Normalization by evaluation for $\lambda^{\rightarrow 2}$

Thorsten Altenkirch Tarmo Uustalu
University of Nottingham Tallinn Technical University

Motivation

Motivation

- Implementations of typed λ-calculi to support type-directed construction of certified, correct programs.

Motivation

- Implementations of typed λ-calculi to support type-directed construction of certified, correct programs.
- Normalisation of evaluation (NbE) used in the actual implementation of recent tools such as Epigram.

Motivation

- Implementations of typed λ-calculi to support type-directed construction of certified, correct programs.
- Normalisation of evaluation (NbE) used in the actual implementation of recent tools such as Epigram.
- Offers efficent implementations and straightforward correctness arguments.

More motivation

Goal: make equality more extensional. From $=\beta$ to $=\beta \eta$.

More motivation

- Goal: make equality more extensional. From $=\beta$ to $=\beta \eta$.
- Study simple calculi first - here $\lambda^{\rightarrow 2}$
$=$ simple types $\left(\lambda^{\rightarrow}\right)+$ booleans (2).

More motivation

- Goal: make equality more extensional. From $=\beta$ to $=\beta \eta$.
- Study simple calculi first - here $\lambda^{\rightarrow 2}$
$=$ simple types $\left(\lambda^{\rightarrow}\right)+$ booleans (2).
- Discuss extensions to more interesting systems.

More motivation

- Goal: make equality more extensional. From $=\beta$ to $=\beta \eta$.
- Study simple calculif first - here $\lambda^{\rightarrow 2}$
$=$ simple types $(\lambda \rightarrow)+$ booleans (2).
- Discuss extensions to more interesting systems.
- Use type-theoretic methodology (on paper).

More motivation

- Goal: make equality more extensional. From $=\beta$ to $=\beta \eta$.
- Study simple calculif first - here $\lambda^{\rightarrow 2}$
$=$ simple types $\left(\lambda^{\rightarrow}\right)+$ booleans (2).
- Discuss extensions to more interesting systems.
- Use type-theoretic methodology (on paper).
- Here: Haskell as a poor man's type theory.

More motivation

- Goal: make equality more extensional. From $=\beta$ to $=\beta \eta$.
- Study simple calculif first - here $\lambda^{\rightarrow 2}$
$=$ simple types $\left(\lambda^{\rightarrow}\right)+$ booleans (2).
- Discuss extensions to more interesting systems.
- Use type-theoretic methodology (on paper).
- Here: Haskell as a poor man's type theory.
- In future: implementation within epigram.

The simplest typed λ-calculus?

The simplest typed λ-calculus?

- λ^{\rightarrow} needs type-variables

The simplest typed λ-calculus?

- λ^{\rightarrow} needs type-variables not as simple as it looks!

The simplest typed λ-calculus?

- λ^{\rightarrow} needs type-variables not as simple as it looks!
- $\lambda^{\rightarrow 0}, \lambda^{\rightarrow 1}$ without type-variables

The simplest typed λ-calculus?

- λ^{\rightarrow} needs type-variables not as simple as it looks!
- $\lambda^{\rightarrow 0}, \lambda^{\rightarrow 1}$ without type-variables are equationally inconsistent.

The simplest typed λ-calculus?

- $\lambda \rightarrow$ needs type-variables not as simple as it looks!
- $\lambda^{\rightarrow 0}, \lambda^{\rightarrow 1}$ without type-variables are equationally inconsistent.
- $\lambda^{\rightarrow 2}$ without type-variables

The simplest typed λ-calculus?

- $\lambda \rightarrow$ needs type-variables not as simple as it looks!
- $\lambda^{\rightarrow 0}, \lambda^{\rightarrow 1}$ without type-variables are equationally inconsistent.
- $\lambda^{\rightarrow 2}$ without type-variables
the simplest (interesting) typed λ-calculus!

