To Infinity, and Beyond: From Setoids to Weak ω -Categories Thanks to Nicolai Krauss, Dan Licata, Darin Morrison and Ondrej Rypacek

Thorsten Altenkirch

Functional Programming Laboratory School of Computer Science University of Nottingham

July 7, 2011

Equality types

 Equality types in Type Theory: a ≡ b is the set of proofs that a is equal to b.

data
$$_\equiv _:A \rightarrow A \rightarrow Set$$
 where $refl: \{a:A\} \rightarrow a \equiv a$

• We can show that \equiv is an equivalence relation using pattern matching.

away 11

$$sym : a \equiv b \rightarrow b \equiv a$$

 $sym \ refl = refl$
 $trans : a \equiv b \rightarrow b \equiv c \rightarrow a \equiv c$
 $trans \ refl \ q = q$

About equality proofs

- In Type Theory we can make statements about the equality of equality proofs.
- E.g. Uniqueness of Identity Proofs (UIP): all equality proofs are equal.

$$uip:(p q:a\equiv b)\rightarrow p\equiv q$$

We may ask wether equality is a groupoid, i.e.

```
Ineutr: trans refl p \equiv p

rneutr: trans p refl \equiv p

assoc: trans (trans p q) r \equiv trans p (trans q r)

linv: trans (sym p) p \equiv refl

rinv: trans p (sym p) \equiv refl
```

away 11

Pattern matching proves UIP

• All the equalities are provable using pattern matching, e.g.

$$uip : (p \ q : a \equiv b) \rightarrow p \equiv q$$

 $uip \ refl \ refl = refl$

J - the eliminator

An alternative to pattern matching is the eliminator J:

$$J: (M: \{ab: A\} \rightarrow a \equiv b \rightarrow Set)$$

$$\rightarrow (\{a: A\} \rightarrow M (refl \{a\}))$$

$$\rightarrow (p: a \equiv b) \rightarrow M p$$

$$J M m (refl \{a\}) = m \{a\}$$

- Using J we can derive all the previous propositions but not uip.
- J corresponds to a restricted form of pattern matching.

Question

Should we accept or reject UIP?

Equality of functions

- What should be equality of functions?
- All operations in Type Theory preserve extensional equality of functions.
 - The only exception is intensional propositional equality.
- We would like to define propositional equality as extensional equality.

away 11

```
postulate

ext: (f g: A \rightarrow B)

\rightarrow ((a: A) \rightarrow f a \equiv g a) \rightarrow f \equiv g
```

Equality of types

- What should be equality of types?
- All operations of Type Theory preserve isomorphisms (or bijections).

The only exception is intensional propositional equality.

- Unlike Set Theory, e.g. $\{0,1\} \simeq \{1,2\}$ but $\{0,1\} \cup \{0,1\} \not\simeq \{0,1\} \cup \{1,2\}$.
- We would like to define propositional equality of types as isomorphism.

UIP and isomorphism

- UIP doesn't hold if we define equality of types as isomorphism.
- E.g. there is more than one way to prove that Bool is isomorphic to Bool.
- If we want to use isomorphism as equality we cannot allow uip.

Eliminating extensionality

- Adding principles like ext or univalence as constants destroys basic computational properties of Type Theory.
- E.g. there are natural numbers not reducible to a numeral.
- We can eliminate ext by translating every type as a setoid see my LICS 99 paper: Extensional Equality in Intensional Type Theory.

Setoids

Setoids are sets with an equivalence relation.

```
record\ Setoid: Set_1\  where field set: Set eq: set \rightarrow set \rightarrow Prop ...
```

- I write Prop to indicate that all proofs should be identified.
- This seems necessary for the construction.

Function setoids

 A function between setoids has to respect the equivalence relation.

```
record \_\Rightarrow set\_ (A B : Setoid) : Set where field 
app : set A \rightarrow set B 
resp : \forall \{a\} \{a'\} \rightarrow eq \ A \ a \ a' \rightarrow eq \ B \ (app \ a) \ (app \ a')
```

Equality between functions is extensional equality:

```
\_\Rightarrow\_:Setoid \rightarrow Setoid \rightarrow Setoid
A\Rightarrow B=record \{
set=A\Rightarrow set B;
eq=\lambda \ f \ f' \rightarrow
\forall \ \{a\} \rightarrow eq \ B \ (app \ f \ a) \ (app \ f' \ a) \}
```

Proof-Irrelevance

• Since we are using *Prop* the construction enforces UIP.

