms.

is full and faithful.

Example: any natural transformation is given
by:

APPSEM 05 – p.8/19

Representation theorem

Theorem : Every natural transformation (i.e. polymorphic function)
between containers can be represented as a container morphisms.� �

is full and faithful.

Example: any natural transformation is given
by:

APPSEM 05 – p.8/19

Representation theorem

Theorem : Every natural transformation (i.e. polymorphic function)
between containers can be represented as a container morphisms.� �

is full and faithful.

Example: any natural transformation N � < � � OPRQ S � � O PQ S �

is given
by:

B %
�� �
��

C % <6 %
 � � � B 6 � � 6

APPSEM 05 – p.8/19

Strictly positive types

Strictly positive types are generated by , , , ,
(constant exponentation), (initial algebra) and (terminal

coalgebra).

A Martin-Löf category is an extensive, locally cartesian closed
category with W-types.

Theorem: All strictly positive types are representable as

containers in any Martin-Löf category.

Corollary : All closed strictly positive types are representable in
any Martin-Löf category.

APPSEM 05 – p.9/19

Strictly positive types

� Strictly positive types are generated by

T

,

1

,

2

,

3

,
U ��V

(constant exponentation), / (initial algebra) and W (terminal

coalgebra).

A Martin-Löf category is an extensive, locally cartesian closed
category with W-types.

Theorem: All strictly positive types are representable as

containers in any Martin-Löf category.

Corollary : All closed strictly positive types are representable in
any Martin-Löf category.

APPSEM 05 – p.9/19

Strictly positive types

� Strictly positive types are generated by

T

,

1

,

2

,

3

,
U ��V

(constant exponentation), / (initial algebra) and W (terminal

coalgebra).

� A Martin-Löf category is an extensive, locally cartesian closed
category with W-types.

Theorem: All strictly positive types are representable as

containers in any Martin-Löf category.

Corollary : All closed strictly positive types are representable in
any Martin-Löf category.

APPSEM 05 – p.9/19

Strictly positive types

� Strictly positive types are generated by

T

,

1

,

2

,

3

,
U ��V

(constant exponentation), / (initial algebra) and W (terminal

coalgebra).

� A Martin-Löf category is an extensive, locally cartesian closed
category with W-types.

� Theorem: All strictly positive types are representable as

containers in any Martin-Löf category.

Corollary : All closed strictly positive types are representable in
any Martin-Löf category.

APPSEM 05 – p.9/19

Strictly positive types

� Strictly positive types are generated by

T

,

1

,

2

,

3

,
U ��V

(constant exponentation), / (initial algebra) and W (terminal

coalgebra).

� A Martin-Löf category is an extensive, locally cartesian closed
category with W-types.

� Theorem: All strictly positive types are representable as

containers in any Martin-Löf category.

� Corollary : All closed strictly positive types are representable in
any Martin-Löf category.

APPSEM 05 – p.9/19

Observations

Framework to define and reason about datatype generic
programming, e.g. see our papers on derivatives of containers.

Martin-Löf categories have representations of all strictly positive
non-dependent inductive and coinductive types.

We have developed a theory of non-dependent datatypes in a
dependently typed framework.

APPSEM 05 – p.10/19

Observations

� Framework to define and reason about datatype generic
programming, e.g. see our papers on derivatives of containers.

Martin-Löf categories have representations of all strictly positive
non-dependent inductive and coinductive types.

We have developed a theory of non-dependent datatypes in a
dependently typed framework.

APPSEM 05 – p.10/19

Observations

� Framework to define and reason about datatype generic
programming, e.g. see our papers on derivatives of containers.

� Martin-Löf categories have representations of all strictly positive
non-dependent inductive and coinductive types.

We have developed a theory of non-dependent datatypes in a
dependently typed framework.

APPSEM 05 – p.10/19

Observations

� Framework to define and reason about datatype generic
programming, e.g. see our papers on derivatives of containers.

� Martin-Löf categories have representations of all strictly positive
non-dependent inductive and coinductive types.

