
Beauty in the Beast
Functional specifications of effects

based on joint work with Wouter Swierstra

Thorsten Altenkirch

University of Nottingham

Cambridge June 06 – p.1/33

Math vs. Programming

• My vision: programming is constructive Mathematics

• No need for mathematical models of (pure) functional programs.

• No difference between a mathematical function and a function in
programming.

• Pure functions have no effects . . .

• . . . and always give an answer.

Cambridge June 06 – p.2/33

Real world

• Real programs have effects.

• Real programs don’t always terminate.

• How can effects be integrated in pure functional programming?

• How can we specify effects using pure functional programs?

Cambridge June 06 – p.3/33

Review: monads in Haskell

class Monad m where

(>>=) :: m a → (a → m b) → m b

return :: a → m a

Equations:

return a >>= f = f a

c >>= return = c

(c >>= f) >>= g = c >>= λa → f a >>= g

Computations are represented by morphisms in the Kleisli category

a →Kleisli b = a → m b
Cambridge June 06 – p.4/33

The state monad

newtype State s a = State (s → (a, s))

instance Monad (State s) where

return a = State (λs → (a, s))

(State f) >>= g = State (λs → let (a, s′) = f s

(State h) = g a

in h s′)

get :: State s s -- get :: () →Kleisli s

get = State (λs → (s, s))

put :: s → State s () -- put :: s →Kleisli ()

put s = State (λ → ((), s))

evalState :: State s a → s → a

evalState (State f) s = a where (a,) = f s

Cambridge June 06 – p.5/33

Haskell’s IO monad

instance Monad IO

Stream IO:
getChar :: IO Char

putChar :: Char → IO ()

Example:

echo :: IO ()

echo = getChar >>= (λc → putChar c) >> echo

Cambridge June 06 – p.6/33

Referential transparency

dotwice :: IO () → IO ()

dotwice p = p >> p

The two following lines have the same behaviour:

dotwice (putStrLn "Hello")

(putStrLn "Hello") >> (putStrLn "Hello")

Cambridge June 06 – p.7/33

Reasoning about effects

• How to reason about programs with IO? E.g. the
implementations of queues using forkIO and MVars.

• In Tackling the Awkward Squad Simon Peyton Jones explains the
meaning of Haskell with IO by translating it into a process
calculus.

• We could use this translation to reason about Haskell’s programs
with IO.

Cambridge June 06 – p.8/33

Dependent types and IO

• Insert Epigram Ad (www.e-pig.org).

• How do we integrate IO into a language with dependent types.

• The epigram type checker has to evaluate programs appearing in
type.

• What should the type checker do if the program formatHD
appears in a type?

Cambridge June 06 – p.9/33

Functional specifications of IO

• Use (pure) functional programming to specify the IO monad.

• Reasoning about IO can be reduced to reasoning about pure
programs.

• Dependent types: use functional spec at compile time but execute
effects at run time.

• Stealing ideas from Koen Classen, Andy Gordon, Peter Hancock,
Graham Hutton, Simon Peyton Jones, Amr Sabry, Toni Setzer,. . .

Cambridge June 06 – p.10/33

Overview

• Use functional specification to tackle the Awkward Squad

• Stream IO

• IORefs

• Concurrency with MVars

• Discuss the issues arising:

• Totality

• Generics

• Full abstraction

• Run out of time to do:

• Partiality as an effect

• Quantum IO

Cambridge June 06 – p.11/33

Implementation of Stream IO

data IO a =

GetChar (Char → IO a)

| PutChar Char (IO a)

| Return a

instance Monad IO where

return = Return

(Return a) >>= g = g a

(GetChar f) >>= g = GetChar (λc → f c >>= g)

(PutChar c a) >>= g = PutChar c (a >>= g)

getChar :: IO Char

getChar = GetChar Return

putChar :: Char → IO ()

putChar c = PutChar c (Return ())

Cambridge June 06 – p.12/33

Semantics

data [a]b = a : [a]b | []b

run :: IO a → [Char]∅ → [Char]a

run (Return a) cs = []a

run (GetChar f) (c : cs) = run (f c) cs

run (PutChar c p) cs = c : run p cs

Cambridge June 06 – p.13/33

Total ?