$\lambda^{\rightarrow 2}$ in a nutshell

$\lambda^{\rightarrow 2}$ in a nutshell

True, False : Bool
$\frac{t: \text { Bool } u_{0}, u_{1}: \sigma}{\text { If } t u_{0} u_{1}: \sigma}$

$\lambda^{\rightarrow 2}$ in a nutshell

$\overline{\text { True, False : Bool }} \frac{\text { If } t u_{0} u_{1}: \sigma}{u_{1}: \sigma}$
$\left.\begin{array}{lll}\text { If True } u_{0} u_{1} & =\beta \eta u_{0} & (\beta) \\ \text { If False } u_{0} u_{1} & =\beta \eta u_{1} & (\beta) \\ \text { If } t \text { True False } & =\beta \eta t & (\eta) \\ f\left(\text { If } t u_{0} u_{1}\right) & =\beta \eta & \text { If } t\left(f u_{0}\right)\left(f u_{1}\right)\end{array}\right)(\xi)$

$\lambda^{\rightarrow 2}$ in a nutshell

$$
\begin{array}{llll}
\hline \text { True, False : Bool } & & t: \text { Bool } u_{0}, u_{1}: \sigma \\
& & \\
& & \\
\text { If } t u_{0} u_{1}: \sigma \\
\text { If True } u_{0} u_{1} & =\beta_{\eta} & u_{0} & (\beta) \\
\text { If False } u_{0} u_{1} & =_{\beta \eta} & u_{1} & (\eta) \\
\text { If } t \text { True False } & =\beta_{\eta} & t & (\xi) \\
f\left(\text { If } t u_{0} u_{1}\right) & =_{\beta \eta} & \text { If } t\left(f u_{0}\right)\left(f u_{1}\right) & (\xi)
\end{array}
$$

Categorically:

$\operatorname{Hom}(\Gamma \times \operatorname{Bool}, \sigma) \simeq \operatorname{Hom}(\Gamma, \sigma) \times \operatorname{Hom}(\Gamma, \sigma)$

Example

$$
\begin{aligned}
& \text { once }=\lambda f^{\mathrm{Bool} \rightarrow \mathrm{Bool}} \lambda x^{\mathrm{Bool}} f x \\
& \text { twice }=\lambda f^{\mathrm{Bool} \rightarrow \mathrm{Bool}} \lambda x^{\mathrm{Bool}} f(f x) \\
& \text { thrice }=\lambda f^{\mathrm{Bool} \rightarrow \mathrm{Bool}} \lambda x^{\mathrm{Bool}} f(f(f x)) \\
& \text { once, twice, thrice }:(\text { Bool } \rightarrow \text { Bool }) \rightarrow(\text { Bool } \rightarrow \text { Bool })
\end{aligned}
$$

Example

$$
\begin{aligned}
\text { once } & =\lambda f^{\mathrm{Bool} \rightarrow \mathrm{Bool}} \lambda x^{\mathrm{Bool}} f x \\
\text { twice } & =\lambda f^{\mathrm{Bool} \rightarrow \mathrm{Bool}} \lambda x^{\mathrm{Bool}} f(f x) \\
\text { thrice } & =\lambda f^{\mathrm{Bool} \rightarrow \mathrm{Bool}} \lambda x^{\mathrm{Bool}} f(f(f x))
\end{aligned}
$$

once, twice, thrice $:($ Bool \rightarrow Bool $) \rightarrow($ Bool \rightarrow Bool $)$ once $\neq \beta \eta$ twice

Example

$$
\begin{aligned}
\text { once } & =\lambda f^{\mathrm{Bool} \rightarrow \mathrm{Bool}} \lambda x^{\mathrm{Bool}} f x \\
\text { twice } & =\lambda f^{\mathrm{Bool} \rightarrow \mathrm{Bool}} \lambda x^{\mathrm{Bool}} f(f x) \\
\text { thrice } & =\lambda f^{\mathrm{Bool} \rightarrow \mathrm{Bool}} \lambda x^{\mathrm{Bool}} f(f(f x))
\end{aligned}
$$

once, twice, thrice $:($ Bool \rightarrow Bool $) \rightarrow($ Bool \rightarrow Bool $)$ once $\neq \beta \eta$ twice
once $={ }_{\beta \eta}$ thrice

Why ?

