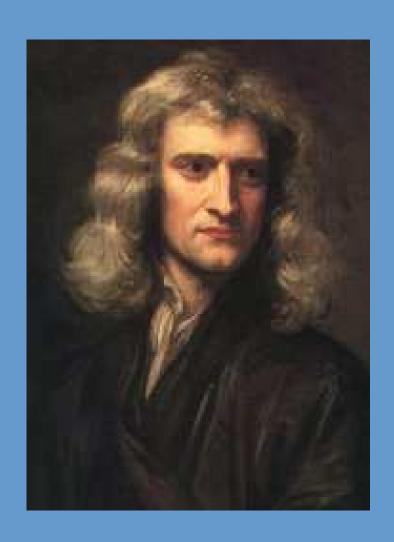


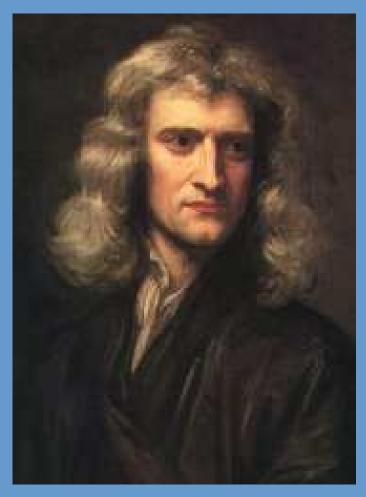
Is Constructive Logic relevant for Computer Science?

Thorsten Altenkirch University of Nottingham

Birth of Modern Mathematics

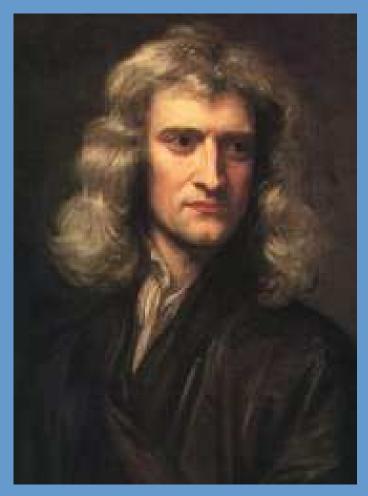


Birth of Modern Mathematics



Isaac Newton (1642 - 1727)

Birth of Modern Mathematics

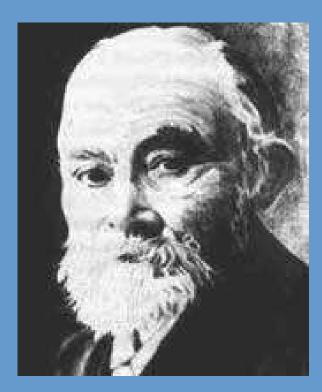


Isaac Newton (1642 - 1727)

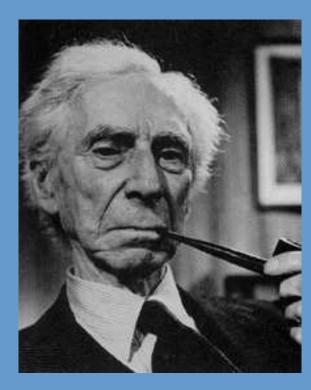
1687: Philosophiae Naturalis Principia Mathematica

19/20th century: Foundations?

19/20th century: Foundations?



Frege (1848-1925)



Russell (1872-1970)

\approx 1925: ZF set theory



Zermelo (1871-1953)

Fraenkel (1891-1965)

\approx 1925: ZF set theory

Zermelo (1871-1953)

Fraenkel (1891-1965)

End of story?

Mathematics is universal

The foundations which are good for mathematical reasoning within natural sciences are equally useful in Computer Science.

• Computer Science focusses on *constructive solutions* to problems.

- Computer Science focusses on *constructive solutions* to problems.
- Classical Mathematics is based on the *platonic* idea of truth.

- Computer Science focusses on *constructive solutions* to problems.
- Classical Mathematics is based on the *platonic* idea of truth.
- Constructive Mathematics is based on the notion of *evidence* or proof.

