Extensionality in Type Theory or How to fix a broken mirror? In honour of Pierre-Louis Curien's 60th birthday

Thorsten Altenkirch

Functional Programming Laboratory School of Computer Science University of Nottingham

September 10, 2013

The HoTT book

Homotopy Type Theory

Univalent Foundations of Mathematics

- Outcome of the Special Year on Homotopy Type Theory at Princeton.
- Introduces a very extensional type theory as a new foundation of Mathematics.
- *Informal* use of Type Theory.
- However HoTT as a programming language has a serious defect:
- We don't know how to execute its programs ...

Type Theory at its best

• We define the type ${\mathbb N}$ by the constructors:

$$0:\mathbb{N}$$

 $S:\mathbb{N}\to\mathbb{N}$

• We recursively define the function $(+): \mathbb{N} \to \mathbb{N} \to \mathbb{N}$:

$$0+n :\equiv n$$

 $S(m)+n :\equiv S(m+n)$

• We recursively define the function: assoc : $\prod_{i,j,k:\mathbb{N}}(i+j) + k =_{\mathbb{N}} i + (j+k)$

$$\begin{aligned} &\operatorname{assoc}(0,j,k) :\equiv \operatorname{refl}(j+k) \\ &\operatorname{assoc}(S(i),j,k) :\equiv \operatorname{respS}(\operatorname{assoc}(i,j,k)) \end{aligned}$$

• Theorem proving becomes functional programming!

What is $=_{\mathbb{N}}$?

• We define $(=_{\mathbb{N}}) : \mathbb{N} \to \mathbb{N} \to \mathsf{Type}$ by the constructors:

$$\textit{refl0}: 0 =_{\mathbb{N}} 0$$

 $\textit{respS}: \Pi_{m,n:\mathbb{N}}(m =_{\mathbb{N}} n) \rightarrow S(m) =_{\mathbb{N}} S(n)$

- We can show that =_N is an equivalence relation by deriving refl,sym,trans using recursion.
- We can also show that $=_{\mathbb{N}}$ is substitutive by constructing $\mathrm{subst}_{\mathbb{N}} : \prod_{P:\mathbb{N}\to \mathbf{Type}} \prod_{m,n:\mathbb{N}} m =_{\mathbb{N}} n \to P(m) \to P(n)$

The type of computations

- Given A : Type, we introduce the type ∞(A) : Type, of *computations* of type A.
- Values are $\#(t) : \infty(A)$ where t : A is a term of type A.
- E.g. $\#(3+4) \not\equiv \#(7)$.
- Given $d : \infty(A)$ we can force the computation $\flat(d) : A$.
- $\flat(\#(t))$ is the value associated to t.
- E.g. $\flat(\#(3+4)) \equiv 7$.

Conatural numbers

• Using ∞ we define the type of conatural numbers \mathbb{N}^∞ by the constructors:

$$egin{aligned} 0 &: \mathbb{N}^\infty \ S &: \infty(\mathbb{N}^\infty) o \mathbb{N}^\infty \end{aligned}$$

- We can recursively define $\bot : \mathbb{N}^{\infty}$: $\bot :\equiv S(\#(\bot)).$
- We recursively define the function $(+): \mathbb{N}^{\infty} \to \mathbb{N}^{\infty} \to \mathbb{N}^{\infty}$:

$$0 + n :\equiv n$$

$$S(m) + n :\equiv S(\#(\flat(m) + n))$$

• We recursively define the function: assoc : $\prod_{i,j,k:\mathbb{N}^{\infty}}(i+j) + k =_{\mathbb{N}^{\infty}} i + (j+k)$

$$\begin{aligned} &\operatorname{assoc}(0,j,k) :\equiv \operatorname{refl}(j+k) \\ &\operatorname{assoc}(S(i),j,k) :\equiv \operatorname{respS}(\#(\operatorname{assoc}(\flat(i),j,k))) \end{aligned}$$

What is $=_{\mathbb{N}^{\infty}}$?

• We define $(=_{\mathbb{N}^{\infty}}): \mathbb{N}^{\infty} \to \mathbb{N}^{\infty} \to \mathsf{Type}$ by the constructors:

$$\begin{array}{l} \textit{refl0}: 0 =_{\mathbb{N}^{\infty}} 0 \\ \textit{respS}: \Pi_{m,n:\infty(\mathbb{N}^{\infty})}\infty(\flat(m) =_{\mathbb{N}^{\infty}} \flat(n)) \rightarrow S(m) =_{\mathbb{N}^{\infty}} S(n) \end{array}$$

- We can show that $=_{\mathbb{N}^{\infty}}$ is an equivalence relation by deriving refl,sym,trans using recursion.
- It is impossible to derive $\operatorname{subst}_{\mathbb{N}^{\infty}} : \prod_{P:\mathbb{N}^{\infty} \to \mathbf{Type}} \prod_{m,n:\mathbb{N}} m =_{\mathbb{N}^{\infty}} n \to P(m) \to P(n)$

Underivability of ${\rm subst}_{\mathbb{N}^\infty}$

- We recursively define $\perp' : \mathbb{N}^{\infty}$: $\perp' :\equiv S(\#(S(\#(\perp')))).$
- Note that $\perp \not\equiv \perp'$.
- However, we can prove $p : \bot =_{\mathbb{N}^{\infty}} \bot'$: $p :\equiv respS(\#(respS(\#(p))))$
- Consider the context $\Gamma \equiv P : \mathbb{N}^{\infty} \to \mathbf{Type}, p : P((\bot))$.
- If there is a proof $\Gamma \vdash q : P(\perp')$ then $q \equiv p$ and $\perp \equiv \perp'$,
- This follows from an analysis of normal forms.
- Hence $\mathrm{subst}_{\mathbb{N}^\infty}$ is underivable.

