A Short History of Equality

Thorsten Altenkirch

School of Computer Science
University of Nottingham
June 25, 2011

Agda is cool!

```
data Vec (A : Set) : \mathbb{N}->\mathrm{ Set where}
    [] : Vec A zero
    _ ::_ :{n:\mathbb{N }}->A->\operatorname{Vec A n}->\operatorname{Vec}A(\mathrm{ suc n)}
```

data Fin: $\mathbb{N} \rightarrow$ Set where
zero : $\{n: \mathbb{N}\} \rightarrow$ Fin (suc n)
suc $:\{n: \mathbb{N}\} \rightarrow$ Fin $n \rightarrow F i n($ suc $n)$

$$
\begin{aligned}
& \text { _!!_: } \forall\left\{\begin{array}{l}
\text { A n }\} \rightarrow \text { Vec } A n \rightarrow \text { Fin } n \rightarrow A \\
{[]} \\
(x:: x s)!! \\
(x:: x s)!!(\text { suc } i)=x s!!i
\end{array}\right. \\
& (x)=x
\end{aligned}
$$

Safe lookup in Agda.

Ulf Norell

Theorem proving in Agda

```
\({ }_{-+_{-}}: \mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{N}\)
zero \(+n=n\)
suc \(m+n=\operatorname{suc}(m+n)\)
```

assoc: $\{i j k: \mathbb{N}\} \rightarrow i+(j+k) \equiv(i+j)+k$
assoc zero $j k=r e f l$
$\operatorname{assoc}(\operatorname{suc} i) j k=\operatorname{cong} \operatorname{suc}(\operatorname{assoc} i j k)$

- Exploit Curry-Howard.
- Think of proofs as programs.
- Termination checker to achieve logical soundness.

Basic ingredients of Type Theory

$$
\text { П-types }(x: A) \rightarrow B x \text { or }\{x: A\} \rightarrow B x
$$

- Generalize function types $(A \rightarrow B)$.
- Represent universal quantification
- Alternative syntax: $\Pi[x: A] B x$
Σ-types $\Sigma[x: A] B x$

Per Martin-Löf

- Generalize product types
- Represent existential quantification
- Usually curried away or replaced by datatypes

Equality types $a \equiv b$ (for $a b: A$)

- No simply typed correspondence
- Represent propositional equality
- Implicitly used in dependent datatypes (like Vec or Fin)

Equality to define inductive families

```
data Fin: N }->\mathrm{ Set where
    zero: {n:\mathbb{N }}->\mathrm{ Fin (suc n)}
    suc : {n:\mathbb{N }}->F\mathrm{ Fin }n->Fin(suc n)
```

Fin is the initial algebra of the following functor:

```
TFin : \((\mathbb{N} \rightarrow\) Set \() \rightarrow \mathbb{N} \rightarrow\) Set
TFin \(X n=(\Sigma[m: \mathbb{N}](\) suc \(m \equiv n))\)
    \(\uplus(\Sigma[m: \mathbb{N}](\) suc \(m \equiv n) \times X m)\)
```


Equality types

data ${ }_{-}{ }_{-}\{A: \operatorname{Set}\}: A \rightarrow A \rightarrow$ Set where

$$
r e f l:(a: A) \rightarrow a \equiv a
$$

Proof: _ $\bar{\equiv}$ _ is an equivalence relation (using pattern matching):

$$
\begin{aligned}
& \text { sym : }\{A: \text { Set }\}(a b: A) \rightarrow a \equiv b \rightarrow b \equiv a \\
& \text { sym a .a (refl .a) }=\text { refl } a \\
& \text { trans : }\{A: \text { Set }\}(a b c: A) \rightarrow a \equiv b \rightarrow b \equiv c \rightarrow a \equiv c \\
& \text { trans a a } a b(\text { refl .a) } q=q
\end{aligned}
$$