• We have to differentiate between initial algebra and terminal

coalgebra interpretation of data types.

• We could interpret [a]b as:

µX.a × X + b permitting structural recursion, e.g.

getTip :: [a]b → b

getTip (: bs) = getTip bs

getTip ([]b) = b

νX.a × X + b permitting guarded corecursion.

repeat :: a → [a]b

repeat a = a : repeat a

• I will annotate the declaration:
data [a]b = a : [a]b

∞
| []b

to indicate that we mean νX.a × X + b.

Cambridge June 06 – p.14/33

How to annotate IO?

data IO a =

GetChar (Char → IO a)

| PutChar Char (IO a)

| Return a

Cambridge June 06 – p.15/33

How to annotate IO!

data IO a =

GetChar (Char → IO a)

| PutChar Char (IO∞ a))

| Return a

• We interpret this as:

IO a = νX.µY.Char → Y + Char × X + a

• run and copy are total functions.

• Indeed, any IO performing function which never gets stuck is
total.

Cambridge June 06 – p.16/33

IORefs

newIORef :: a → IO (IORef a)

writeIORef :: IORef a → a → IO ()

readIORef :: IORef a → IO a

type Data = Z

type Loc = Z

data IO a =

NewIORef Data (Loc → IO a)

| ReadIORef Loc (Data → IO a)

| WriteIORef Loc Data (IO a)

| Return a

Cambridge June 06 – p.17/33

Mutable state semantics

type Heap = Loc → Data

data Store = Store{free :: Loc, heap :: Heap }

emptyStore :: Store

emptyStore = Store{free = 0}

run :: IO a → a

run io = evalState (runState io) emptyStore

runState :: IO a → State Store a

Cambridge June 06 – p.18/33

Generics ?

• IORef should work with any type.

Cambridge June 06 – p.19/33

Use a type class?

class Marshall b where

marshall :: b → Data

unmarshall :: Data → b

data IO a =

Return a

| ∀b . Marshall b ⇒ NewIORef b (Loc → IO a)

| ∀b . Marshall b ⇒ ReadIORef Loc (b → IO a)

| ∀b . Marshall b ⇒ WriteIORef Loc b (IO a)

data Data a where

Z :: Z → Data

Pair :: Data → Data → Data (a, b)

...

instance Marshall Z

instance (Marshall a,Marshall b) ⇒ Marshall (a, b) Cambridge June 06 – p.20/33

Generics

• How can we see that our code is type safe?

• Use a GADT?
data Data a where

Z :: Z → Data Z

Pair :: Data a → Data b → Data (a, b)

...

• But how to implement:

update :: IORef a → Data a

→ (∀b . (IORef b → Data b) → (IORef b → Data b))

• Use a more expressive type system (e.g. Epigram’s).

Cambridge June 06 – p.21/33

Total ?

• We interpret IO as an inductive type.

• runState is total, any function using IO which doesn’t get stuck is
total.

• However, heap :: Z → Data is undefined for i > free.

• We have to convince ourselves, that we never access the heap

beyond free.

• This could be achieved by using dependent types:

data Store = Store{free :: N, heap :: Fin free → Data }

where Fin n = {0, . . . , n − 1}.

Cambridge June 06 – p.22/33

Concurrent Haskell

forkIO :: IO a → IO ThreadId

newEmptyMVar :: IO (MVar a)

putMVar :: MVar a → a → IO ()

takeMVar :: MVar a → IO a

Cambridge June 06 – p.23/33

Implementation

type Data = Z

type Loc = Z

type ThreadId = Z

data IO a =

Return a

| NewEmptyMVar (Loc → IO a)

| TakeMVar Loc (Data → IO a)

| PutMVar Loc Data (IO a)

| ∀b . Fork (IO b) (ThreadId → IO a)

instance Monad IO

Cambridge June 06 – p.24/33

Implementation

newtype Scheduler = Scheduler (Z → (Z, Scheduler))

data ThreadStatus = ∀b . Running (IO b) | Finished

data Store = Store{free :: Loc,

heap :: Loc → Maybe Data,

nextId :: ThreadId ,

soup :: ThreadId → ThreadStatus ,

scheduler :: Scheduler }

initStore :: Scheduler → Store

initStore s = Store{free = 0, nextId = 1, scheduler = s }

run :: IO a → Scheduler → Maybe a

run main s = evalState (interleave main) (initStore s)

Cambridge June 06 – p.25/33

Implementation

interleave :: IO a → State Store (Maybe a)

interleave main interleaves main with the threads in soup depending on
scheduler using step. interleave returns Nothing , in case of a deadlock.

data Status a = Stop a | Step (IO a) | Blocked

step :: IO a → State Store (Status a)

step thread attempts to execute one step of thread .