The broken mirror

- Type Theory (as we know it) works well for finitary types like natural numbers . . .
- To define infinitary types (like \mathbb{N}^{∞}) we need to use computations to *describe* infinite structures.
- We would like to consider infinite structures as *propositionally equal*, if their infinite unfoldings are equal.
- Hence, propositional equality does not reflect definitional equality.
- Π-types are another instance of an infinite type where the intended equality (extensional equality of functions) doesn't agree with definitional equality of λ-abstractions.

The Universe of Types

- A similar issue arises for the universe of types.
- An element of the universe A : **Type** is an intensional description of the actual type.
- We would like to identify types that are *semantically* equivalent.
- We define (=_{Type}) : Type → Type → Type: An element of A =_{Type} B is given by the following components:

$$f : A \to B$$

$$g : B \to A$$

$$p : \prod_{a:A,b:B} \infty ((f(a) =_B b) =_{\mathsf{Type}} (a =_A g(b)))$$

- We can show that $(=_{Type})$ is reflexive, symmetric and transitive.
- We cannot derive $subst_{Type}$ (e.g. $\mathbb{N} \times \mathbb{N} =_{Type} \mathbb{N}$).
- $A =_{Type} B$ is equivalent to the equivalences defined in the HoTT book.
- Indeed its 2.5 times unfolding is the semiadjoint equivalence defined

Fixing the mirror ?

- Given $f : A \to B$ we call $\operatorname{resp}(f) : \prod_{a,a':A} a =_A a' \to f(a) =_B f(a')$
- We can reduce $\operatorname{subst}_X(P)$ to $\operatorname{resp}(P)$: Given $p : a =_A a'$ $\operatorname{resp}(P, p) : P(a) =_{\mathsf{Type}} P(b)$ and the first component of $\operatorname{resp}(P, p)$ is a function $P(a) \to P(b)$.
- Can we add a computationally well behaved generalisation of resp to Type Theory?

What about J?

- Paulin-Mohring's version of the eliminator.
- Assume as given x : A

$$J: \Pi_{P:\Pi_{y:A}x = A^{y} \to \mathbf{Type}}$$
$$P(x, \operatorname{refl}(x)) \to$$
$$\Pi_{y:A}\Pi_{p:x = A^{y}}P(y, p)$$

- with the computation rule: $J(P, m, x, refl(x)) :\equiv m$
- subst arises as the special case if P doesn't depend of $x =_A y$.
- Can we reduce J to subst and hence to resp?

Reducing J to subst

• We can rewrite J using a Σ -type:

$$J: \Pi_{P:(\Sigma_{y:A}x=Ay)\to \mathbf{Type}}$$
$$P(x, \operatorname{refl}(x)) \to$$
$$\Pi_{y:A}\Pi_{\rho:x=Ay}P(y, p)$$

- To reduce J to subst we need to show that: $(x, \operatorname{refl}(x)) =_{\sum_{y:A} x = A^{y}} (y, p)$ given $p: x =_A y$.
- a proof of the equality of pairs is a pair of equality proofs, here:

$$q: x =_A y$$

r: subst($\lambda y.x = y, q, refl(x)$) =_{x=Ay} p

• We set $q :\equiv p$ then the type of r is equivalent to: $r : \operatorname{trans}(p, \operatorname{refl}(x)) =_{x=Ay} p$

• This shows that we need the laws of a category to derive J.

Equalities of proofs

• We assume that equality proofs form a category:

 $\begin{aligned} &\operatorname{trans}(\operatorname{refl}, p) \equiv p \\ &\operatorname{trans}(p, \operatorname{refl}) \equiv p \\ &\operatorname{trans}(\operatorname{trans}(p, q), r) \equiv \operatorname{trans}(p, \operatorname{trans}(q, r)) \end{aligned}$

• resp is functorial:

 $\begin{aligned} \operatorname{resp}(f,\operatorname{refl}) &\equiv \operatorname{refl} \\ \operatorname{resp}(f,\operatorname{trans}(p,q)) &\equiv \operatorname{trans}(\operatorname{resp}(f,p),\operatorname{resp}(f,q)) \end{aligned}$

- Given this we can derive J and its computation rule.
- Is the resulting definitional equality decidable?

Summary

- Type Theory as we know it only treats finitary types properly.
- To integrate infinite structures (∞, Π-types, **Type**) we need to define propositional equality by recursion over the structure of types.
- To obtain a computational well behaved theory we need to explain resp by recursion over the structure of terms.
- We define the equality of the universe **Type** in a way so that the univalence principle holds automatically.
- We are considering a strong definitional equality of equality proofs such that the laws of an ω-category hold definitionally, while the symmetry is only weak.

Related work

- Extensional Equality in Intensional Type Theory, A., LICS 99
- Observational Equality, Now!; A., McBride, Swiersta; PLPV 2007
- Canonicity for 2-dimensional type theory, Harper, Licata; POPL 2012
- A Generalization of the Takeuti-Gandy Interpretation, Barras, Coquand, Huber; Draft 2013