A syntactical approach to weak ω-groupoids

Thorsten Altenkirch, Ondrej Rypacek

Functional Programming Laboratory School of Computer Science
University of Nottingham

September 11, 2012

What are weak ω-groupoids?

1st answer (excutive summary)
A higher dimensional generalisation of equivalence relations.

2nd answer
 Read the paper!

3rd answer

Download the Agda code!

Why are we interested in weak ω-groupoids?

- Vladimir Voevodsky proposed Univalent Type Theory.
- A refinement of Martin-Löf Type Theory ...
- ... where equality of types is isomorphism.
- (or more precisely: weak equivalence).
- Inspired by the homotopy interpretation of Type Theory.
- Enables new ways of abstract reasoning.
- Structures can become 1st class objects.

ω-groupoid model of Type Theory?

- Weak ω-groupoids provide a key tool to study the metatheory of Univalent Type Theory.
- We are interested in a computational interpretation of the univalence principle.
- This could be achieved if we can provide an interpretation of Type Theory using weak ω-groupoids.
- This would generalize the elimination of extensionality using setoids (LICS99).

But what is ...?

- To develop such a model...
- we need a precise definition of weak ω-groupoids.
- Formalized in Type Theory.

Equality types

- Equality types are an example of weak ω-groupoids.
- Given A : Set and a, b : A we can form a new set $a=b$: Set
- For any a: A we have a canonical proof id : $a=a$.
- Using the eliminator J we can show that $=$ is an equivalence relation:

$$
\begin{array}{rr}
p^{-1}: b=a & (p: a=b) \\
p \circ q: a=c & (p: b=c, q: a=b)
\end{array}
$$

- Given equality proofs p, q : $a=b$ we can form a new type $p=q$: Set.
- Which equalities between equality proofs are provable?

Groupoids

- We cannot prove $p=q$ for $p, q: a=b$ (Uniqueness of Identity proofs) using only J.
- we can show that $=$ has the structure of groupoid:

$$
\begin{aligned}
& \lambda: \text { id } \circ p=p \\
& \rho: p \circ \text { id }=p \\
& \alpha: p \circ(q \circ r)=(p \circ q) \circ r \\
& \kappa: p^{-1} \circ p=\mathrm{id} \\
& \kappa^{\prime}: p \circ p^{-1}=\mathrm{id}
\end{aligned}
$$

- It is a weak groupoid because the equalities do not hold strictly (definitionally) ...
- ... but only propositionally (given by proofs).

Higher dimensions

- Since we can iterate equality types we get an infinite tower of weak groupoids.
- However, we get many additional equalities.
- \circ is functorial, we also have

$$
\alpha \cdot \beta: p \circ q=p^{\prime} \circ q^{\prime} \quad\left(\alpha: p=p^{\prime}, \beta: q=q^{\prime}\right)
$$

- Satisfying the functor laws,

$$
\begin{aligned}
\text { id } \cdot \mathrm{id} & =\mathrm{id} \\
(\beta \circ \alpha) \cdot\left(\beta^{\prime} \circ \alpha^{\prime}\right) & =\left(\beta \cdot \beta^{\prime}\right) \circ\left(\alpha \cdot \alpha^{\prime}\right)
\end{aligned}
$$

Coherence laws

- Another source of provable equalities are coherence laws
- There are two ways to show

$$
(p \circ \mathrm{id}) \circ q=p \circ q
$$

namely

which can be shown to be equal.

- In dimension 2 all coherence laws can be generated from 5 diagrams.
- In higher dimension it gets much more complicated...