J : the eliminator

$$
\begin{aligned}
& J:\{A: \text { Set }\} \\
& \quad(M:(a b: A) \rightarrow a \equiv b \rightarrow \text { Set }) \\
& \quad \rightarrow((a: A) \rightarrow M a a(r e f l a)) \\
& \quad \rightarrow(a b: A)(p: a \equiv b) \rightarrow M a b p \\
& J M m a \cdot a(r e f l . a)=m a
\end{aligned}
$$

- Think of induction on equality proofs
- Alternative to pattern matching
- Combinator instead of a scheme.

sym and trans from J

We can derive sym and trans from J alone:

$$
\begin{aligned}
& \operatorname{sym}:\{A: \text { Set }\}(a b: A) \rightarrow a \equiv b \rightarrow b \equiv a \\
& \text { sym }=J\left(\lambda a^{\prime} b^{\prime}-\rightarrow b^{\prime} \equiv a^{\prime}\right) \\
& \left(\lambda a^{\prime} \rightarrow \text { refl } a^{\prime}\right) \\
& \text { trans : }\{A: \text { Set }\}(a b c: A) \rightarrow a \equiv b \rightarrow b \equiv c \rightarrow a \equiv c \\
& \text { trans abc=J(} \left.b=a^{\prime} b^{\prime}-\rightarrow b^{\prime} \equiv c \rightarrow a^{\prime} \equiv c\right) \\
& \left(\lambda a^{\prime} \rightarrow \lambda q^{\prime} \rightarrow q^{\prime}\right) \\
& a b
\end{aligned}
$$

Uniqueness of Identity Proofs

- Can all pattern matching programs derived using J?

$$
\begin{aligned}
& \text { uip : }\{A: \text { Set }\}(a b: A)(p q: a \equiv b) \rightarrow p \equiv q \\
& \text { uip } . b b(\text { refl } . b)(\text { refl } . b)=\text { refl }(\text { refl } b)
\end{aligned}
$$

- Attempts to prove uip fail.
- We cannot use J to eliminate proofs of the type $a \equiv a$.

A 2nd eliminator K

$K:\{A: S e t\}$
$(M:(a: A) \rightarrow a \equiv a \rightarrow$ Set $)$
$\rightarrow((a: A) \rightarrow M a(r e f l a))$
$\rightarrow(a: A)(p: a \equiv a) \rightarrow M$ ap
KMma(refl .a) $=m a$
using K and J we can derive uip:

$$
\begin{aligned}
& \text { uip : }\{A: \text { Set }\}(a b: A)(p q: a \equiv b) \rightarrow p \equiv q \\
& \text { uip }=J\left(\lambda a^{\prime} b^{\prime} p^{\prime} \rightarrow\left(q^{\prime}: a^{\prime} \equiv b^{\prime}\right) \rightarrow p^{\prime} \equiv q^{\prime}\right) \\
& \left(K\left(\lambda a^{\prime \prime} q^{\prime \prime} \rightarrow \text { refl } a^{\prime \prime} \equiv q^{\prime \prime}\right)\right. \\
& \left.\left(\lambda a^{\prime \prime} \rightarrow \text { refl }\left(\text { refl } a^{\prime \prime}\right)\right)\right)
\end{aligned}
$$

Conor's PhD

Conor McBride (1999):

J and K and the eliminators for other datatypes are enough to implement pattern matching.

But:
 Do we really need K ?

Groupoids

- While we cannot show that all equality proofs are equal using only J .
- We can show some equations between equality proofs.
- Equality proofs from a groupoid.
- A groupoid is a category where every morphism has an inverse (i.e. is an isomorphism).
- As categories generalize monoids and preorders...
- ... groupoids generalize groups and equivalence relations

Equality forms a groupoid

Only using J we can prove:
Ineutr : trans refl $p \equiv p$
rneutr : trans p refl $\equiv p$
assoc : trans (trans $p q) r \equiv \operatorname{trans} p($ trans $q r)$
linv : trans (sym p) $p \equiv$ refl
rinv : trans $p($ sym $p) \equiv$ refl

Hofmann/Streicher

Hofmann/Streicher 94

Groupoids form a model of Type Theory in which uip doesn't hold. Hence uip is not derivable from J only.

