
Intro
Streams

State
Partiality

Conclusions

The Beauty and the Beast: A Happy End?
based on joint work with Wouter Swierstra

Thorsten Altenkirch

School of Computer Science
University of Nottingham

December 15, 2007

Thorsten Altenkirch effTT07

Intro
Streams

State
Partiality

Conclusions

Overcoming the ASCII-greek dichotomy

Programs (ASCII) vs. Maths (greek)
Programming is constructive Mathematics.
No need for mathematical models of (pure) functional
programs.
Type Theory: No difference between a mathematical
function and a function in programming.

Thorsten Altenkirch effTT07

Intro
Streams

State
Partiality

Conclusions

Real World?

Real Programs are not pure functions.
Real programs have effects.
Real programs don’t always terminate.
How can effects be integrated in Type Theory?

Thorsten Altenkirch effTT07

Intro
Streams

State
Partiality

Conclusions

The Awkward Squad

Simon Peyton Jones (2000) in Marktoberdorf:
Tackling the awkward squad
Some Squad members:

1 Stream I/O (getChar, putChar)
2 Updatable references (IOVar)
3 Concurrency (forkIO, MVar)

Approach: Translate impure Haskell (ASCII) into a process
calculus (greek).

Thorsten Altenkirch effTT07

Intro
Streams

State
Partiality

Conclusions

Beauty in the Beast

Functional specifications of effects.
Use pure Haskell to explain impure Haskell.
Takes place in a total fragment of Haskell (Ask).
Quick check impure programs.
Warm up for Effects in Type Theory
Haskell for the lazy Type Theoretician.
See our Haskell Workshop (2007) paper.

Thorsten Altenkirch effTT07

Intro
Streams

State
Partiality

Conclusions

Implementation of Stream IO
data IO a =

GetChar (Char → IO a)
| PutChar Char (IO a)
| Return a

instance Monad IO where
return = Return
(Return a) >>= g = g a
(GetChar f) >>= g = GetChar (λc → f c >>= g)
(PutChar c a) >>= g = PutChar c (a >>= g)

getChar :: IO Char
getChar = GetChar Return
putChar :: Char → IO ()
putChar c = PutChar c (Return ())

Thorsten Altenkirch effTT07

Intro
Streams

State
Partiality

Conclusions

Semantics

data [a]b = a : [a]b | []b
run :: IO a → [Char]∅ → [Char]a
run (Return a) cs = []a
run (GetChar f) (c : cs) = run (f c) cs
run (PutChar c p) cs = c : run p cs

Thorsten Altenkirch effTT07

Intro
Streams

State
Partiality

Conclusions

Total ?

We have to differentiate between initial algebra and
terminal coalgebra interpretation of data types.
We could interpret [a]b as:
µX .a× X + b permitting structural recursion, e.g.

getTip :: [a]b → b
getTip (: bs) = getTip bs
getTip ([]b) = b

νX .a× X + b permitting guarded corecursion.
repeat :: a → [a]b
repeat a = a : repeat a

I will annotate the declaration:
data [a]b = a : ([a]b)∞ | []b

to indicate that we mean νX .a× X + b.

Thorsten Altenkirch effTT07

Intro
Streams

State
Partiality

Conclusions

How to annotate IO?
data IO a =

GetChar (Char → IO a)
| PutChar Char (IO a)
| Return a

data IO a =
GetChar (Char → IO a)
| PutChar Char (IO a)∞

| Return a

We interpret this as:

IO a = νX .µY .Char → Y + Char × X + a

run and copy are total functions.
Indeed, any IO performing function which never gets stuck
is total.
Related to Eating
(Peter Hancock, Neil Ghani, Dirk Pattinson).

Thorsten Altenkirch effTT07

Intro
Streams

State
Partiality

Conclusions

Pipes and switches
(with Varmo Vene and Tarmo Uustalu)

data IO i o a =
Get (i → IO i o a)
| Put o (IO i o a)∞

| Return a
(≫) :: IO i r a → IO r o a → IO i o a
Return a ≫ q = Return a
Get f ≫ q = Get (λi → f i ≫ q)
Put h p ≫ Return a = Return a
Put h p ≫ Get f = p ≫ f h
Put h p ≫ Put o q = Put o (Put h p ≫ q)

Thorsten Altenkirch effTT07

Intro
Streams

State
Partiality

Conclusions

Arrows?

Conjecture: This is an arrow and a monad.
Without Return: Example of an Arrow in John Hughes’
paper.
Wouter: It is not an arrow (even without Return).
There seems to be no easy fix.