� We have developed a theory of non-dependent datatypes in a
dependently typed framework.

APPSEM 05 – p.10/19

Dependently typed programming

data where

data where

let

case

case

case

APPSEM 05 – p.11/19

Dependently typed programming

data

X%
 � $% &Y�Z[X $% & where + (,% Y�Z[\ $ -% $ -. % Y�Z[X $

-% % -. % Y�Z[�] 2 X � $

data where

let

case

case

case

APPSEM 05 – p.11/19

Dependently typed programming

data

X%
 � $% &Y�Z[X $% & where + (,% Y�Z[\ $ -% $ -. % Y�Z[X $

-% % -. % Y�Z[�] 2 X � $

data

X%
 � ^(+ X% & where \% ^(+ �] 2 X �

_% ^(+ X] 2 _% ^(+ �] 2 X �

let

case

case

case

APPSEM 05 – p.11/19

Dependently typed programming

data

X%
 � $% &Y�Z[X $% & where + (,% Y�Z[\ $ -% $ -. % Y�Z[X $

-% % -. % Y�Z[�] 2 X � $

data

X%
 � ^(+ X% & where \% ^(+ �] 2 X �

_% ^(+ X] 2 _% ^(+ �] 2 X �

let

-. % Y�Z[X $ _% ^(+ X

` F � a -. _% $

case

case

case

APPSEM 05 – p.11/19

Dependently typed programming

data

X%
 � $% &Y�Z[X $% & where + (,% Y�Z[\ $ -% $ -. % Y�Z[X $

-% % -. % Y�Z[�] 2 X � $

data

X%
 � ^(+ X% & where \% ^(+ �] 2 X �

_% ^(+ X] 2 _% ^(+ �] 2 X �

let

-. % Y�Z[X $ _% ^(+ X

` F � a -. _% $

` F � a -. _ b

case

_

` F � a -. \ b

case -.

` F � a -% % -. \ c -

` F � a -.] 2 d b

case -.

` F � a -% % -.] 2 d c ` F � a -. d

APPSEM 05 – p.11/19

Dependent datatypes

Given we define the slice category as:

Objects

Morphisms

Dependent (inductive) datatypes arise as initial algebras of
endofunctors on slice categories.

E.g. , where

APPSEM 05 – p.12/19

Dependent datatypes

Given

e% ��� �

we define the slice category

��� � f e

as:

Objects

=% e � ��� �

Morphisms

��� � f e � =� > � 	 <7 % e � � = 7 � � � > 7 �

Dependent (inductive) datatypes arise as initial algebras of
endofunctors on slice categories.

E.g. , where

APPSEM 05 – p.12/19

Dependent datatypes

Given

e% ��� �

we define the slice category

��� � f e

as:

Objects

=% e � ��� �

Morphisms

��� � f e � =� > � 	 <7 % e � � = 7 � � � > 7 �
Dependent (inductive) datatypes arise as initial algebras of
endofunctors on slice categories.

E.g. , where

APPSEM 05 – p.12/19

Dependent datatypes

Given

e% ��� �

we define the slice category

��� � f e

as:

Objects

=% e � ��� �

Morphisms

��� � f e � =� > � 	 <7 % e � � = 7 � � � > 7 �
Dependent (inductive) datatypes arise as initial algebras of
endofunctors on slice categories.

E.g.

^(+ 	 / =%
 � � ��� � � @ghji =

, where

@ghji % ��� � f
�� � ��� � f
 �

@ghji = 6 	 ��k %
 � � 6 	 12 k

2 ��k %
�� � �K6 	 12 k � 3 � = k �

APPSEM 05 – p.12/19

Dependent Containers

Given a dependent container is given by

, a family of shapes,

, an indexed family of positions.

The extension of a dependent container is a functor on slices, that is

, on objects

APPSEM 05 – p.13/19

Dependent Containers

Given

e� l% ��� �

a dependent container

� � �% D�E F e l
is given by

� �% l � ��� �

, a family of shapes,

� �% <m % l� � �m � � e � ��� �

, an indexed family of positions.