Commutativity in higher dimensions (Eckmann-Hilton)

- Using the 2nd functor law we can also prove a form of commutativity:

$$
\begin{aligned}
& \operatorname{comm} p q: p \circ q=q \circ p \quad(p, q: \mathrm{id}=\mathrm{id}) \\
& \begin{array}{|l|l|}
\hline p & q \\
\hline \text { id } & q \\
\hline p & \text { id } \\
\hline
\end{array}=\begin{array}{|l|l|}
\hline q \\
\hline p \\
\hline q & \text { id } \\
\hline \text { id } & p \\
\hline
\end{array}=\begin{array}{|l|l|}
\hline q & p \\
\hline
\end{array}
\end{aligned}
$$

- However, not all coherences are provable - we cannot derive

$$
\operatorname{comm} p q \circ \operatorname{comm} q p=\text { id }: q \circ p=q \circ p
$$

From Equality to weak ω-groupoids

- What are the abstract properties of an equality?
- If we have uniqueness of identity proofs (UIP) this is just the notion of an equivalence relation.
- However, in the absence of UIP we need to make precise the notion of an ω-groupoid.
- There are a number of categorical definitions, due to Leinster, Penon and Batanin.
- However, they rely on the notion of strict ω-groupoid which is problematic in Type Theory.
- Here we propose an alternative characterisation in Type Theory.

Globular sets

We define a globular set G : Glob coinductively:

$$
\begin{aligned}
\text { obj }_{G} & : \text { Set } \\
\operatorname{hom}_{G} & : \text { obj }_{G} \rightarrow \text { obj }_{G} \rightarrow \infty \text { Glob }
\end{aligned}
$$

Given globular sets A, B a morphism $f: \operatorname{Glob}(A, B)$ between them is given by

$$
\begin{aligned}
\operatorname{obj}_{f} & : \\
\operatorname{hom}_{f} \quad & \text { obj }_{A} \rightarrow \text { obj }_{B} \\
& \\
& \text { Пa, } b: \operatorname{obj}_{A} . \\
& \operatorname{Glob}\left(\operatorname{hom}_{A} a b, \operatorname{hom}_{B}\left(\text { obj }_{f} \rightarrow a, \text { obj }_{f} b\right)\right)
\end{aligned}
$$

As an example we can define the terminal object in $\mathbf{1}_{\text {Glob }}$: Glob by the equations

$$
\begin{aligned}
\mathrm{obj}_{\mathbf{1}_{\text {Glob }}} & =\mathbf{1}_{\text {Set }} \\
\text { hom }_{\mathbf{1}_{\text {Glob }}} x y & =\mathbf{1}_{\text {Glob }}
\end{aligned}
$$

The Identity Globular set

More interestingly, the globular set of identity proofs over a given set A, $\mathrm{Id}^{\omega} A$: Glob can be defined as follows:

$$
\begin{aligned}
\mathrm{obj}_{\mathrm{Id}}{ }^{\omega} A & =A \\
\operatorname{hom}_{\mathrm{Id}^{\omega} A} a b & =\mathrm{Id}^{\omega}(a=b)
\end{aligned}
$$

Globular sets as a presheaf

Our definition of globular sets is equivalent to the usual one as a presheaf category over the diagram:

$$
0 \underset{t_{0}}{\stackrel{s_{0}}{\Longrightarrow}} 1 \underset{t_{1}}{\stackrel{s_{1}}{\Longrightarrow}} 2 \ldots n \underset{t_{n}}{\stackrel{s_{n}}{\longrightarrow}}(n+1) \ldots
$$

with the globular identities:

$$
\begin{aligned}
t_{i+1} \circ s_{i} & =s_{i+1} \circ s_{i} \\
t_{i+1} \circ t_{i} & =s_{i+1} \circ t_{i}
\end{aligned}
$$

A syntactic approach

- When is a globular set a weak ω-groupoid?
- We define a syntax for objects in a weak ω-groupoid.
- A globular set is a weak ω-groupoid, if we can interpret the syntax.
- This is reminiscient of environment λ-models.

