
Isomorphisms for context-free types
joint work with Wouter Swierstra

Thorsten Altenkirch

School of Computer Science and IT
University of Nottingham

January 18, 2007

Thorsten Altenkirch Isomorphisms for context-free types

What is an isomorphism?

Given types A,B, an isomorphism is given by 2 functions

φ ∈ A → B
ψ ∈ B → A

s.t.

ψ ◦ φ = idA

φ ◦ ψ = idb

We say that A and B are isomorphic (A ' B), if there is an
isomorphism between them.

Examples:
N ' N + N
N ' N× N
N 6' N → N

Thorsten Altenkirch Isomorphisms for context-free types

Type variables

Many interesting isomorphisms involve type variables, e.g.

List (1 + X) ' List X × List (List X)

Types with variables (no →) give rise to functors F :

A ∈ Type

F A ∈ Type

f ∈ A → B

F f ∈ F A → F B

such that

F idA = idF A

F (f ◦ g) = F f ◦ F g

Thorsten Altenkirch Isomorphisms for context-free types

Isomorphisms with variables

A natural isomorphism between functors F ,G is given by an
assignment:

A ∈ Type

ΦA ∈ F A → G A
ΨA ∈ G A → F A

such that
ΦA,ΨA are an isomorphism between F A and G A.
The assignment is natural, for any function f ∈ A → B we
have that

G f ◦ΨA = ΨA ◦ F f
F f ◦ ΦA = ΦA ◦G f

Exercise: Show that we only need one of the two equations.

We write F ' G if there is a natural isomorphism between the
functors F ,G.

Thorsten Altenkirch Isomorphisms for context-free types

Why study isomorphisms?

Curry-Howard correspondence:
Proofs ∼ Programs
Propositions ∼ Types
Logical Equivalence ∼ Isomorphism

We can replace any type in our program by an isomorphic
type
(change of representation).
We can replace any type operator by a naturally
isomorphic operator.
When searching for data by type, we may only want to
specify the type upto isomorphism.

Thorsten Altenkirch Isomorphisms for context-free types

List (1 + X) ' List X × List (List X)

φ :: [Maybe a] → ([a], [[a]])

φ [] = ([], [])
φ (ma : mas) =

case ma of
Nothing → ([],as : aas)
Just a → (a : as,aas)

where (as,aas) = φ mas

ψ :: ([a], [[a]]) → [Maybe a]

ψ ([], []) = []
ψ ([],as : aas) = Nothing : ψ (as,aas)
ψ (b : bs,aas) = Just b : ψ (bs,aas)

Naturality? All polymorphic functions definable in Haskell are
natural.

Thorsten Altenkirch Isomorphisms for context-free types

How to prove non-isomorphisms?

List X 6' List X × List X

Thorsten Altenkirch Isomorphisms for context-free types

What are context-free types?

Given a finite set of parameters P and a finite set of of recursive
variables X we define the set of context-free types CFX P
inductively by the following rules:

p ∈ P

p ∈ CFX P

x ∈ X

x ∈ CFX P

0,1 ∈ CFX P

σ, τ ∈ CFX P

σ + τ ∈ CFX P
σ × τ ∈ CFX P

σ ∈ CFx+X P

µx .σ ∈ CFX P

We write CF P for CF∅ P.

Thorsten Altenkirch Isomorphisms for context-free types

Examples of context-free types

Natural numbers
N = µX .1 + X ∈ CF ∅

Lists
List A = µX .1 + A× X ∈ CF {A}

Binary trees

BT A B =

µX .A + B × X 2 =

µX .A + B × X × X ∈ CF {A,B}
Spine trees

ST A B =

µX .B × List (A× X) =

µX .B × µY .1 + (A× X)× Y ∈ CF {A,B}

Exercise: Show that BT ' ST.
Thorsten Altenkirch Isomorphisms for context-free types

Grammars vs Types

Context-free types Context-free grammars
parameters terminal symbols

recursive variables non-terminal symbols
σ + τ v + w
σ × τ vw

isomorphism (') language equivalence (∼L) ???

Thorsten Altenkirch Isomorphisms for context-free types

Isomorphism vs. language equivalence

Commutativity of ×
σ × τ ' τ × σ

but
v × w 6∼L w × v

Idempotence of +
v + v ∼L v

but
σ + σ 6' σ

Thorsten Altenkirch Isomorphisms for context-free types

Finite sets and multisets

P<ω A = finite sets over A
N+ = N + {ω}
MA = finite multi-sets over A
M+ A = finite multi-sets using N+ instead of N.

Thorsten Altenkirch Isomorphisms for context-free types

Parsing languages and multisets

Given σ ∈ CF P:
Languages

Parser
JσK ∈ List P → Bool

Partial parser

JσKL
partial ∈ List P → P<ω (List P)

Multisets

Parser
JσKM ∈MP → N+

Partial parser

JσKM
partial ∈MP →M+ (MP)

Thorsten Altenkirch Isomorphisms for context-free types

Relating multisets and types

For simplicity let P = A then JσKM ∈ N → N+.

We can recover the typetheoretic interpretation of σ as a functor

JσKF ∈ Type → Type

by
JσKF X = Σi ∈ N.JσKM × X i

Theorem:
JσKF ' JτKF ⇐⇒ JσKM = JτKM

Corollary: Isomorphism of context-free types is semidecidable.

Thorsten Altenkirch Isomorphisms for context-free types

Sketch of the proof

1 Define a notion of morphisms between the multi-set
interpretation N → N+ giving rise to a category.

2 Show that two objects in this category are isomorphic iff
they are equal.
The category is skeletal.

3 Every morphism gives rise to a natural transformation
between the associated functors.

4 Vice versa: every natural transformaton gives rise to a
morphism.
The interpretation is full and faithful.

Thorsten Altenkirch Isomorphisms for context-free types

Questions

Is isomorphism between context-free types decidable?
Is isomorphism between regular types (only List instead of
µ) decidable?
Have Kleene algebras with commutative × and
non-idempotent + been studied?

Thorsten Altenkirch Isomorphisms for context-free types