The extension of a dependent container is a functor on slices, that is

, on objects

APPSEM 05 – p.13/19

Dependent Containers

Given

e� l% ��� �

a dependent container

� � �% D�E F e l
is given by

� �% l � ��� �

, a family of shapes,

� �% <m % l� � �m � � e � ��� �

, an indexed family of positions.

The extension of a dependent container is a functor on slices, that is� � � � � % ��� � f e � ��� � f l

, on objects

� � � � � = m 	 � �% � m � <7 % e � � � m � 7 � � � = 7 � �

APPSEM 05 – p.13/19

Morphisms of dependent containers

Given two dependent containers a morphism

is given by

The extension of a container morphism is a natural transformation
which is given by the following family of maps (for):

APPSEM 05 – p.14/19

Morphisms of dependent containers

Given two dependent containers

� � �� @ � A% D�E F � e� l �
a morphismB �C is given by

� B% <m % l� � � m � � @ m

� C � <7 % e � <m % l� < �% � m � A m � 7 � � m � 7

The extension of a container morphism is a natural transformation
which is given by the following family of maps (for):

APPSEM 05 – p.14/19

Morphisms of dependent containers

Given two dependent containers

� � �� @ � A% D�E F � e� l �
a morphismB �C is given by

� B% <m % l� � � m � � @ m

� C � <7 % e � <m % l� < �% � m � A m � 7 � � m � 7
The extension of a container morphism is a natural transformation
which is given by the following family of maps (for

=% l � ��� �

):

� B � C � = % <m % l� � � � � � = m � � @ � A � = m

� B � C � = m � �� I � 	 � B m �� n7 � � I 7 � L �C 7 � �

APPSEM 05 – p.14/19

Representation theorem

Theorem : Every natural transformation (i.e. polymorphic function)
between dependent containers can be represented as a dependent

container morphisms.� �

is full and faithful.

APPSEM 05 – p.15/19

Strictly positive dependent types?

Theorem: ? All strictly positive dependent types are
representable as dependent containers in any Martin-Löf category.

What is a dependent strictly positive type?

Inductive Schemes, as in Luo’s UTT or COQ’s Type Theoy give
rise to dependent containers.

Better: define a collection of combinators to generate strictly

positive dependent types.

APPSEM 05 – p.16/19

Strictly positive dependent types?

� Theorem: ? All strictly positive dependent types are
representable as dependent containers in any Martin-Löf category.

What is a dependent strictly positive type?

Inductive Schemes, as in Luo’s UTT or COQ’s Type Theoy give
rise to dependent containers.

Better: define a collection of combinators to generate strictly

positive dependent types.

APPSEM 05 – p.16/19

Strictly positive dependent types?

� Theorem: ? All strictly positive dependent types are
representable as dependent containers in any Martin-Löf category.

� What is a dependent strictly positive type?

Inductive Schemes, as in Luo’s UTT or COQ’s Type Theoy give
rise to dependent containers.

Better: define a collection of combinators to generate strictly

positive dependent types.

APPSEM 05 – p.16/19

Strictly positive dependent types?

� Theorem: ? All strictly positive dependent types are
representable as dependent containers in any Martin-Löf category.

� What is a dependent strictly positive type?

� Inductive Schemes, as in Luo’s UTT or COQ’s Type Theoy give
rise to dependent containers.

Better: define a collection of combinators to generate strictly

positive dependent types.

APPSEM 05 – p.16/19

Strictly positive dependent types?

� Theorem: ? All strictly positive dependent types are
representable as dependent containers in any Martin-Löf category.

� What is a dependent strictly positive type?

� Inductive Schemes, as in Luo’s UTT or COQ’s Type Theoy give
rise to dependent containers.

� Better: define a collection of combinators to generate strictly

positive dependent types.

APPSEM 05 – p.16/19

Application to schema checking

Systems based on Type Theory like COQ, Agda, Epigram use
schemes to characterize sound definitions of datatypes.

Schema checking is complex, incomplete and potentially
unsound.