BHK: Programs are evidence

BHK: Programs are evidence

Brouwer (1881-1966) Heyting (1898-1980) Kolmogorov (1903-1987)

$A \wedge (B \vee C) \implies (A \wedge B) \vee (A \wedge C)$, classically

$A \wedge (B \vee C) \implies (A \wedge B) \vee (A \wedge C)$, classically

A	B	C	$l = A \wedge (B \vee C)$	$r = A \land B \lor A \land C$	$l \implies r$
F	F	F	F	F	T
F	F	T	\mathbf{F}	\mathbf{F}	T
F	T	F	${ m F}$	${f F}$	T
F	T	Т	${ m F}$	${ m F}$	${ m T}$
T	F	F	${ m F}$	${ m F}$	T
T	F	Т	${ m T}$	${f T}$	${ m T}$
T	T	F	${f T}$	${f T}$	${ m T}$
T	T	T	T	T	T

$A \wedge (B \vee C) \implies (A \wedge B) \vee (A \wedge C)$, classically

$oxed{A}$	B	C	$l = A \wedge (B \vee C)$	$r = A \land B \lor A \land C$	$l \implies r$
F	F	F	F	F	T
F	F	T	\mathbf{F}	${f F}$	Γ
F	Т	F	${ m F}$	${ m F}$	Γ
F	T	T	${ m F}$	${f F}$	Γ
$\mid T \mid$	F	F	${ m F}$	${f F}$	Γ
$\mid T \mid$	F	T	${f T}$	${f T}$	Γ
$\mid T \mid$	T	F	${f T}$	${f T}$	T
Т	T	T	T	${ m T}$	Т

• The same truth table shows that $A \wedge (B \vee C) \iff (A \wedge B) \vee (A \wedge C)$

• Evidence for $A \wedge B$ is given by pairs: $\mathbf{type} \ a \wedge b = (a, b)$

- Evidence for $A \wedge B$ is given by pairs: $\mathbf{type} \ a \wedge b = (a, b)$
- Evidence for $A \vee B$ is tagged evidence for A or evidence for B. $\mathbf{data} \ a \vee b = Inl \ a \mid Inr \ b$

• Evidence for $A \wedge B$ is given by pairs:

type
$$a \wedge b = (a, b)$$

- Evidence for $A \vee B$ is tagged evidence for A or evidence for B. $\mathbf{data} \ a \vee b = Inl \ a \mid Inr \ b$
- Evidence for $A \implies B$ is a program constructing evidence for B from evidence for A.

type
$$a \implies b = a \rightarrow b$$

$$f :: a \land (b \lor c) \rightarrow (a \land b) \lor (a \land c)$$
$$f (a, Inl \ b) = Inl \ (a, b)$$
$$f (a, Inr \ c) = Inr \ (a, c)$$

$$f :: a \land (b \lor c) \rightarrow (a \land b) \lor (a \land c)$$
$$f (a, Inl \ b) = Inl \ (a, b)$$
$$f (a, Inr \ c) = Inr \ (a, c)$$

• The program is invertible, because the right hand sides are patterns.

$$f :: a \land (b \lor c) \rightarrow (a \land b) \lor (a \land c)$$
$$f (a, Inl \ b) = Inl \ (a, b)$$
$$f (a, Inr \ c) = Inr \ (a, c)$$

- The program is invertible, because the right hand sides are patterns.
- This shows that the types are *isomorphic*.

• Evidence for $\forall x: S.P \ x$ is a function f which assigns to each s: S evidence for Ps.

- Evidence for $\forall x: S.P \ x$ is a function f which assigns to each s: S evidence for Ps.
- Evidence for $\exists x : S.P x$ is a pair (s, p) where s : S and p : P s.

- Evidence for $\forall x : S.P \ x$ is a function f which assigns to each s : S evidence for $P \ s$.
- Evidence for $\exists x : S.P x$ is a pair (s, p) where s : S and p : P s.
- We need dependent types!

Per Martin-Löf

Per Martin-Löf

Martin-Löf Type Theory

Per Martin-Löf

- Martin-Löf Type Theory
- Implementations: NuPRL, LEGO, ALF, COQ, AGDA, Epigram ...

$A \vee \neg A$

$A \vee \neg A$

• We cannot prove $A \vee \neg A$, where $\neg A = A \implies \emptyset$, for an undecided proposition A.

- We cannot prove $A \vee \neg A$, where $\neg A = A \implies \emptyset$, for an undecided proposition A.
- $\forall n : \text{Nat.Prime } n \lor \neg \text{Prime } n$

- We cannot prove $A \vee \neg A$, where $\neg A = A \implies \emptyset$, for an undecided proposition A.
- $\forall n : \text{Nat.Prime } n \lor \neg \text{Prime } n$ is provable, i.e. Prime is *decidable*.

- We cannot prove $A \vee \neg A$, where $\neg A = A \implies \emptyset$, for an undecided proposition A.
- $\forall n : \text{Nat.Prime } n \lor \neg \text{Prime } n$ is provable, i.e. Prime is decidable.
- Indeed, the proof is the program which decides Prime.