Why ?

$$
\begin{array}{rlrl}
f(f(f \text { True })) & =\beta \eta & & \text { If }(f \text { True })(f(f \text { True }))(f(f \text { False })) \\
& =\beta_{\beta} & & \text { If }(f \text { True }) \text { True }(f(f \text { False })) \\
& =\beta \eta & \text { If }(f \text { True }) \text { True (If }(f \text { False })(f \text { True })(f \text { False })) \\
& =\beta_{\beta \eta} & & \text { If }(f \text { True }) \text { True (If }(f \text { False }) \text { False False }) \\
& =\beta_{\eta} & & \text { If }(f \text { True }) \text { True False } \\
& =\beta \eta & f \text { True }
\end{array}
$$

Symmetrically, we can show that $f(f(f$ False $))={ }_{\beta \eta} f$ False, and hence

```
thrice
    = \lambdaff
    =\beta\eta }\quad\lambda\mp@subsup{f}{}{\textrm{Bool}->\textrm{Bool}}\lambda\mp@subsup{x}{}{\textrm{Bool}}\operatorname{If}x(f(f(f\mathrm{ True })))(f(f(f\mathrm{ False }))
```



```
    =\beta\eta \lambdaff
    = once
```


A simpler proof ?

A simpler proof ?

Bool $=\{$ true, false $\}$

A simpler proof?

$$
\text { Bool }=\{\text { true }, \text { false }\}
$$

$\mathrm{Bool} \rightarrow \mathrm{Bool}=$

$$
\{x \mapsto \text { true }, x \mapsto x, x \mapsto \neg x, x \mapsto \text { false }\}
$$

A simpler proof?

Bool $=\{$ true, false $\}$

$\mathrm{Bool} \rightarrow \mathrm{Bool}=$

$$
\begin{gathered}
\{x \mapsto \text { true }, x \mapsto x, x \mapsto \neg x, x \mapsto \text { false }\} \\
\forall f \in \mathrm{Bool} \rightarrow \text { Bool. } f^{3}=f
\end{gathered}
$$

A simpler proof?

$$
\text { Bool }=\{\text { true }, \text { false }\}
$$

Bool $\rightarrow \mathrm{Bool}=$

$$
\begin{gathered}
\{x \mapsto \text { true }, x \mapsto x, x \mapsto \neg x, x \mapsto \text { false }\} \\
\forall f \in \mathrm{Bool} \rightarrow \text { Bool. } f^{3}=f
\end{gathered}
$$

Why does this hold for $=_{\beta \eta}$?

A simpler proof?

$$
\text { Bool }=\{\text { true }, \text { false }\}
$$

$\mathrm{Bool} \rightarrow \mathrm{Bool}=$

$$
\begin{gathered}
\{x \mapsto \text { true }, x \mapsto x, x \mapsto \neg x, x \mapsto \text { false }\} \\
\forall f \in \mathrm{Bool} \rightarrow \text { Bool. } f^{3}=f
\end{gathered}
$$

Why does this hold for $=_{\beta \eta}$? Corollary of our NbE construction.

Another corollary: normalisation

```
Main> once
Lam (Bool :-> Bool) "f" (Lam Bool "x" (App (Var "f") (Var "x")))
Main> :t nf
nf :: Ty -> Tm -> Tm
Main> :t nf'
nf' :: Tm -> Maybe (Ty,Tm)
Main> nf' once
Just ((Bool :-> Bool) :-> (Bool :-> Bool), Lam (Bool :-> Bool) "x"
(If (App (Var "x") TTrue) (If (App (Var "x") TFalse) (Lam Bool "x"
    TTrue) (Lam Bool "x" (Var "x"))) (If (App (Var "x") TFalse) (Lam
Bool "x" (If (Var "x") TFalse TTrue)) (Lam Bool "x" TFalse))))
Main> nf' thrice
Just ((Bool :-> Bool) :-> (Bool :-> Bool), Lam (Bool :-> Bool) "x"
(If (App (Var "x") TTrue) (If (App (Var "x") TFalse) (Lam Bool "x"
TTrue) (Lam Bool "x" (Var "x"))) (If (App (Var "x") TFalse) (Lam
Bool "x" (If (Var "x") TFalse TTrue)) (Lam Bool "x" TFalse))))
```