Thorsten Altenkirch effTT07

Intro
Streams

State
Partiality

Conclusions

IORefs

type Data = Int
type Loc = Int
data IO a =

NewIORef Data (Loc → IO a)
| ReadIORef Loc (Data → IO a)
| WriteIORef Loc Data (IO a)
| Return a

Thorsten Altenkirch effTT07

Intro
Streams

State
Partiality

Conclusions

Mutable state semantics

type Heap = Loc → Data
data Store = Store{free :: Loc, heap :: Heap}
emptyStore :: Store
emptyStore = Store{free = 0}
run :: IO a → a
run io = evalState (runState io) emptyStore
runState :: IO a → State Store a

Thorsten Altenkirch effTT07

Intro
Streams

State
Partiality

Conclusions

Issues

Heap is partial, we could access an unallocated memory
location.
We want to store different datatypes. . .
Memory access should be type-safe.
See next talk by Wouter.
Other examples: Concurrent Haskell, Quantum IO, . . .
Do we need 2 levels (IO,run)?

Thorsten Altenkirch effTT07

Intro
Streams

State
Partiality

Conclusions

The Partiality Monad
with Venanzio Capretta and Tarmo Uustalu

So far all operations were total.
Partiality is an effect: abstraction of time in the real world.
Give a functional specification of partiality.
We first define the delay monad D :: ∗ → ∗ and then
partiality P a = D a/ ' as a quotient.

Thorsten Altenkirch effTT07

Intro
Streams

State
Partiality

Conclusions

The Delay monad

data D a = Now a | Later (D a)∞

instance Monad D where
return = Now
Now a >>= k = k a
Later d >>= k = Later (d >>= k)

⊥ :: D a
⊥ = Later ⊥

Thorsten Altenkirch effTT07

Intro
Streams

State
Partiality

Conclusions

Fixpoints with Delay

rec :: ((a → D b) → (a → D b)) → a → D b
rec phi a = aux (λ → ⊥)

where aux :: (a → D b) → D b
aux k = race (k a) (Later (aux (phi k)))

race :: (D a) → (D a) → (D a)

race (Now a) = Now a
race (Later) (Now a) = Now a
race (Later d) (Later d ′) = Later (race d d ′)

Thorsten Altenkirch effTT07

Intro
Streams

State
Partiality

Conclusions

From Delay to Partial

D is too intensional. . .
We can observe how fast a function terminates.
Hence rec f 6= f (rec f)
We define

P a = D a/ '

where '⊆ D a× D a identifies values with different finite
delay.

Thorsten Altenkirch effTT07

Intro
Streams

State
Partiality

Conclusions

Defining '

(↓) ⊆ D a× a is defined inductively.

Now a ↓ a
d ↓ a

Later d ↓ a

v ⊆ D a× D a
d v d ′ = ∀a.d ↓ a =⇒ d ′ ↓ a

' ⊆ D a× D a
d ' d ′ = d v d ′ ∧ d ′ v d

Thorsten Altenkirch effTT07

Intro
Streams

State
Partiality

Conclusions

Deja vu ?

Constructive Domain Theory!
P a = a⊥
Note that constructively

a⊥ 6= a + {⊥}

because we cannot observe non-termination.
P a and hence a → P b are ωCPOs.
rec f = ti∈Nat f i⊥ we construct t in a → P b.
Need that f is ω-continous.

Thorsten Altenkirch effTT07

Intro
Streams

State
Partiality

Conclusions

Modalities vs IO

Different kind of effects:

Runtime system
Stream IO
References
Concurrency
Quantum IO

Modality
Errors (e.g. Maybe)
Partiality
Nondeterminism (Scheduler → a).
Probability (a → R+)

Thorsten Altenkirch effTT07

Intro
Streams

State
Partiality

Conclusions

Effects, foundationally

We give functional specifications of effects.
This way effects can be integrated into Type Theory
without extending Type Theory.
Can we do this for Hoare Type Theory?

Thorsten Altenkirch effTT07

Intro
Streams

State
Partiality

Conclusions

Greg Morrisett’s TLCA 07 lecture

Thorsten Altenkirch effTT07

Intro
Streams

State
Partiality

Conclusions

Loose ends

Combine effects using coproducts or monad transformers
e.g. Concurrency + Streams.
see Wouter’s paper Data types á la carte
Difference between internal effects (e.g. IORefs) and
proper IO (e.g. streams)
Exploit dependent types to structure effects, e.g. regions.
Obligation: show that the specified semantics agrees with
the actual implementation.
Translate high level effects into low level effects?
Interpretation of functions in constructive logic
lawless sequences because we have access to the real
world.

Thorsten Altenkirch effTT07

	Intro
	Streams
	State
	Partiality
	Conclusions

