
Normalization by evaluation
for

�

Thorsten Altenkirch Tarmo Uustalu

University of Nottingham Tallinn Technical University

Normalization by evaluationfor

� � �

– p.1/21

Motivation

Implementations of typed -calculi to support
type-directed construction of certified,
correct programs.

Normalisation of evaluation (NbE) used in
the actual implementation of recent tools
such as Epigram.

Offers efficent implementations and
straightforward correctness arguments.

Normalization by evaluationfor

� � �

– p.2/21

Motivation

Implementations of typed

�

-calculi to support
type-directed construction of certified,
correct programs.

Normalisation of evaluation (NbE) used in
the actual implementation of recent tools
such as Epigram.

Offers efficent implementations and
straightforward correctness arguments.

Normalization by evaluationfor

� � �

– p.2/21

Motivation

Implementations of typed

�

-calculi to support
type-directed construction of certified,
correct programs.

Normalisation of evaluation (NbE) used in
the actual implementation of recent tools
such as Epigram.

Offers efficent implementations and
straightforward correctness arguments.

Normalization by evaluationfor

� � �

– p.2/21

Motivation

Implementations of typed

�

-calculi to support
type-directed construction of certified,
correct programs.

Normalisation of evaluation (NbE) used in
the actual implementation of recent tools
such as Epigram.

Offers efficent implementations and
straightforward correctness arguments.

Normalization by evaluationfor

� � �

– p.2/21

More motivation

Goal: make equality more extensional.
From �� to �� �.

Study simple calculi first - here
= simple types () + booleans ().

Discuss extensions to more interesting
systems.

Use type-theoretic methodology (on paper).

Here: Haskell as a poor man’s type theory.

In future: implementation within epigram.

Normalization by evaluationfor

� � �

– p.3/21

More motivation

Goal: make equality more extensional.
From �� to �� �.

Study simple calculi first - here

� � �

= simple types (

� �

) + booleans (

�

).

Discuss extensions to more interesting
systems.

Use type-theoretic methodology (on paper).

Here: Haskell as a poor man’s type theory.

In future: implementation within epigram.

Normalization by evaluationfor

� � �

– p.3/21

More motivation

Goal: make equality more extensional.
From �� to �� �.

Study simple calculi first - here

� � �

= simple types (

� �

) + booleans (

�

).

Discuss extensions to more interesting
systems.

Use type-theoretic methodology (on paper).

Here: Haskell as a poor man’s type theory.

In future: implementation within epigram.

Normalization by evaluationfor

� � �

– p.3/21

More motivation

Goal: make equality more extensional.
From �� to �� �.

Study simple calculi first - here

� � �

= simple types (

� �

) + booleans (

�

).

Discuss extensions to more interesting
systems.

Use type-theoretic methodology (on paper).

Here: Haskell as a poor man’s type theory.

In future: implementation within epigram.

Normalization by evaluationfor

� � �

– p.3/21

More motivation

Goal: make equality more extensional.
From �� to �� �.

Study simple calculi first - here

� � �

= simple types (

� �

) + booleans (

�

).

Discuss extensions to more interesting
systems.

Use type-theoretic methodology (on paper).

Here: Haskell as a poor man’s type theory.

In future: implementation within epigram.

Normalization by evaluationfor

� � �

– p.3/21

More motivation

Goal: make equality more extensional.
From �� to �� �.

Study simple calculi first - here

� � �

= simple types (

� �

) + booleans (

�

).

Discuss extensions to more interesting
systems.

Use type-theoretic methodology (on paper).

Here: Haskell as a poor man’s type theory.

In future: implementation within epigram.

Normalization by evaluationfor

� � �

– p.3/21

The simplest typed -calculus?

needs type-variables
not as simple as it looks!

, without type-variables
are equationally inconsistent.

without type-variables
the simplest (interesting) typed -calculus!

Normalization by evaluationfor

� � �

– p.4/21

The simplest typed -calculus?

� �

needs type-variables

not as simple as it looks!

, without type-variables
are equationally inconsistent.

without type-variables
the simplest (interesting) typed -calculus!

Normalization by evaluationfor

� � �

– p.4/21

The simplest typed -calculus?

� �

needs type-variables
not as simple as it looks!

, without type-variables
are equationally inconsistent.

without type-variables
the simplest (interesting) typed -calculus!

Normalization by evaluationfor

� � �

– p.4/21

The simplest typed -calculus?

