To Infinity, and Beyond: From Setoids to Weak ω-Categories

Thanks to Nicolai Krauss, Dan Licata, Darin Morrison and Ondrej Rypacek

Thorsten Altenkirch

Functional Programming Laboratory School of Computer Science
University of Nottingham

July 7, 2011

Equality types

- Equality types in Type Theory: $a \equiv b$ is the set of proofs that a is equal to b.

$$
\begin{aligned}
& \text { data }_{-} \equiv _: A \rightarrow A \rightarrow \text { Set where } \\
& \text { refl }:\{a: A\} \rightarrow a \equiv a
\end{aligned}
$$

- We can show that \equiv is an equivalence relation using pattern matching.

$$
\begin{aligned}
& \text { sym : } a \equiv b \rightarrow b \equiv a \\
& \text { sym refl }=\text { refl } \\
& \text { trans : } a \equiv b \rightarrow b \equiv c \rightarrow a \equiv c \\
& \text { trans refl } q=q
\end{aligned}
$$

About equality proofs

- In Type Theory we can make statements about the equality of equality proofs.
- E.g. Uniqueness of Identity Proofs (UIP) : all equality proofs are equal.

$$
\text { uip : }(p q: a \equiv b) \rightarrow p \equiv q
$$

- We may ask wether equality is a groupoid, i.e.

$$
\begin{aligned}
& \text { Ineutr : trans refl } p \equiv p \\
& \text { rneutr : trans } p \text { refl } \equiv p \\
& \text { assoc : trans }(\text { trans } p q) r \equiv \text { trans } p(\text { trans } q r) \\
& \text { linv : trans }(\text { sym } p) p \equiv \text { refl } \\
& \text { rinv : trans } p(\text { sym } p) \equiv \text { refl }
\end{aligned}
$$

Pattern matching proves UIP

- All the equalities are provable using pattern matching, e.g.

$$
\begin{aligned}
& \text { uip : }(p q: a \equiv b) \rightarrow p \equiv q \\
& \text { uip refl refl }=\text { refl }
\end{aligned}
$$

J - the eliminator

- An alternative to pattern matching is the eliminator J :

$$
\begin{aligned}
& J:(M:\{a b: A\} \rightarrow a \equiv b \rightarrow \text { Set }) \\
& \rightarrow(\{a: A\} \rightarrow M(r e f l\{a\})) \\
& \rightarrow(p: a \equiv b) \rightarrow M p \\
& J M m(r e f l\{a\})=m\{a\}
\end{aligned}
$$

- Using J we can derive all the previous propositions but not uip.
- J corresponds to a restricted form of pattern matching.

Question

Should we accept or reject UIP?

Equality of functions

- What should be equality of functions?
- All operations in Type Theory preserve extensional equality of functions.
The only exception is intensional propositional equality.
- We would like to define propositional equality as extensional equality.
postulate

$$
\begin{aligned}
& \text { ext }:(f g: A \rightarrow B) \\
& \quad \rightarrow((a: A) \rightarrow f a \equiv g a) \rightarrow f \equiv g
\end{aligned}
$$

Equality of types

- What should be equality of types?
- All operations of Type Theory preserve isomorphisms (or bijections).
The only exception is intensional propositional equality.
- Unlike Set Theory, e.g. $\{0,1\} \simeq\{1,2\}$ but $\{0,1\} \cup\{0,1\} \not 千\{0,1\} \cup\{1,2\}$.
- We would like to define propositional equality of types as isomorphism.

UIP and isomorphism

- UIP doesn't hold if we define equality of types as isomorphism.
- E.g. there is more than one way to prove that Bool is isomorphic to Bool.
- If we want to use isomorphism as equality we cannot allow uip.

Eliminating extensionality

- Adding principles like ext or univalence as constants destroys basic computational properties of Type Theory.
- E.g. there are natural numbers not reducible to a numeral.
- We can eliminate ext by translating every type as a setoid see my LICS 99 paper: Extensional Equality in Intensional Type Theory.

Setoids

- Setoids are sets with an equivalence relation.

```
record Setoid : Set, where
    field
set : Set
eq : set }->\mathrm{ set }->\mathrm{ Prop
```

- I write Prop to indicate that all proofs should be identified.
- This seems necessary for the construction.

Function setoids

- A function between setoids has to respect the equivalence relation.

```
record \({ }_{-} \Rightarrow\) set_ \(^{\text {( } A B: \text { Setoid }) ~: ~ S e t ~ w h e r e ~}\)
    field
    app : set \(A \rightarrow\) set \(B\)
    resp : \(\forall\{a\}\left\{a^{\prime}\right\} \rightarrow\) eq \(A\) a \(a^{\prime} \rightarrow\) eq \(B(a p p a)\left(a p p a^{\prime}\right)\)
```

- Equality between functions is extensional equality:

$$
\begin{aligned}
& { }_{-}{ }_{-} \text {:Setoid } \rightarrow \text { Setoid } \rightarrow \text { Setoid } \\
& A \Rightarrow B=\text { record }\{ \\
& \text { set }=A \Rightarrow \text { set } B \text {; } \\
& e q=\lambda f f^{\prime} \rightarrow \\
& \left.\forall\{a\} \rightarrow e q B(\operatorname{app} f a)\left(\operatorname{app} f^{\prime} a\right)\right\}
\end{aligned}
$$

Proof-Irrelevance

- Since we are using Prop the construction enforces UIP.

