From High School Algebra to University Algebra

Thorsten Altenkirch

Functional Programming Laboratory
School of Computer Science
University of Nottingham
June 13, 2013

Primary School Algebra (PSA)

$$
\begin{aligned}
A+B & =B+A \\
A+(B+C) & =(A+B)+C \\
1 \times A & =A \\
B \times A & =B \times A \\
A \times(B+C) & =(A \times B)+(A \times C)
\end{aligned}
$$

- An equation in PSA is provable, iff it is true for all (positive) natural numbers.
- I.e. PSA is complete for this interpretation.

High School Algebra (HSA)

 PSA +$$
\begin{aligned}
1^{A} & =1 \\
(A \times B)^{C} & =A^{C} \times B^{C} \\
A^{1} & =A \\
A^{B \times C} & =\left(A^{B}\right)^{C} \\
A^{B+C} & =A^{B} \times A^{C}
\end{aligned}
$$

- Tarski conjecture: HSA is complete.
- Certainly wrong when we add 0 , we cannot derive

$$
0^{x}=0^{0^{0^{x}}}
$$

from $A^{0}=1$ but it is true for the natural numbers.

- Note that

$$
0^{x}= \begin{cases}1 & \text { if } x=0 \\ 0 & \text { otherwise }\end{cases}
$$

- There is no equation to simplify $(A+B)^{C}$.

Wilkie's counterexample

$$
\begin{array}{ll}
A=1+x & B=1+x+x^{2} \\
C=1+x^{3} & D=1+x^{2}+x^{4}
\end{array}
$$

Note that:

$$
A \times D=B \times C=1+x+x^{2}+x^{3}+x^{4}+x^{5}
$$

Consider:

$$
\left(A^{x}+B^{x}\right)^{y} \times\left(C^{y}+D^{y}\right)^{x}=\left(A^{y}+B^{y}\right)^{x} \times\left(C^{x}+D^{x}\right)^{y}
$$

This equality is true for all positive natural numbers but it is not provable from the laws of HSA.

Why is it true?

$$
\begin{array}{ll}
A=1+x & B=1+x+x^{2} \\
C=1+x^{3} & D=1+x^{2}+x^{4}
\end{array}
$$

Let $E=1-x+x^{2}$, we have

$$
\begin{aligned}
& A \times E=C \\
& B \times E=D
\end{aligned}
$$

Hence:

$$
\begin{aligned}
& \left(A^{x}+B^{x}\right)^{y} \times\left(C^{y}+D^{y}\right)^{x} \\
& \quad=\left(A^{x}+B^{x}\right)^{y} \times\left((A \times E)^{y}+(B \times E)^{y}\right)^{x} \\
& =\left(A^{x}+B^{x}\right)^{y} \times\left(E^{y}\right)^{x} \times\left(A^{y}+B^{y}\right)^{x} \\
& =\left(A^{x}+B^{x}\right)^{y} \times\left(E^{x}\right)^{y} \times\left(A^{y}+B^{y}\right)^{x} \\
& =\left((E \times A)^{x}+(E \times B)^{x}\right)^{y} \times\left(A^{y}+B^{y}\right)^{x} \\
& =\left(C^{x}+D^{x}\right)^{y} \times\left(A^{y}+B^{y}\right)^{x} \\
& =\left(A^{y}+B^{y}\right)^{x} \times\left(C^{x}+D^{x}\right)^{y}
\end{aligned}
$$

Why can't we derive it?

- We cannot use $E=1-x+x^{2}$ because of the negative coefficient.
- Wilkie showed formally that this equality is not derivable in any other way using HSA.
- He also showed that if we add all equalities which are consequences of using negative numbers we get completeness.
- Gurevich showed that there is no finite equational formalisation of HSA.
- Gurevich also showed that HSA is decidable.

The Numbers-as-types equivalence

- We can interpret the operations of HSA as operations on types:

$$
\begin{aligned}
& A+B \text { disjoint union } \\
& A \times B \text { cartesian product } \\
& A^{B} \text { function types } B \rightarrow A
\end{aligned}
$$

- The equalities of HSA become isomorphisms which hold in any Cartesian Closed Category with coproducts.
- E.g $A^{B+C}=A^{B} \times A^{C}$ is witnessed by

$$
\begin{aligned}
\phi & :((B+C) \rightarrow A) \rightarrow(B \rightarrow A) \times(C \rightarrow A) \\
\phi & =\lambda f .(f \circ \text { inl }, f \circ \text { inr }) \\
\phi^{-1} & :(B \rightarrow A) \times(C \rightarrow A) \rightarrow((B+C) \rightarrow A) \\
\phi^{-1} & =\lambda(g, h) \cdot \lambda x . c a s e \times g h
\end{aligned}
$$

- The isomorphism corresponding to $A^{B \times C}=\left(A^{B}\right)^{C}$ is well known in functional programming.