� �

needs type-variables
not as simple as it looks!

� � �

,

� � �

without type-variables

are equationally inconsistent.

without type-variables
the simplest (interesting) typed -calculus!

Normalization by evaluationfor

� � �

– p.4/21

The simplest typed -calculus?

� �

needs type-variables
not as simple as it looks!

� � �

,

� � �

without type-variables
are equationally inconsistent.

without type-variables
the simplest (interesting) typed -calculus!

Normalization by evaluationfor

� � �

– p.4/21

The simplest typed -calculus?

� �

needs type-variables
not as simple as it looks!

� � �

,

� � �

without type-variables
are equationally inconsistent.

� � �

without type-variables

the simplest (interesting) typed -calculus!

Normalization by evaluationfor

� � �

– p.4/21

The simplest typed -calculus?

� �

needs type-variables
not as simple as it looks!

� � �

,

� � �

without type-variables
are equationally inconsistent.

� � �

without type-variables
the simplest (interesting) typed

�

-calculus!

Normalization by evaluationfor

� � �

– p.4/21

�

in a nutshell

Categorically:

Normalization by evaluationfor

� � �

– p.5/21

�

in a nutshell

��� � ���
�	�
	� �� 	� �

�� � �
 � � � � � � �

� � � � � � � � �

Categorically:

Normalization by evaluationfor

� � �

– p.5/21

�

in a nutshell

��� � ���
�	�
	� �� 	� �

�� � �
 � � � � � � �

� � � � � � � � �

� � ��� � � � � � � �� � � �

� �

� � �	�
 � � � � � � �� � � �

� �

� � � ��� � � � �
 � � �� �

� � � �

� � � � � � � �

� �� �

� � � � � �
� � � �

� �� �

Categorically:

Normalization by evaluationfor

� � �

– p.5/21

�

in a nutshell

��� � ���
�	�
	� �� 	� �

�� � �
 � � � � � � �

� � � � � � � � �

� � ��� � � � � � � �� � � �

� �

� � �	�
 � � � � � � �� � � �

� �

� � � ��� � � � �
 � � �� �

� � � �

� � � � � � � �

� �� �

� � � � � �
� � � �

� �� �

Categorically:

� � �� � � � � �
� � � � � � ��
� � � � � � ��
� � �

Normalization by evaluationfor

� � �

– p.5/21

Example

� � �� � � � �	� �
� �	� �
 �� �	� �
 � �

��� � �� � � � �	� �
� �	� �
 �� �	� �
 � � � � �

� ��� � �� � � � �	� �
� �	� �
 �� �	� �
 � � � � � � � �

� � ���� ��� � �� � � ��� � �� � ��� � � � � � � � � � � ��� � � � � � � � � �

Normalization by evaluationfor

� � �

– p.6/21

Example

� � �� � � � �	� �
� �	� �
 �� �	� �
 � �

��� � �� � � � �	� �
� �	� �
 �� �	� �
 � � � � �

� ��� � �� � � � �	� �
� �	� �
 �� �	� �
 � � � � � � � �

� � ���� ��� � �� � � ��� � �� � ��� � � � � � � � � � � ��� � � � � � � � � �

� � �� � �� � ��� � ��

Normalization by evaluationfor

� � �

– p.6/21

Example

� � �� � � � �	� �
� �	� �
 �� �	� �
 � �

��� � �� � � � �	� �
� �	� �
 �� �	� �
 � � � � �

� ��� � �� � � � �	� �
� �	� �
 �� �	� �
 � � � � � � � �

� � ���� ��� � �� � � ��� � �� � ��� � � � � � � � � � � ��� � � � � � � � � �

� � �� � �� � ��� � ��

� � �� �� � � ��� � ��

Normalization by evaluationfor

� � �

– p.6/21

Why ?

Symmetrically, we can show that , and hence

Normalization by evaluationfor

� � �

– p.7/21

Why ?