Question

What do we have to use instead of setoids, if we don't want UIP?

Globular sets

 The first approximation are globular sets which are a coinductive type:

```
record Glob : Set<sub>1</sub> where field obj : Set<sub>0</sub> eq : obj \rightarrow obj \rightarrow \infty Glob
```

Function globular sets

The set of functions is also defined coinductively:

```
record \_\Rightarrow set\_(A B : Glob) : Set where field app : set A \to set B resp : \forall \{ a a' \} \to \infty(\flat(eq A a a') \Rightarrow set (\flat(eq B (app a) (app a'))))
```

To define equality we need Π-types as a globular set:

```
\begin{split} \Pi: (A:Set) & (F:A \rightarrow Glob) \rightarrow Glob \\ \Pi & A F = record \ \{ \\ set & = (a:A) \rightarrow set \ (F \ a); \\ eq & = \lambda \ f \ g \rightarrow \sharp \Pi \ A \ (\lambda \ a \rightarrow \flat (eq \ (F \ a) \ (f \ a) \ (g \ a))) \} \end{split}
```

Now we can define function globular sets:

```
\_\Rightarrow\_:Glob \rightarrow Glob \rightarrow Glob
A\Rightarrow B=record {
set=A\Rightarrow set\ B;
eq=\lambda\ f\ g \rightarrow \sharp\Pi\ (set\ A)\ (\lambda\ a \rightarrow \flat(eq\ B\ (app\ f\ a)\ (app\ g\ a)))}
```

15 / 1

What about the ...?

For setoids we have to add:

```
record Setoid : Set<sub>1</sub> where
field
set : Set
eq : set \rightarrow set \rightarrow Prop
refl : \forall \{a\} \rightarrow eq a a
sym : \forall \{a\} \{b\} \rightarrow eq a b \rightarrow eq b a
trans : \forall \{a\} \{b\} \{c\} \rightarrow eq a b \rightarrow eq b c \rightarrow eq a c
```

What do we need for globular sets?

Weak ω -groupoids

- We need *refl*, *sym* and *trans* at all levels.
- We require the groupoid equations everywhere.
- trans and sym are actually functors.
- All equalities are weak, i.e. equations are witnessed by elements of homsets.
- Coherence: All equations which are provable using a strict equality should be witnessed in the weak sense.

Globular sets

- A weak ω -groupoids is a globular set with additional structure.
- To define this framework we introduce a language to talk about categories and objects in a weak ω -groupoid.
- A weak ω -gropoid is then defined as a globular set which interprets this language.

The framework

```
data Con: Set where
   \epsilon: Con
   \_, \_: (\Gamma : Con) (C : Cat \ \Gamma) \rightarrow Con
record HomSpec (Γ: Con): Set where
   field
       cat : Cat Γ
       dom cod : Obj cat
data Cat: (\Gamma: Con) \rightarrow Set where
    ffl : \forall \{ \Gamma \} \rightarrow Cat \Gamma
   hom : \forall \{\Gamma\} \rightarrow HomSpec \Gamma \rightarrow Cat \Gamma
data Obj: \{\Gamma : Con\} (C : Cat \Gamma) \rightarrow Set \text{ where }
   var: \forall \{\Gamma\} \{C: Cat \Gamma\} \rightarrow Var C \rightarrow Obi C
    ...
```

```
record ωCat : Set<sub>1</sub> where
   field
      G: Glob
      evalCon : Con → Set
      evalCat : (C : Cat \Gamma) (\gamma : evalCon \Gamma) \rightarrow Glob
     evalObj : (A : Obj C) (\gamma : evalCon \Gamma) \rightarrow Glob.obj (evalCat C \gamma)
     evalCon \epsilon G = \top
      evalCon (\Gamma, C) G =
                \Sigma [\gamma : evalCon \Gamma G] Glob.obj (evalCat C G \gamma)
      evalCat ffl G \gamma = G
      evalCat (hom (C [A, B])) G \gamma = \emptyset (Glob.hom (evalCat C G \gamma)
                                                                 (evalObi A G √)
                                                                 (evalObi B G \gamma))
```

•••

Conclusions

- Weak ω-groupoids replace setoids when we want to interpret Type Theory without UIP.
 (higher dimensional Type Theory)
- Already defining them precisely is quite hard.
- Using them to interpret Type Theory looks even harder.
- Are there ways to reduce bureaucracy?