
Stop thinking about bottoms
when writing programs . . .

Thorsten Altenkirch
University of Nottingham

BCTCS 06 – p.1/??

Trouble with ⊥

(∗) :: N → N → N
0 ∗ n = 0
(m + 1) ∗ n = m ∗ n + n

x ∗ y = y ∗ x ?

No, because

0 ∗ ⊥ = 0
⊥ ∗ 0 = ⊥

BCTCS 06 – p.2/??

Trouble with ⊥ . . .

• Many useful algebraic properties do not hold.

• Correctness proofs get obliterated with reasoning about ⊥.

• Do we actually care about non-terminating programs?

• Programs are not natural phenomena. . .

• Programs are constructed!

BCTCS 06 – p.3/??

Do we need ⊥ to be lazy?

from :: N → [N]

from n = n : (from (n + 1))

• from is total, if we interpret lists as a terminal coalgebra.

[A] = νX.1 + A × X

BCTCS 06 – p.4/??

data vs codata

evenLength :: [a] → Bool

evenLength [] = True
evenLength (a : as) = ¬ (evenLength n)

• evenLength is total, . . .
• if we interpret lists as initial algebra:

[A] = µX.1 + A × X

• Problem:

evenLength (from 0) = ⊥

BCTCS 06 – p.5/??

data vs codata

• Finite lists
data [a] = [] | a : [a]

• Potentially infinite lists:
codata [a]ω a = [] | a : [a]ω

• Better types
from :: N → [a]ω

evenLength :: [a] → Bool

• evenLength (from 0) doesn’t typecheck.

BCTCS 06 – p.6/??

Can we always avoid ⊥?

data SK = S | K | SK : @ SK

nf :: SK → SK
nf S = S
nf K = K
nf (t : @ u) = (nf t)@(nf u)

(@) :: SK → SK → SK
K @t = K : @ t
(K : @ t) @u = t
S @t = S : @ t
(S : @ t) @u = (S : @ t) : @ u
((S : @ t) : @ u)@v = (t@v)@(u@v)

BCTCS 06 – p.7/??

Computational Reals

• Define computational reals (R) using Cauchy sequences.

• We cannot implement
pos :: R → Bool

• Indeed, all total computable functions of type R → Bool are
constant (Brouwer).

• However, there are perfectly reasonable partial implementations
of pos .

BCTCS 06 – p.8/??

We need ⊥ for:

• Interpreters.
• Functions on R.
• more examples ?

BCTCS 06 – p.9/??

Epigram

• Epigram is a dependently typed programming language...

• All Epigram programs are total (i.e. no ⊥).

• It is not a programming language in Peter Mosses sense.

• because not all computable functions can be expressed.

• I am going to show how we can fix this. . .

• without making Epigram partial.

BCTCS 06 – p.10/??

Monads. . .

• A monad m :: ∗ → ∗ is given by
return :: a → m a
(!) :: (m a) → (a → m b) → m b

subject to some equations.

• We can use monads to encapsulate effects (e.g. state)
newIORef :: a → IO (IORef a)
readIORef :: IORef a → IO a
writeIORef :: IORef a → a → IO ()

• and to model effects (e.g. state) :
data ST s a = M (s → (a, s))
instance Monad (ST s) where

return a = M (λs → (a, s))
(ST f) >>= g = M (λs → let (a, s ′) = f s

M g ′ = g a
in g ′ s ′)

BCTCS 06 – p.11/??

The Delay monad

codata D a = Now a | Later (D a)
instance Monad D where

return = Now

Now a >>= k = k a
Later d >>= k = Later (d >>= k)

⊥ :: D a
⊥ = Later ⊥

BCTCS 06 – p.12/??

Iteration with Delay

rep :: (a → D (Either b a)) → a → D b
rep k a = k a >>= λba →

case ba of
Left b → Now b
Right a → Later (rep k a)

BCTCS 06 – p.13/??

Fixpoints with Delay

rec :: ((a → D b) → (a → D b)) → a → D b
rec φ a = aux (λ → ⊥)

where aux :: (a → D b) → D b
aux k = race (k a) (Later (aux (φ k)))

race :: (D a) → (D a) → (D a)

race (Now a) = Now a
race (Later) (Now a) = Now a
race (Later d) (Later d ′) = Later (race d d ′)

BCTCS 06 – p.14/??

From Delay to Partial

• D is too intensional. . .
• We can observe how fast a function terminates.
• Hence rec f %= f (rec f)

• We define
P a = D a/ &

where &⊆ D a × D a identifies values with different finite delay.

• We have to show that >>=,rep,rec preserve &.

• We have rec f & f (rec f)
if f is ω-continuous,
however all definable f are.

BCTCS 06 – p.15/??

Defining &

• (↓) ⊆ D a × a is defined inductively.

Now a ↓ a

d ↓ a

Later d ↓ a

•

) ⊆ D a × D a
d) d′ = ∀a.d ↓ a =⇒ d′ ↓ a

•

& ⊆ D a × D a
d & d′ = d) d′ ∧ d′) d

BCTCS 06 – p.16/??

Deja vu ?

• Constructive Domain Theory!
• P a = a⊥

• Note that constructively

a⊥ %= a + {⊥}

because we cannot observe non-termination.
• P a and hence a → P b are ωCPOs.
• rec f = -i∈Nf i⊥ the code before constructs - in a → P b.

BCTCS 06 – p.17/??

Conclusions and further work

• Using the partiality monad we can encapsulate partial programs
in a total language.

• Partiality is an effect
• We can reason about partial programs at compile time using the

definition of P a.
• and we can execute non-terminating programs at run-time.

• In future Epigram could support partiality without giving up the
advantages of having a total language for most programs.

• Still to do: recursive datatypes by a constructive implementation
of the standard domain-theoretic construction.

BCTCS 06 – p.18/??

Thank you

• Thanks to Conor McBride & the Epigram Team
(James Chapman, Peter Morris, Wouter Swierstra)
see www.e-pig.org for more information on Epigram.

• Acknowledgements to Tarmo Uustalu and Venanzio Capretta
for joint work on a partial paper. . .

• Looking for my papers?
Type “Thorsten” into google. . .

BCTCS 06 – p.19/??