� � � � � ��� � � � � �	
 � � � � ��� � � � � � � � ��� � � � � � � � � �
�� � � �

�	
 � � � � ��� � � � �� � � � � � � �
 � � � �

�	
 � � � � ��� � � � �� � � � � � � � �
 � � � � � �� � � � � � �
 � � � �

�	
 � � � � ��� � � � �� � � � � � � � �
 � � � �
�� � �
�� � �

�	
 � � � � ��� � � � �� � � �
 � �

�	
 � ��� � �

Symmetrically, we can show that

� � � � � �
 � � � � � 	
 � �
 � �, and hence

� �� ��� �
� � � �� � � � �� � � ��� �� � � � � � � � � � �

�	
 � � �� � � � �� � � ��� �� � � � � � � � � � � � �� � � � � � � � � � � � �
 � � � � �

�	
 � � �� � � � �� � � ��� �� � � � � � � � �� � � � � � �
 � � �

�	
 � � �� � � � �� � � ��� �� � � � �

� � �� �

Normalization by evaluationfor

� � �

– p.7/21

A simpler proof ?

Why does this hold for ?
Corollary of our NbE construction.

Normalization by evaluationfor

� � �

– p.8/21

A simpler proof ?

� � � � � ��� � � ��
��� �
	 � �

Why does this hold for ?
Corollary of our NbE construction.

Normalization by evaluationfor

� � �

– p.8/21

A simpler proof ?

� � � � � ��� � � ��
��� �
	 � �

� � � � � � � � �

��� � � � � �� � � � � � � �� � � � ��� �
	 � �

Why does this hold for ?
Corollary of our NbE construction.

Normalization by evaluationfor

� � �

– p.8/21

A simpler proof ?

� � � � � ��� � � ��
��� �
	 � �

� � � � � � � � �

��� � � � � �� � � � � � � �� � � � ��� �
	 � �

� � � � � � � � � �
�

�

�

Why does this hold for ?
Corollary of our NbE construction.

Normalization by evaluationfor

� � �

– p.8/21

A simpler proof ?

� � � � � ��� � � ��
��� �
	 � �

� � � � � � � � �

��� � � � � �� � � � � � � �� � � � ��� �
	 � �

� � � � � � � � � �
�

�

�

Why does this hold for � � � ?

Corollary of our NbE construction.

Normalization by evaluationfor

� � �

– p.8/21

A simpler proof ?

� � � � � ��� � � ��
��� �
	 � �

� � � � � � � � �

��� � � � � �� � � � � � � �� � � � ��� �
	 � �

� � � � � � � � � �
�

�

�

Why does this hold for � � � ?
Corollary of our NbE construction.

Normalization by evaluationfor

� � �

– p.8/21

Another corollary: normalisation

Main> once

Lam (Bool :-> Bool) "f" (Lam Bool "x" (App (Var "f") (Var "x")))

Main> :t nf

nf :: Ty -> Tm -> Tm

Main> :t nf’

nf’ :: Tm -> Maybe (Ty,Tm)

Main> nf’ once

Just ((Bool :-> Bool) :-> (Bool :-> Bool),Lam (Bool :-> Bool) "x"

(If (App (Var "x") TTrue) (If (App (Var "x") TFalse) (Lam Bool "x"

TTrue) (Lam Bool "x" (Var "x"))) (If (App (Var "x") TFalse) (Lam

Bool "x" (If (Var "x") TFalse TTrue)) (Lam Bool "x" TFalse))))

Main> nf’ thrice

Just ((Bool :-> Bool) :-> (Bool :-> Bool),Lam (Bool :-> Bool) "x"

(If (App (Var "x") TTrue) (If (App (Var "x") TFalse) (Lam Bool "x"

TTrue) (Lam Bool "x" (Var "x"))) (If (App (Var "x") TFalse) (Lam

Bool "x" (If (Var "x") TFalse TTrue)) (Lam Bool "x" TFalse))))

Normalization by evaluationfor

� � �

– p.9/21

NbE : the basic idea

1. Define a semantic interpretation

2. Invert evaluation, i.e. define

3. Now define

Normalization by evaluationfor

� � �

– p.10/21

NbE : the basic idea

1. Define a semantic interpretation�� �

� � � � � � �

� �� � �

� � � � � � �

2. Invert evaluation, i.e. define

3. Now define

Normalization by evaluationfor

� � �

– p.10/21

NbE : the basic idea

1. Define a semantic interpretation�� �

� � � � � � �

� �� � �

� � � � � � �

2. Invert evaluation, i.e. define

� � � ��� � � � � � �	� � � � � � � � � � � �� �
�

3. Now define

Normalization by evaluationfor

� � �

– p.10/21

NbE : the basic idea

1. Define a semantic interpretation�� �

� � � � � � �

� �� � �

� � � � � � �

2. Invert evaluation, i.e. define

� � � ��� � � � � � �	� � � � � � � � � � � �� �
�

3. Now define
�

� � � � � � � � � � � � �

Normalization by evaluationfor

� � �

– p.10/21

�

�
� � �� �
�

� �� � �

�
� � � �
� �

is effective because our development takes
place in a constructive set theory (ala
Martin-Löf).
The effectiveness of is witnessed by an
implementation in Haskell.