NbE : the basic idea

NbE : the basic idea

1. Define a semantic interpretation

$$
\frac{t: \sigma}{\llbracket t \rrbracket \in \llbracket \sigma \rrbracket} \frac{t=\beta_{\eta} u}{\llbracket t \rrbracket}=\llbracket u \rrbracket
$$

NbE : the basic idea

1. Define a semantic interpretation

$$
\frac{t: \sigma}{\llbracket t \rrbracket \in \llbracket \sigma \rrbracket} \quad \frac{t=\beta_{\eta} u}{\lfloor t \rrbracket=\llbracket u \rrbracket}
$$

2. Invert evaluation, i.e. define

$$
\text { quote }^{\sigma} \in \llbracket \sigma \rrbracket \rightarrow \operatorname{Tm} \sigma \quad \text { quote }^{\sigma} \llbracket t \rrbracket={ }_{\beta \eta} t
$$

NbE : the basic idea

1. Define a semantic interpretation

$$
\frac{t: \sigma}{\llbracket t \rrbracket \in \llbracket \sigma \rrbracket} \frac{t=\beta_{\eta} u}{\llbracket t \rrbracket}=\llbracket u \rrbracket
$$

2. Invert evaluation, i.e. define

$$
\text { quote }^{\sigma} \in \llbracket \sigma \rrbracket \rightarrow \operatorname{Tm} \sigma \quad \text { quote }^{\sigma} \llbracket t \rrbracket={ }_{\beta \eta} t
$$

3. Now define

$$
\mathrm{nf}^{\sigma} t=\text { quote }^{\sigma} \llbracket t \rrbracket
$$

$\overline{\mathrm{nf} t=\beta_{\eta} t} \quad \frac{t=\beta_{\eta} u}{\mathrm{nf} t=\mathrm{nf} u}$

nf

$$
\overline{\mathrm{nf} t=\beta_{\eta} t} \quad \frac{t=\beta_{\eta} u}{\mathrm{nf} t=\mathrm{nf} u}
$$

nf is effective because our development takes place in a constructive set theory (ala Martin-Löf).

nf

$$
\overline{\mathrm{nf} t={ }_{\beta \eta} t} \quad \frac{t={ }_{\beta \eta} u}{\mathrm{nf} t=\mathrm{nf} u}
$$

nf is effective because our development takes place in a constructive set theory (ala Martin-Löf).
The effectiveness of $n f$ is witnessed by an implementation in Haskell.

Implementation in Haskell

Haskell-types can only approximate the intended types, e.g.

$$
\mathrm{nf} \in \Pi_{\sigma \in \mathrm{Ty}} \operatorname{Tm} \sigma \rightarrow \operatorname{Tm} \sigma
$$

is implemented as

$$
\text { nf : : Ty } \rightarrow \mathrm{Tm} \rightarrow \mathrm{Tm}
$$

The semantics

$$
\begin{aligned}
\llbracket \text { Bool } \rrbracket & =\text { Bool } \\
& =\{\text { true, false }\} \\
\llbracket \sigma \rightarrow \tau \rrbracket & =\llbracket \sigma \rrbracket \rightarrow \llbracket \tau \rrbracket
\end{aligned}
$$

Implementation in Haskell

data $\mathrm{El}=$ STrue \mid SFalse | SLam Ty (El -> El)

Decision trees

Decision trees

- We use decision trees to enumerate types.

$$
\frac{\sigma \in \operatorname{Ty}}{\text { Tree } \sigma \in \star} \text { where } \frac{x \in \llbracket \sigma \rrbracket}{\text { Val } x \in \operatorname{Tree} \sigma} \quad \frac{l, r \in \operatorname{Tree} \sigma}{\text { Choice } l r \in \operatorname{Tree} \sigma}
$$