The syntactical framework

Contexts

$$
\begin{gathered}
\text { Con : Set } \\
\frac{C: \text { Con }}{} \quad \frac{C: \text { Cat } \Gamma}{(\Gamma, C): \text { Con }}
\end{gathered}
$$

Categories

$$
\begin{array}{ll}
& \frac{\Gamma: \text { Con }}{\text { Cat } \Gamma: \text { Set }} \\
& \frac{C: \operatorname{Cat} \Gamma \quad a, b: \text { Obj } C}{C[a, b]: \operatorname{Cat} \Gamma}
\end{array}
$$

Objects

$$
\frac{C: \operatorname{Cat} \Gamma}{\text { Obj } C, \operatorname{Var} C: \operatorname{Set}}
$$

Interpretation

(1) An assignment of sets to contexts:

$$
\frac{\Gamma: \text { Con }}{\llbracket\ulcorner\rrbracket: \text { Set }}
$$

(2) An assignment of globular sets to category expressions:

$$
\frac{C: \text { Cat } \Gamma \quad \gamma: \llbracket \Gamma \rrbracket}{\llbracket C \rrbracket \gamma: \text { Glob }}
$$

(3) Assignments of elements of object sets to object expressions and variables

$$
\frac{C: \operatorname{Cat} \Gamma \quad A: \text { Obj } C \quad \gamma: \llbracket \Gamma \rrbracket}{\llbracket A \rrbracket \gamma: \text { obj }_{\llbracket C \rrbracket \gamma}}
$$

subject to some (obvious) conditions such as:

$$
\begin{aligned}
\llbracket \bullet \rrbracket \gamma & =G \\
\llbracket C[a, b] \rrbracket \gamma & =\operatorname{hom}_{\llbracket C \rrbracket \gamma}(\llbracket a \rrbracket \gamma)(\llbracket b \rrbracket \gamma)
\end{aligned}
$$

Composition

Telescopes

A telescope t : Tel $C n$ is a path of length n from a category C of to one of its (indirect) hom-categories:

$$
\frac{C: \text { Cat } \Gamma \quad n: \mathbb{N}}{\text { Tel } C n: \operatorname{Set}}
$$

We can turn telescopes into categories:

$$
\frac{t: \text { Tel } C n}{C+t: \text { Cat } \Gamma}
$$

Formalizing composition

$$
\frac{\alpha: \operatorname{Obj}(t \Downarrow) \quad \beta: \operatorname{Obj}(u \Downarrow)}{\beta \circ \alpha: \operatorname{Obj}(u \circ t \Downarrow)}
$$

is a new constructor of Obj where

$$
\frac{t: \operatorname{Tel}(C[a, b]) n \quad u: \operatorname{Tel}(C[b, c]) n}{u \circ t: \operatorname{Tel}(C[a, c])}
$$

is a function on telescopes defined by cases

$$
\bullet \circ \bullet C=\bullet \quad u\left[a^{\prime}, b^{\prime}\right] \circ t[a, b]=(u \circ t)\left[a^{\prime} \circ a, b^{\prime} \circ b\right]
$$

Laws

For example the left unit law in dimension 1:

$$
\begin{equation*}
\mathrm{id}_{b} \circ f=f \tag{1}
\end{equation*}
$$

and in dimension 2.

$$
\mathrm{id}_{b}^{2} \circ \alpha=\alpha
$$

where $\mathrm{id}_{b}^{2}=\mathrm{id}_{\mathrm{id}_{b}}$
In the strict case the 2nd equation only type-checks due to the first. In the weak case we have to apply the previous isomorphism explicitely.

Coherence

Example:

In summary and full generality:
For any pair of coherence cells with the same domain and target, there must be a mediating coherence cell.

Formalizing coherence

$$
\begin{gathered}
\frac{x: \text { Obj } C}{\text { hollow } x: \text { Set }} \\
\text { hollow }\left(\lambda_{--}\right)=\top \ldots \\
f g: \text { Obj } C[a, b] \quad p: \text { hollow } f \quad q: \text { hollow } g \\
\operatorname{coh} p q: \text { Obj } C[a, b][f, g] \\
\text { hollow }(\operatorname{coh} p q)=\top
\end{gathered}
$$

Conclusions

- We have given a type-theoretic defition of weak ω-groupoids.
- And formalized it in Type Theory using the Agda system.
- This is the first step towards a weak ω-groupoid model of Type Theory
- Which can be used to give a computational interpretation of the univalence principle.