Using dependent containers we can implement extensible

schemes which produce evidence by translating the scheme into
core Type Theory with W-types.

This requires a Type Theory with an extensional propositional
equality (under development).

APPSEM 05 – p.17/19

Application to schema checking

� Systems based on Type Theory like COQ, Agda, Epigram use
schemes to characterize sound definitions of datatypes.

Schema checking is complex, incomplete and potentially
unsound.

Using dependent containers we can implement extensible

schemes which produce evidence by translating the scheme into
core Type Theory with W-types.

This requires a Type Theory with an extensional propositional
equality (under development).

APPSEM 05 – p.17/19

Application to schema checking

� Systems based on Type Theory like COQ, Agda, Epigram use
schemes to characterize sound definitions of datatypes.

� Schema checking is complex, incomplete and potentially
unsound.

Using dependent containers we can implement extensible

schemes which produce evidence by translating the scheme into
core Type Theory with W-types.

This requires a Type Theory with an extensional propositional
equality (under development).

APPSEM 05 – p.17/19

Application to schema checking

� Systems based on Type Theory like COQ, Agda, Epigram use
schemes to characterize sound definitions of datatypes.

� Schema checking is complex, incomplete and potentially
unsound.

� Using dependent containers we can implement extensible

schemes which produce evidence by translating the scheme into
core Type Theory with W-types.

This requires a Type Theory with an extensional propositional
equality (under development).

APPSEM 05 – p.17/19

Application to schema checking

� Systems based on Type Theory like COQ, Agda, Epigram use
schemes to characterize sound definitions of datatypes.

� Schema checking is complex, incomplete and potentially
unsound.

� Using dependent containers we can implement extensible

schemes which produce evidence by translating the scheme into
core Type Theory with W-types.

� This requires a Type Theory with an extensional propositional
equality (under development).

APPSEM 05 – p.17/19

Dependent Signatures?

Our current approach doesn’t capture inductive definitions like the
definition of the syntax of Type Theory which simultanbously
introduces:

oqpr % ��� �

sut % oqpr � vqw S

s�x % <y % oqpr � � st y � � ��� �

APPSEM 05 – p.18/19

Related work

Dependent containers are closely related to polynomial functors,
which have been investigated by Gambino and Hyland.

Initial algebras of unary dependent containers correspond to the
Petersson and Synek’s tree types.

The categoy of dependent containers is equivalent to the category
of Interaction Structures investigated by Hancock,Hyvernat and
Setzer.

APPSEM 05 – p.19/19

Related work

� Dependent containers are closely related to polynomial functors,
which have been investigated by Gambino and Hyland.

Initial algebras of unary dependent containers correspond to the
Petersson and Synek’s tree types.

The categoy of dependent containers is equivalent to the category
of Interaction Structures investigated by Hancock,Hyvernat and
Setzer.

APPSEM 05 – p.19/19

Related work

� Dependent containers are closely related to polynomial functors,
which have been investigated by Gambino and Hyland.

� Initial algebras of unary dependent containers correspond to the
Petersson and Synek’s tree types.

The categoy of dependent containers is equivalent to the category
of Interaction Structures investigated by Hancock,Hyvernat and
Setzer.

APPSEM 05 – p.19/19

Related work

� Dependent containers are closely related to polynomial functors,
which have been investigated by Gambino and Hyland.

� Initial algebras of unary dependent containers correspond to the
Petersson and Synek’s tree types.

� The categoy of dependent containers is equivalent to the category
of Interaction Structures investigated by Hancock,Hyvernat and
Setzer.

APPSEM 05 – p.19/19

	What is a container?
	What to do with a container?
	Extension of a container type
	Example of a container type
	n-ary containers
	Morphisms of containers
	Representation theorem
	Strictly positive types
	Observations
	Dependently typed programming
	Dependent datatypes
	Dependent Containers
	Morphisms of dependent containers
	Representation theorem
	Strictly positive dependent types?
	Application to schema checking
	Dependent Signatures?
	Related work