Decision trees

- We use decision trees to enumerate types.

$$
\frac{\sigma \in \operatorname{Ty}}{\text { Tree } \sigma \in \star} \text { where } \frac{x \in \llbracket \sigma \rrbracket}{\text { Val } x \in \text { Tree } \sigma} \quad \frac{l, r \in \text { Tree } \sigma}{\text { Choice } l r \in \text { Tree } \sigma}
$$

- We define by simultanous recursion over $\sigma \in \mathrm{Ty}$

$$
\begin{aligned}
\text { enum } \sigma & \in \text { Tree } \sigma \\
\text { questions } \sigma & \in \llbracket \sigma \rrbracket \rightarrow \llbracket \mathrm{Bool} \rrbracket
\end{aligned}
$$

Decision tree for Bool \rightarrow Bool

find

- We also implement

$$
\frac{\text { as } \in[\llbracket \mathrm{Bool} \rrbracket] \quad \text { ts } \in \operatorname{Tree} \llbracket \sigma \rrbracket \quad \text { as } \diamond t s}{\text { find as } t s \in \llbracket \sigma \rrbracket}
$$

where as \diamond ts expresses that the length of as matches the depth of $t s$.

Implementing quote

$$
\frac{x \in \llbracket \sigma \rrbracket}{\text { quote }^{\sigma} \in \operatorname{Tm} \sigma}
$$

Implementing quote

$$
\frac{x \in \llbracket \sigma \rrbracket}{\text { quote }^{\sigma} \in \operatorname{Tm} \sigma}
$$

quote ${ }^{\mathrm{Bool}}$ true $=$ True
quote ${ }^{\text {Bool }}$ false $=$ False

Implementing quote

$$
\frac{x \in \llbracket \sigma \rrbracket}{\text { quote }^{\sigma} \in \operatorname{Tm} \sigma}
$$

quote ${ }^{\mathrm{Bool}}$ true $=$ True
quote ${ }^{\text {Bool }}$ false $=$ False

$$
\text { quote }^{\sigma \rightarrow \tau} f=
$$

Implementing quote

$$
\frac{x \in \llbracket \sigma \rrbracket}{\text { quote }{ }^{\sigma} \in \operatorname{Tm} \sigma}
$$

$$
\begin{aligned}
\text { quote }^{\mathrm{Bool}} \text { true } & =\text { True } \\
\text { quote }{ }^{\mathrm{Bool}} \text { false } & =\text { False }
\end{aligned}
$$

$$
\begin{aligned}
& \text { quote }^{\sigma \rightarrow \tau} f=\lambda \mathbf{x}^{\sigma} . \text { find }_{\text {syn }}\left[q \mathbf{x} \mid q \leftarrow \text { questions }_{\text {syn }} \sigma\right] \\
&\left(\text { fmap }((\text { quote } \tau) \cdot f)\left(\text { enum }_{\text {set }} \sigma\right)\right)
\end{aligned}
$$

Implementing quote

$$
\frac{x \in \llbracket \sigma \rrbracket}{\text { quote }^{\sigma} \in \operatorname{Tm} \sigma}
$$

$$
\begin{aligned}
\text { quote }^{\mathrm{Bool}} \text { true } & =\text { True } \\
\text { quote }{ }^{\mathrm{Bool}} \text { false } & =\text { False }
\end{aligned}
$$

$$
\begin{aligned}
\text { quote }^{\sigma \rightarrow \tau} f=\lambda \mathbf{x}^{\sigma} . \text { find }_{\text {syn }}[& \left.q \mathbf{x} \mid q \leftarrow \text { questions }_{\text {syn }} \sigma\right] \\
& \left(\text { fmap }((\text { quote } \tau) \cdot f)\left(\text { enum }_{\text {set }} \sigma\right)\right)
\end{aligned}
$$

Note that we need only one bound variable!