Normalization by evaluationfor

� � �

– p.11/21

�

�
� � �� �
�

� �� � �

�
� � � �
� �

�
�

is effective because our development takes
place in a constructive set theory (ala
Martin-Löf).

The effectiveness of is witnessed by an
implementation in Haskell.

Normalization by evaluationfor

� � �

– p.11/21

�

�
� � �� �
�

� �� � �

�
� � � �
� �

�
�

is effective because our development takes
place in a constructive set theory (ala
Martin-Löf).
The effectiveness of �

�

is witnessed by an
implementation in Haskell.

Normalization by evaluationfor

� � �

– p.11/21

Implementation in Haskell

Haskell-types can only approximate the intended
types, e.g.

�
� � � � ���

� � � �	� �

is implemented as
nf :: Ty -> Tm -> Tm

Normalization by evaluationfor

� � �

– p.12/21

The semantics

� 	� �
 � � � � � �

� ��� � � ��
��� �	 � �

� � �
� � � � � �

�
�

Implementation in Haskell
data El = STrue | SFalse | SLam Ty (El -> El)

Normalization by evaluationfor

� � �

– p.13/21

Decision trees

We use decision trees to enumerate types.

where

We define by simultanous recursion over

Normalization by evaluationfor

� � �

– p.14/21

Decision trees

We use decision trees to enumerate types.

� � ���

��� � � � � � where

� � 	 �

��� � � ��� � � �

�� � � ��� � � �

�� � ��� � � � � ��� � � �

We define by simultanous recursion over

Normalization by evaluationfor

� � �

– p.14/21

Decision trees

We use decision trees to enumerate types.

� � ���

��� � � � � � where

� � 	 �

��� � � ��� � � �

�� � � ��� � � �

�� � ��� � � � � ��� � � �

We define by simultanous recursion over

� � ���

� � � � � � ��� � � �

� � � � � � � � � � � � � � � � �
 �

Normalization by evaluationfor

� � �

– p.14/21

Decision tree for � � � �

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
� �

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
� �

�� �� �	
�� �� �

����� � �� � � ��� � � � ���
 � �� �

�
�� � �	 � �� �

�
�� �� � 	 � �� �

� � �� � 	 � �� �

�
�� �� �	
�� �� ��
�� � �	
�� �� �
����� �

Normalization by evaluationfor

� � �

– p.15/21

�

We also implement

�� � � � 	� �
 �� �� � ��� � � � � � �� � ��

�
�

� �� �� � � � �

where �� � �� expresses that the length of ��

matches the depth of

�� .

Normalization by evaluationfor

� � �

– p.16/21

Implementing � � ���

� � � � �

� � � � � � � � � �

Note that we need only one bound variable!

Normalization by evaluationfor

� � �

– p.17/21

Implementing � � ���

� � � � �

� � � � � � � � � �

� � � � � �� �
 ��� � � � � � 	�

� � � � � �	� �
�
 � �� � � ��� ��� �

Note that we need only one bound variable!

Normalization by evaluationfor

� � �

– p.17/21

Implementing � � ���

� � � � �

� � � � � � � � � �

� � � � � �� �
 ��� � � � � � 	�

� � � � � �	� �
�
 � �� � � ��� ��� �

� � � � � �� � � �

Note that we need only one bound variable!

Normalization by evaluationfor

� � �

– p.17/21

Implementing � � ���

� � � � �

� � � � � � � � � �

� � � � � �� �
 ��� � � � � � 	�

� � � � � �	� �
�
 � �� � � ��� ��� �

� � � � � �� � � � � � ��� ��� ��� 	
 �� � � � � � � �� � � �� � � 	
 � �

���� �� � � � � � � �� � � � � � �� �� �� � � � �

Note that we need only one bound variable!

