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Motivation

Implementations of typed -calculi to support
type-directed construction of certified,
correct programs.

Normalisation of evaluation (NbE) used in
the actual implementation of recent tools
such as Epigram.

Offers efficent implementations and
straightforward correctness arguments.
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More motivation

Goal: make equality more extensional.
From �� to �� �.

Study simple calculi first - here
= simple types ( ) + booleans ( ).

Discuss extensions to more interesting
systems.

Use type-theoretic methodology (on paper).

Here: Haskell as a poor man’s type theory.

In future: implementation within epigram.
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The simplest typed -calculus?

needs type-variables
not as simple as it looks!

, without type-variables
are equationally inconsistent.

without type-variables
the simplest (interesting) typed -calculus!
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in a nutshell

Categorically:

Normalization by evaluationfor

� � �

– p.5/21



�

in a nutshell

��� � ���
�	� 
	� �� 	� � 


�� � � 
 � � � � � � �

� � � � � � � � �

Categorically:

Normalization by evaluationfor

� � �

– p.5/21



�

in a nutshell

��� � ���
�	� 
	� �� 	� � 


�� � � 
 � � � � � � �

� � � � � � � � �

� � ��� � � � � � � �� � � �

� �

� � �	� 
 � � � � � � �� � � �

� �

� � � ��� � � � � 
 � � �� �

� � � �

� � � � � � � �

� �� �

� � � � � �
� � � �

� �� �

Categorically:

Normalization by evaluationfor

� � �

– p.5/21



�

in a nutshell

��� � ���
�	� 
	� �� 	� � 


�� � � 
 � � � � � � �

� � � � � � � � �

� � ��� � � � � � � �� � � �

� �

� � �	� 
 � � � � � � �� � � �

� �

� � � ��� � � � � 
 � � �� �

� � � �

� � � � � � � �

� �� �

� � � � � �
� � � �

� �� �

Categorically:

� � �� � � � � �
� � � � � � ��
� � � � � � ��
� � �

Normalization by evaluationfor

� � �

– p.5/21



Example

� � �� � � � �	� � 
� �	� � 
 �� �	� � 
 � �

��� � �� � � � �	� � 
� �	� � 
 �� �	� � 
 � � � � �

� ��� � �� � � � �	� � 
� �	� � 
 �� �	� � 
 � � � � � � � �

� � ���� ��� � �� � � ��� � �� � ��� � � � � � � � � � � ��� � � � � � � � � �

Normalization by evaluationfor

� � �

– p.6/21



Example

� � �� � � � �	� � 
� �	� � 
 �� �	� � 
 � �

��� � �� � � � �	� � 
� �	� � 
 �� �	� � 
 � � � � �

� ��� � �� � � � �	� � 
� �	� � 
 �� �	� � 
 � � � � � � � �

� � ���� ��� � �� � � ��� � �� � ��� � � � � � � � � � � ��� � � � � � � � � �

� � �� � �� � ��� � ��

Normalization by evaluationfor

� � �

– p.6/21



Example

� � �� � � � �	� � 
� �	� � 
 �� �	� � 
 � �

��� � �� � � � �	� � 
� �	� � 
 �� �	� � 
 � � � � �

� ��� � �� � � � �	� � 
� �	� � 
 �� �	� � 
 � � � � � � � �

� � ���� ��� � �� � � ��� � �� � ��� � � � � � � � � � � ��� � � � � � � � � �

� � �� � �� � ��� � ��

� � �� �� � � ��� � ��

Normalization by evaluationfor

� � �

– p.6/21



Why ?

Symmetrically, we can show that , and hence

Normalization by evaluationfor

� � �

– p.7/21



Why ?

� � � � � ��� � � � � �	 
 � � � � ��� � � � � � � � ��� � � � � � � � � � 
�� � � �

�	 
 � � � � ��� � � � �� � � � � � � � 
 � � � �

�	 
 � � � � ��� � � � �� � � � � � � � � 
 � � � � � �� � � � � � � 
 � � � �

�	 
 � � � � ��� � � � �� � � � � � � � � 
 � � �  � 
�� �  � 
�� � �

�	 
 � � � � ��� � � � �� � �  � 
 � �

�	 
 � ��� � �

Symmetrically, we can show that

� � � � � � 
 � � � � � 	 
 � � 
 � �, and hence

� �� ��� �
� � � �� � � � �� � � ��� �� � � � � � � � � � �

�	 
 � � �� � � � �� � � ��� �� � � � � � � � � � � � �� � � � � � � � � � � � � 
 � � � � �

�	 
 � � �� � � � �� � � ��� �� � � � � � � � �� � � � � � � 
 � � �

�	 
 � � �� � � � �� � � ��� �� � � � �

� � �� �

Normalization by evaluationfor

� � �

– p.7/21



A simpler proof ?

Why does this hold for ?
Corollary of our NbE construction.
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Another corollary: normalisation

Main> once

Lam (Bool :-> Bool) "f" (Lam Bool "x" (App (Var "f") (Var "x")))

Main> :t nf

nf :: Ty -> Tm -> Tm

Main> :t nf’

nf’ :: Tm -> Maybe (Ty,Tm)

Main> nf’ once

Just ((Bool :-> Bool) :-> (Bool :-> Bool),Lam (Bool :-> Bool) "x"

(If (App (Var "x") TTrue) (If (App (Var "x") TFalse) (Lam Bool "x"

TTrue) (Lam Bool "x" (Var "x"))) (If (App (Var "x") TFalse) (Lam

Bool "x" (If (Var "x") TFalse TTrue)) (Lam Bool "x" TFalse))))

Main> nf’ thrice

Just ((Bool :-> Bool) :-> (Bool :-> Bool),Lam (Bool :-> Bool) "x"

(If (App (Var "x") TTrue) (If (App (Var "x") TFalse) (Lam Bool "x"

TTrue) (Lam Bool "x" (Var "x"))) (If (App (Var "x") TFalse) (Lam

Bool "x" (If (Var "x") TFalse TTrue)) (Lam Bool "x" TFalse))))
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NbE : the basic idea

1. Define a semantic interpretation

2. Invert evaluation, i.e. define

3. Now define
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is effective because our development takes
place in a constructive set theory (ala
Martin-Löf).
The effectiveness of is witnessed by an
implementation in Haskell.
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Implementation in Haskell

Haskell-types can only approximate the intended
types, e.g.

�
� � � � ���

� � � �	� �

is implemented as
nf :: Ty -> Tm -> Tm
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The semantics

� 	� � 
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�
�

Implementation in Haskell
data El = STrue | SFalse | SLam Ty (El -> El)

Normalization by evaluationfor

� � �

– p.13/21



Decision trees

We use decision trees to enumerate types.

where

We define by simultanous recursion over
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We also implement
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where �� � �� expresses that the length of ��

matches the depth of

�� .
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Implementing � � ���
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Correctness of � � ���

How do we show
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Logical relations

Fundamental theorem:
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Further work

Extend the construction to
(almost done).

Extend the construction to
(finite Type Theory)
Useful as a hardware description language

Use BDDs instead of Decision Trees to
improve efficiency.

Can we extend this approach to type
variables?
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