Cambridge June 06 – p.26/33

Non determinism

The type of run

runIOc :: IO a → Scheduler → Maybe a

is too intensional, because in practice we view the scheduler as
externally given.

We define a simulation preorder on Scheduler → Maybe a:

f ⊑ g ⇐⇒ ∀s :: Scheduler .∃cs ′ : Scheduler .f s = g s ′

and bisimulation:

f ≃ g ⇐⇒ f ⊑ g ∧ g ⊑ f

Cambridge June 06 – p.27/33

Total?

• IO is inductively defined, . . .

• hence we have no infinitely running processes (yet)!

• run is total, and all concurrent programs which don’t get stuck
are total.

• We assume that the MVars are private to our program.

Cambridge June 06 – p.28/33

Combining effects

We can combine StreamIO and concurrency:

data IO a =

Return a

| GetChar (Char → IO a)

| PutChar Char (IO∞ a))

| NewEmptyMVar (Loc → IO a)

| TakeMVar Loc (Data → IO a)

| PutMVar Loc Data (IO a)

| ∀b . Fork (IO b) (ThreadId → IO a)

The type of run becomes:

run :: IO a → Scheduler → [Char]a → [Char](Maybe a)

We can have infinite processes now.

Cambridge June 06 – p.29/33

Full abstraction

• We would like to identify elements of IO a which show the same
observable behaviour.

• However, we cannot identify programs which are given the same
behaviour under run.
Why not?

• An implementation of IO a has to:

• not identify any programs which can be separated by run.

• support an an algebra defining all functions in the API.

• We say an implementation of IO a is fully abstract, if the algebra
is maximal.

Cambridge June 06 – p.30/33

Full abstraction

• The definition of Stream IO is almost fully abstract.
We can identify GetChar f and Return a, iff for all c :: Char

f c = Return a

This may be a bug, maybe run should return the rest of the input:

run :: IO a → [Char]∅ → [Char]([Char]∅,a)

• Stateful can be easily given an almost fully abstract semantics by
using
type IO a = State Store a

directly.
see work by Andy Pitts, Ian Stark and others how to fix the

almost. . .

• Full abstraction for concurrency?

Cambridge June 06 – p.31/33

Left out:

• the partiality monad Partial

which allows us to express partial (i.e. potentially diverging
functions) as elements of a → Partial b.
joint work with Venanzio Capretta and Tarmo Uustalu.

• the quantum IO monad,

Cambridge June 06 – p.32/33

Conclusions and further work

• Need examples, apply semantics to verify effectful programs.

• Combine effects using coproducts or monad transformers.

• Integrate into Epigram,
Goal: specify and implement real programs in Epigram.

• Exploit dependent types to structure effects, e.g. regions.

• Discuss: difference between internal effects (e.g. IORefs) and IO
(e.g. streams).

• Obligation: show that the specified semantics agrees with the
actual implementation.
compiler correctness.

Cambridge June 06 – p.33/33

	Math vs. Programming
	Real world
	Review: monads in Haskell
	The state monad
	Haskell's IO monad
	Referential transparency
	Reasoning about effects
	Dependent types and IO
	Functional specifications of IO
	Overview
	Implementation of Stream IO
	Semantics
	Total ?
	How to annotate IO?
	How to annotate IO!
	IORefs
	Mutable state semantics
	Generics ?
	Use a type class?
	Generics
	Total ?
	Concurrent Haskell
	Implementation
	Implementation
	Implementation
	Non determinism
	Total?
	Combining effects
	Full abstraction
	Full abstraction
	Left out:
	Conclusions and further work

