
Why dependent types matter

Thorsten Altenkirch

School of Computer Science
University of Nottingham

February 25, 2008

Thorsten Altenkirch dtp 08



What are dependent types?

Data and programs may occur within types.
Type checking requires to carry out symbolic computations.
Full blown dependent types: Full language can be used
within types.
Phase sensitive languages: Type level language different
from object level language.
See Conor’s famous slides on DTP and social order.
http://strictlypositive.org/a-case/

Question
Does this cover everything we want to call DTP?
Or is it maybe too liberal?

Thorsten Altenkirch dtp 08

http://strictlypositive.org/a-case/


Dependently typed programs

Vectors instead of lists
Decidable instead of Bool
Tagless interpreter and type checker
Structural recursive unification
Verified sort
Generic programming with universes

Question
What is your favorite DTP pearl?

Thorsten Altenkirch dtp 08



Dependently typed languages

LF inspired
DML ML indexed by natural numbers.
ATS extending and generalizing DML

Delfin uses HOAS
FP inspired

Haskell Multiparameter type classes, GADTs
Ωmega Rationalizing use of GADTs

TT inspired
CIC Coq’s language

Epigram influenced by LEGO, inspired by ALF
Agda inspired by ALF and Cayenne

Cayenne influenced by ALF, based on LML.

Question
Is this an accurate picture? What is missing?

Thorsten Altenkirch dtp 08



Hindley-Milner alignments
Data : Types

Explicit : Implicit
Runtime : Compiletime
Partial : Total

Question
Does this alignment work for DTP?
If not, what are the alternatives?

Thorsten Altenkirch dtp 08



Partial vs total

Partiality at the type level =⇒ type checking undecidable.
Does this matter?
Partiality forces us to run proofs at runtime.
This does matter!
Model partiality as an effect?
Phase-sensitive or full-blown + phase polymorphism?
c.f. Edwin Brady’s PhD.

Design alternatives
Phase-sensitive: partial runtime, total compile time
Partial core + termination checker
Total core

Thorsten Altenkirch dtp 08



Dependent pattern matching

Different programs typable in different branches!
Inductive families or recursive only?
Instantiation of indizes.
Impossible branches.
Equational inference, automatic or explicit?
Pattern matching as primitive?

Question
Which are the viable alternatives in this design space?

Thorsten Altenkirch dtp 08



Elaboration

Implicit parameters, not just types.
Hidden proofs, automatisation of reasoning?
User extensible elaboration, library + type inference?

Question
What are the design principles here?

Thorsten Altenkirch dtp 08



Reusability?
More precise types =⇒ less reusability?
Conversion is too intensional.
Cannot substitute Peano numbers by binary numbers?
Loss of modularity!!

Question
How can we have the DTP cake and eat (reuse) it?

Thorsten Altenkirch dtp 08



Dependent types and the real world

EffTT workshop in Tallinn in December
Use Monads (like Haskell) ?
IO should not be opaque.
Hoare Type Theory by Greg Morrisett and Aleksandar
Nanevsky.
Functional specifications of IO (Wouter Swierstra and
myself)

Question
What is the best way to integrate effects into DTP?

Thorsten Altenkirch dtp 08



Killer Apps?

Proof carrying code
Program correctness, pay as you go
Domain specific libraries with rich type disciplines.

Question
Other proposals for killer apps?
Can DTP affect the software industry?

Thorsten Altenkirch dtp 08