Incompleteness?

- We can view the lack of uip as an incompleteness of Martin-Löf's original formulation of equality types.
- This can easily be fixed by adding K.
- There is another incompleteness of equality types.
- Which is easier to show.
- But harder to fix!

Consider the functions

$$
\begin{aligned}
& f: \mathbb{N} \rightarrow \mathbb{N} \\
& f=\lambda n \rightarrow n+0 \\
& g: \mathbb{N} \rightarrow \mathbb{N} \\
& g=\lambda n \rightarrow n
\end{aligned}
$$

We can show

$$
\begin{aligned}
& \text { exteq }:(n: \mathbb{N}) \rightarrow f n \equiv g n \\
& \text { exteq } n=\text { addOlem } n
\end{aligned}
$$

but we cannot show

$$
e q: f \equiv g
$$

because if such a proof exists.
Then there is one in normal from (refl).
And f and g would have to be convertible (same normal form). However, $n+0$ and n are not convertible.

Extensionality

This shows that the principle:

$$
\begin{aligned}
& \text { ext }:\{A B: \text { Set }\}(f g: A \rightarrow B) \\
& \quad \rightarrow((a: A) \rightarrow f a \equiv g a) \rightarrow f \equiv g
\end{aligned}
$$

is not provable in Type Theory.

Data vs codata

- Data (like \mathbb{N}) is defined by the way it is constructed.
- Codata (like functions) is defined by the way it is eliminated.
- Data is based on a producer contract, the producer only uses the allowed constructors.
- Codata is based on a consumer contract, the consumer only uses the allowed eliminators.
- The producer contract justifies elimination principles (like induction) for data.
- The consumer contract justifies coelimination principles (like coinduction and extensionality) for codata.

The Leibniz principle

- Any two objects should be either distinguishable (without using equality) or equal.
- Since all we can do with a function is to apply it, two extensionally equivalent functions should be equal.

Axiom?

- Why don't we add ext as an axiom?
- Disadvantage: this induces non-canonical elements in other types.

```
strange : \mathbb{N}
strange = subst ( }\mp@subsup{\lambda}{-}{}->\mathbb{N})(\mathrm{ ext f g exteq) 0
```

- Adding axioms destroys the computational structure of Type Theory.

Setoids?

- A set with an equivalence relation is called a setoid.
- We can define the setoid of functions with extensional equality.
- We define operations on setoids instead of sets.
- Disadvantages:
- Each time we have to prove that any operation preserves extensional equality even though we know this is always true.
- We have to decide which sets we turn into setoids and which we leave as sets. This leads potentially to many copies of a given operation.
- Why not working in the Type Theory generated by setoids?

Extensional Equality in Intensional Type Theory

- Indeed, this was the idea which lead to my LICS 99 paper.
- However, Setoids are not a model of Type Theory because certain equalities don't hold.
- E.g. the Beck-Chevallier condition fails

$$
(\Pi x: A \cdot B x)[\delta]=\Pi x: A[\delta] \cdot(B x)[\delta]
$$

because both sides produce different equality proofs.

- We can address this by introducing a type Prop with the property that all proofs of a proposition are convertible.
- While this is a non-standard Type Theory, it is possible to implement such a theory.
- However, nobody ever implemented a Type Theory based on my LICS99 paper.

Observational Type Theory

- Jointly with Conor McBride and Wouter Swierstra we developed a more syntactic approach to the setoid model:
Observational Type Theory, now (PLPV 08)
- Equality is defined by recursion over the types (following the setoid model).
- We also define

$$
\text { subst }:\{A: \operatorname{Set}\}\{B: A \rightarrow \operatorname{Set}\}\{a b: A\} \rightarrow a \equiv b \rightarrow B a \rightarrow B b
$$

by recursion over B.