Normalization by evaluationfor

� � �

– p.17/21

Implementing � � ���

� � � � �

� � � � � � � � � �

� � � � � �� �
 ��� � � � � � 	�

� � � � � �	� �
�
 � �� � � ��� ��� �

� � � � � �� � � � � � ��� ��� ��� 	
 �� � � � � � � �� � � �� � � 	
 � �

���� �� � � � � � � �� � � � � � �� �� �� � � � �

Note that we need only one bound variable!
Normalization by evaluationfor

� � �

– p.17/21

Correctness of � � ���

How do we show

�� �

� � � ��� � � � � �� �
�

�

Normalization by evaluationfor

� � �

– p.18/21

Logical relations

Fundamental theorem:

Main lemma:

Normalization by evaluationfor

� � �

– p.19/21

Logical relations

� � ���

� � � �� � � 	 �
 �� �

Fundamental theorem:

Main lemma:

Normalization by evaluationfor

� � �

– p.19/21

Logical relations

� � ���

� � � �� � � 	 �
 �� �

� � �� �
 ��� � � � � �� �
� � 	�

� � �� �

 � �� � � � �� �
��� ��� �

� � �� � � � � ��� � �� � ��� � � � � � � �

Fundamental theorem:

Main lemma:

Normalization by evaluationfor

� � �

– p.19/21

Logical relations

� � ���

� � � �� � � 	 �
 �� �

� � �� �
 ��� � � � � �� �
� � 	�

� � �� �

 � �� � � � �� �
��� ��� �

� � �� � � � � ��� � �� � ��� � � � � � � �

Fundamental theorem:
� � �

� � � 	 �

Main lemma:

Normalization by evaluationfor

� � �

– p.19/21

Logical relations

� � ���

� � � �� � � 	 �
 �� �

� � �� �
 ��� � � � � �� �
� � 	�

� � �� �

 � �� � � � �� �
��� ��� �

� � �� � � � � ��� � �� � ��� � � � � � � �

Fundamental theorem:
� � �

� � � 	 �

Main lemma:
� � � �

� �� � � � � � � �

Normalization by evaluationfor

� � �

– p.19/21

Further work

Extend the construction to
(almost done).

Extend the construction to
(finite Type Theory)
Useful as a hardware description language

Use BDDs instead of Decision Trees to
improve efficiency.

Can we extend this approach to type
variables?

Normalization by evaluationfor

� � �

– p.20/21

Further work

Extend the construction to

� � �� ��
(almost done).

Extend the construction to
(finite Type Theory)
Useful as a hardware description language

Use BDDs instead of Decision Trees to
improve efficiency.

Can we extend this approach to type
variables?

Normalization by evaluationfor

� � �

– p.20/21

Further work

Extend the construction to

� � �� ��
(almost done).

Extend the construction to
� �� �� �

(finite Type Theory)
Useful as a hardware description language

Use BDDs instead of Decision Trees to
improve efficiency.

Can we extend this approach to type
variables?

Normalization by evaluationfor

� � �

– p.20/21

Further work

Extend the construction to

� � �� ��
(almost done).

Extend the construction to
� �� �� �

(finite Type Theory)
Useful as a hardware description language

Use BDDs instead of Decision Trees to
improve efficiency.

Can we extend this approach to type
variables?

Normalization by evaluationfor

� � �

– p.20/21

Further work

Extend the construction to

� � �� ��
(almost done).

Extend the construction to
� �� �� �

(finite Type Theory)
Useful as a hardware description language

Use BDDs instead of Decision Trees to
improve efficiency.

Can we extend this approach to type
variables?

Normalization by evaluationfor

� � �

– p.20/21

Related Work
Neil Ghani
Adjoint Rewriting
PhD, 1995

Thorsten Altenkirch,Peter Dybjer,
Martin Hofmann,Phil Scott
Normalization by evaluation for typed lambda
calculus with coproducts
LICS 2001

Vincent Balat
Une étude des sommes fortes :
isomorphismes et formes normales
PhD thesis, 2002

Normalization by evaluationfor

� � �

– p.21/21

	Motivation
	More motivation
	The simplest typed $lambda $-calculus?
	$lamtwo $ in a nutshell
	Example
	Why ?
	A simpler proof ?
	Another emph {corollary}: normalisation
	NbE : the basic idea
	$
f $
	Implementation in Haskell
	The semantics
	Decision trees
	Decision tree for $Bool 	o Bool $
	$�ind $
	Implementing $qquote $
	Correctness of $qquote $
	Logical relations
	Further work
	Related Work