Di Cosmo's question

- Does the incompleteness also apply if we want to derive isomorphisms?
- In particular does the Wilkie counterexample correspond to an isomorphism?
- This was answered positively by Fiore, Di Cosmo and Balat.
- Exercise: Implement the Wilkie counterexample in Haskell, that is assuming that $A \times D \simeq B \times C$ derive

$$
\begin{aligned}
& (Y \rightarrow(X \rightarrow A)+(X \rightarrow B)) \times(X \rightarrow(Y \rightarrow C)+(Y \rightarrow D)) \\
\simeq & (X \rightarrow(Y \rightarrow A)+(Y \rightarrow B)) \times(Y \rightarrow(X \rightarrow C)+(X \rightarrow D))
\end{aligned}
$$

- What happens if we add dependent types?

University Algebra (UA)

We use a Type Theory with $1,2, \Pi, \Sigma$:

$\Phi_{2 C}$	$2 \simeq$	2
$\Phi_{2 A}$	Σx : 2.if $x A \Sigma y$: 2.if y $B C \simeq$	$\Sigma x: 2 . i f x(\Sigma y$: 2. if $y A B) C$
$\Phi_{\Sigma A}$	$\Sigma a: A . \Sigma b: B a . C a b \simeq$	$\Sigma(a, b):(\Sigma a: A \cdot B a) \cdot C a b$
$\Phi_{\square 1}$	$\Pi-: A .1 \simeq$	1
$\Phi_{1 п}$	$\Pi x: 1 . B x \simeq$	$B()$
$\Phi_{2 п}$	$\Pi b: 2 . B b \simeq$	$(B \mathrm{tt}) \times(B \mathrm{ff})$
$\Phi_{1 \Sigma}$	$\Sigma x: 1 . B x \simeq$	$B()$
$\Phi_{\Sigma п}$	Па:А.Пb:Ва.Саb \simeq	$\Pi(a, b):(\Sigma a: A \cdot B a) \cdot C a b$
$\Phi_{\text {Пг }}$	Пa:A.इb: Вa.Cab \simeq	$\Sigma f:(\Pi a: A . B a) . П a:$ A.Calfa

Deriving the Wilkie-Isomorphism

- We define $A+B=\Sigma x: 2$.if $x A B$.
- We can define $A \times B$ either as $\Sigma x: A . B$ or as $\Pi x: 2$ if $x A B$.
- Using $A \rightarrow B=\Pi x: A . B$ we can derive all isomorphisms of HSA.
- Unlike in HSA we can reduce $A \rightarrow B+C$ using $\Phi_{\Pi \Sigma}$:

$$
\begin{aligned}
A & \rightarrow B+C \\
& =A \rightarrow \Sigma x: 2 . \text { if } x B C) \\
& \simeq \Sigma f: A \rightarrow 2 . \Pi x: A . i f(f x) B C
\end{aligned}
$$

- Using this idea we can derive the Wilkie-Isomorphism in UA see paper.

Questions

- In UA the counterexample to completeness is actually derivable.
- This raises the question wether UA is complete for (natural) isomorphisms in the category of non-empty finite sets.
- The key idea seems to be that UA unlike HSA has a normal form for types:

$$
\begin{array}{rll}
\mathrm{NF} & :: & \sum x: \mathrm{NF}_{\square} \cdot \mathrm{NF} \mid \mathrm{NF}_{\square} \\
\mathrm{NF}_{\square} & :: & \Pi x: \mathrm{NF}_{\mathrm{NF}}^{\square} \mid \\
\mathrm{NF}_{0} \\
\mathrm{NF}_{0} & :: & X|n| \mathrm{T}[\mathrm{NF}]
\end{array}
$$

- I also conjecture that the extensional Type Theory with $1,2, \Pi, \Sigma$ is decidable (again this fails if we add 0).