- We cannot prove $A \vee \neg A$, where $\neg A = A \implies \emptyset$, for an undecided proposition A.
- $\forall n : \text{Nat.Prime } n \lor \neg \text{Prime } n$ is provable, i.e. Prime is *decidable*.
- Indeed, the proof is the program which decides Prime.
- $\forall n : \text{Nat.Halt } n \vee \neg \text{Halt } n$

- We cannot prove $A \vee \neg A$, where $\neg A = A \implies \emptyset$, for an undecided proposition A.
- $\forall n : \text{Nat.Prime } n \lor \neg \text{Prime } n$ is provable, i.e. Prime is *decidable*.
- Indeed, the proof is the program which decides Prime.
- $\forall n : \text{Nat.Halt } n \lor \neg \text{Halt } n$ is not provable, because Halt is *undecidable*.

Classical reasoner says:	Babelfish translates to:

Classical reasoner says:	Babelfish translates to:
$A \lor B$	

Classical reasoner says:	Babelfish translates to:
$A \lor B$	$\neg(\neg A \land \neg B)$

Classical reasoner says:	Babelfish translates to:
$A \lor B$	$\neg(\neg A \land \neg B)$
$\exists x: S.Px$	

Classical reasoner says:	Babelfish translates to:
$A \lor B$	$\neg(\neg A \land \neg B)$
$\exists x : S.Px$	$\neg \forall x: S. \neg Px$

Classical reasoner says:	Babelfish translates to:
$A \lor B$	$\neg(\neg A \land \neg B)$
$\exists x: S.Px$	$ eg \forall x : S. \neg Px$

• Negative translation

Classical reasoner says:	Babelfish translates to:
$A \lor B$	$\neg(\neg A \land \neg B)$
$\exists x: S.Px$	$ eg \forall x : S. \neg Px$

- Negative translation
- $A \vee \neg A$ is translated to $\neg(\neg A \wedge \neg \neg A)$

Classical reasoner says:	Babelfish translates to:
$A \lor B$	$\neg(\neg A \land \neg B)$
$\exists x : S.Px$	$ eg \forall x: S. eg Px$

- Negative translation
- $A \lor \neg A$ is translated to $\neg(\neg A \land \neg \neg A)$ which is constructively provable.

Classical reasoner says:	Babelfish translates to:
$A \lor B$	$\neg(\neg A \wedge \neg B)$
$\exists x : S.Px$	$\neg \forall x : S. \neg Px$

- Negative translation
- $A \lor \neg A$ is translated to $\neg(\neg A \land \neg \neg A)$ which is constructively provable.
- A classical reasoner is somebody who is unable to say anything positive.

$$\frac{\forall x : S. \exists y : T. R x y}{\exists f : S \to T. \forall x : S. R x (f x)} AC$$

 $\frac{\forall x : S. \exists y : T. R x y}{\exists f : S \to T. \forall x : S. R x (f x)} AC$

is provable constructively.

$$\frac{\forall x : S. \exists y : T. R x y}{\exists f : S \to T. \forall x : S. R x (f x)} AC$$

is provable constructively.

However, its negative translation:

$$\frac{\forall x: S. \neg \forall y: T. \neg R \, x \, y}{\neg \forall f: S \to T. \neg \forall x: S. R \, x \, (f \, x)} \, \text{CAC}$$

is not.

$$\frac{\forall x : S. \exists y : T. R x y}{\exists f : S \to T. \forall x : S. R x (f x)} AC$$

is provable constructively.

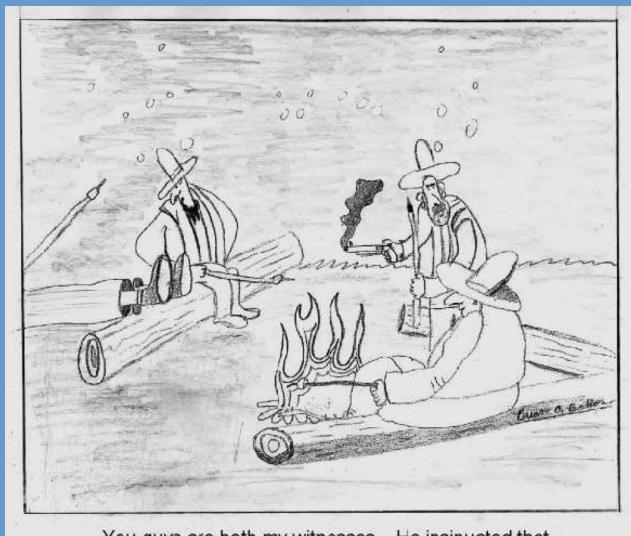
• However, its negative translation:

$$\frac{\forall x: S. \neg \forall y: T. \neg R \, x \, y}{\neg \forall f: S \to T. \neg \forall x: S. R \, x \, (f \, x)} \, \text{CAC}$$

is not.

• There is *empirical evidence* that CAC is consistent.

Summary



You guys are both my witnesses... He insinuated that ZFC set theory is superior to Type Theory!