- Other constants, in particular

$$
\text { cong : }\{A B: \operatorname{Set}\}(f: A \rightarrow B)\{a b: A\} \rightarrow a \equiv b \rightarrow f a \equiv f b
$$

are added as axioms.

- We have irreducible terms in equality types.

But not in other types (like \mathbb{N}).

- This is the basis for the onaoina implementation of Epiaram 2.

Equality of types

- When should two types be provably equal?
- All operations in Type Theory preserve isomorphisms.
- Unlike Set Theory, e.g. $\{0,1\} \simeq\{1,2\}$ but $\{0,1\} \cup\{0,1\} \nsucceq\{0,1\} \cup\{1,2\}$.
- Indeed, isomorphic types are propositionally indistinguishable in Type Theory.
- Leibniz principle: isomorphic sets should be equal!?

Univalent Type Theory

- Vladimir Voevodsky proposed a new principle for Type Theory: the univalence principle.
- This is inspired by models of Homotopy theoretic models of Type Theory.
- He defines the notion of weak equivalence of types.

Equality of types is weakly equivalent to weak equivalence

- Using this principle we can show that isomorphic types are equal.
- It also implies ext.
- However, it is incompatible with uip and K.

Dimensions of types

- A type which has exactly one element is 0-dimensional. the contractible types.
- A type whose equality is 0 -dimensional is 1 -dimensional the propositions.
- A type whose equality is 1 -dimensional is 2-dimensional the sets
- There are higher dimensional types, such as the universe of small sets (dimension 3).

Conclusions

- If we want to construct a univalent Type Theory we have to give up UIP.
- We can add the Univalence Principle as an axiom, but this destroys the computational structure of Type Theory.
- However, eliminating extensionality principles seems to rely on proof-irrelvance.
- Can we develop an extensional type theory which is not proof-irrelevant?
- And where univalence is provable?
- A type is contractible, if it has precisely one element:

Contr : Set \rightarrow Set
Contr $A=\Sigma[a: A]\left(\left(a^{\prime}: A\right) \rightarrow a \equiv a^{\prime}\right)$

- We define the inverse image of a function:

$$
\begin{aligned}
& { }^{-1}:\{A B: \operatorname{Set}\}(f: A \rightarrow B)(b: B) \rightarrow \text { Set } \\
& \left(f{ }^{-1}\right) b=\Sigma[a:-](f a \equiv b)
\end{aligned}
$$

- A function is a weak equivalence if the inverse image is everywhere contractible:

$$
\begin{aligned}
& \text { Weq : }\{A B: \text { Set }\}(f: A \rightarrow B) \rightarrow \text { Set } \\
& \text { Weq } f=\left(b:{ }_{-}\right) \rightarrow \operatorname{Contr}\left(\left(f^{-1}\right) b\right)
\end{aligned}
$$

- Two types are weakly equivalent, if there is a weak equivalence between them:

$$
\begin{aligned}
& -\approx _:(A B: \text { Set }) \rightarrow \text { Set } \\
& A \approx B=\Sigma[f:(A \rightarrow B)](\text { Weq } f)
\end{aligned}
$$

- Weak equivalence is reflexive:

$$
r e f l \approx:\{A: \operatorname{Set}\} \rightarrow A \approx A
$$

- Hence equality implies weak equivalence:

$$
\begin{aligned}
& \equiv \rightarrow \approx:\{A B: \text { Set }\} \rightarrow A \equiv B \rightarrow A \approx B \\
& \equiv \rightarrow \approx \text { refl }=\text { refl } \approx
\end{aligned}
$$

- Univalence is to postulate that the above map is a weak equivalence:

$$
\text { postulate unival : }\{A B: \text { Set }\} \rightarrow \text { Weq }(\equiv \rightarrow \approx\{A\}\{B\})
$$