Correctness of quote

How do we show

$$
\frac{t: \sigma}{\text { quote }^{\sigma} \llbracket t \rrbracket=\beta_{\eta} t} ?
$$

Logical relations

Logical relations

$$
\frac{\sigma \in \operatorname{Ty}}{\mathrm{R}^{\sigma} \subseteq \operatorname{Tm} \sigma \times \llbracket \sigma \rrbracket_{\text {set }}}
$$

Logical relations

$$
\begin{aligned}
& \frac{\sigma \in \mathrm{Ty}}{\left.\mathrm{R}^{\sigma} \subseteq \operatorname{Tm} \sigma \times \llbracket \sigma\right]_{\text {set }}} \\
& t \mathrm{R}^{\mathrm{Bool}} \text { true }=t==_{\beta \eta} \text { True } \\
& t \mathrm{R}^{\mathrm{Bool}} \text { false }=t={ }_{\beta \eta} \text { False } \\
& t \mathrm{R}^{\sigma: \rightarrow \tau} f=\forall u \mathrm{R}^{\sigma} d \rightarrow \text { App } t u \mathrm{R}^{\tau} f d
\end{aligned}
$$

Logical relations

$$
\begin{aligned}
& \frac{\sigma \in \mathrm{Ty}}{\left.\mathrm{R}^{\sigma} \subseteq \operatorname{Tm} \sigma \times \llbracket \sigma\right]_{\text {set }}} \\
& t \mathrm{R}^{\mathrm{Bool}} \text { true }=t=_{\beta \eta} \text { True } \\
& t \mathrm{R}^{\mathrm{Bool}} \text { false }=t={ }_{\beta \eta} \text { False } \\
& t \mathrm{R}^{\sigma: \rightarrow \tau} f=\forall u \mathrm{R}^{\sigma} d \rightarrow \text { App } t u \mathrm{R}^{\tau} f d
\end{aligned}
$$

Fundamental theorem: $\frac{t: \sigma}{t R^{\sigma}[t]}$

Logical relations

$$
\begin{aligned}
& \frac{\sigma \in \mathrm{Ty}}{\left.\mathrm{R}^{\sigma} \subseteq \operatorname{Tm} \sigma \times \llbracket \sigma\right]_{\text {set }}} \\
& t \mathrm{R}^{\mathrm{Bool}} \text { true }=t=_{\beta \eta} \text { True } \\
& t \mathrm{R}^{\mathrm{Bool}} \text { false }=t={ }_{\beta \eta} \text { False } \\
& t \mathrm{R}^{\sigma: \rightarrow \tau} f=\forall u \mathrm{R}^{\sigma} d \rightarrow \text { App } t u \mathrm{R}^{\tau} f d
\end{aligned}
$$

Fundamental theorem: $\frac{t: \sigma}{t R^{\sigma} \llbracket t \rrbracket}$
Main lemma: $\frac{t R^{\sigma} x}{t={ }_{\beta \eta} \text { quote } x}$

Further work

Further work

Extend the construction to $\lambda^{\rightarrow 01+x}$
(almost done).

Further work

- Extend the construction to $\lambda^{\rightarrow 01+\times}$ (almost done).
- Extend the construction to $\lambda^{\Pi \Gamma 012}$
(finite Type Theory)
Useful as a hardware description language

Further work

- Extend the construction to $\lambda^{\rightarrow 01+x}$ (almost done).
- Extend the construction to $\lambda^{\Pi \Gamma 012}$
(finite Type Theory)
Useful as a hardware description language
- Use BDDs instead of Decision Trees to improve efficiency.

Further work

- Extend the construction to $\lambda^{\rightarrow 01+x}$ (almost done).
- Extend the construction to $\lambda^{\Pi \Sigma 012}$ (finite Type Theory)
Useful as a hardware description language
- Use BDDs instead of Decision Trees to improve efficiency.
- Can we extend this approach to type variables?

Related Work

- Neil Ghani

Adjoint Rewriting
PhD, 1995

- Thorsten Altenkirch,Peter Dybjer, Martin Hofmann, Phil Scott Normalization by evaluation for typed lambda calculus with coproducts LICS 2001
- Vincent Balat Une étude des sommes fortes : isomorphismes et formes normales PhD thesis, 2002