Question

What do we have to use instead of setoids, if we don't want UIP?

Globular sets

- The first approximation are globular sets which are a coinductive type:

record Glob: Set ${ }_{1}$ where
field
obj : Set $_{0}$
eq : obj \rightarrow obj $\rightarrow \infty$ Glob

Function globular sets

- The set of functions is also defined coinductively:

$$
\begin{aligned}
& \text { record } \quad \Rightarrow \text { set_ }(A B: \text { Glob }) \text { : Set where field } \\
& \text { app : set } A \rightarrow \text { set } B \\
& \text { resp }: \forall\left\{a^{\prime}\right\} \rightarrow \infty\left(b\left(\text { eq } A \text { a } a^{\prime}\right)\right. \\
& \left.\quad \Rightarrow \operatorname{set}\left(b\left(\text { eq } B(\operatorname{app} a)\left(\text { app } a^{\prime}\right)\right)\right)\right)
\end{aligned}
$$

- To define equality we need Π-types as a globular set:

$$
\begin{aligned}
& \Pi:(A: \text { Set })(F: A \rightarrow \text { Glob }) \rightarrow \text { Glob } \\
& \Pi A F=\operatorname{record}\{ \\
& \quad \text { set }=(a: A) \rightarrow \operatorname{set}(F a) ; \\
& \quad \text { eq }=\lambda f g \rightarrow \sharp \Pi A(\lambda a \rightarrow b(e q(F a)(f a)(g a)))\}
\end{aligned}
$$

- Now we can define function globular sets:

$$
\begin{aligned}
& { }_{-} \Rightarrow{ }_{-} \text {: Glob } \rightarrow \text { Glob } \rightarrow \text { Glob } \\
& A \Rightarrow B=\text { record }\{ \\
& \text { set }=A \Rightarrow \text { set } B \text {; } \\
& e q=\lambda f g \rightarrow \sharp \Pi(\text { set } A)(\lambda a \rightarrow b(e q B(a p p f a)(a p p g a)))\}
\end{aligned}
$$

What about the ...?

- For setoids we have to add:

```
record Setoid : Set, where
    field
        set : Set
        eq : set }->\mathrm{ set }->\mathrm{ Prop
        refl: }\forall{a}->eq a a
        sym:}:\forall{a}{b}->eq ab->eq b a
        trans:}:\forall{a}{b}{c}->eq ab->eq bc->eq a
```

- What do we need for globular sets?

Weak ω-groupoids

- We need refl, sym and trans at all levels.
- We require the groupoid equations everywhere.
- trans and sym are actually functors.
- All equalities are weak, i.e. equations are witnessed by elements of homsets.
- Coherence: All equations which are provable using a strict equality should be witnessed in the weak sense.

Globular sets

- A weak ω-groupoids is a globular set with additional structure.
- To define this framework we introduce a language to talk about categories and objects in a weak ω-groupoid.
- A weak ω-gropoid is then defined as a globular set which interprets this language.

The framework

data Con : Set where
ϵ : Con
_, _ : (Γ : Con $)(C:$ Cat $\Gamma) \rightarrow$ Con
record HomSpec (Γ : Con) : Set where
field

cat : Cat 「 dom cod : Obj cat

data Cat $:(\Gamma:$ Con $) \rightarrow$ Set where
ffl : $\forall\{\Gamma\} \rightarrow$ Cat Γ
hom : $\forall\{\Gamma\} \rightarrow$ HomSpec $\Gamma \rightarrow$ Cat Γ
data Obj : $\{\Gamma:$ Con $\}(C: C a t \Gamma) \rightarrow$ Set where
var $: \forall\{\Gamma\}\{C: C a t \Gamma\} \rightarrow \operatorname{Var} C \rightarrow$ Obj C
record ω Cat : Set ${ }_{1}$ where field

G : Glob
evalCon : Con \rightarrow Set
evalCat : $(C:$ Cat $\Gamma)(\gamma:$ evalCon $\Gamma) \rightarrow$ Glob
evalObj : $(A:$ Obj $C)(\gamma:$ evalCon $\Gamma) \rightarrow$ Glob.obj (evalCat $C \gamma)$
evalCon $\epsilon G=\top$
evalCon $(\Gamma, C) G=$
$\Sigma[\gamma$: evalCon Γ G] Glob.obj (evalCat C G γ)
evalCat ffl $G \gamma=G$
evalCat (hom (C $[A, B])) G \gamma=b($ Glob.hom (evalCat C G γ)
(evalObj A G γ)
(evalObj B G γ))

Conclusions

- Weak ω-groupoids replace setoids when we want to interpret Type Theory without UIP. (higher dimensional Type Theory)
- Already defining them precisely is quite hard.
- Using them to interpret Type Theory looks even harder.
- Are there ways to reduce bureaucracy?

