Towards an ω-groupoid model of Type Theory Based on joint work with Ondrej Rypacek

Thorsten Altenkirch

Functional Programming Laboratory
School of Computer Science
University of Nottingham
August 14, 2012

Background

- In Type Theory for any A : Type and $a b: A$ we can form a new type $a=b$: Type, the set of proofs that a is equal to b.
- The canonical way to prove an equality is refl: $a=a$.
- Using the standard eliminator (J) we can show that equality is a congruence.
- Since refl is the only constructor we would assume that all equality proofs are equal (uniqueness of equality proofs).
- However, this is not provable using the standard eliminator (J).
- This was shown by Hofmann and Streicher using the Groupoid model of Type Theory.

Homotopy Type Theory

- Voevodsky proposed an interpretation of Type Theory using Homotopy Theory.
- Types are interpreted as topological spaces and equality proofs as paths (homotopies).
- This interpretation doesn't support uniqueness of equality proofs, i.e. $(\alpha: \boldsymbol{a}=\boldsymbol{a}) \longrightarrow \alpha=r e f l$ is not provabble.
- However, it does support the standard eliminator (J), in particular we can prove: that given a : A for all $p:(b: A) \times(a=b)$ we have $p=(a, r e f l)$.

Dimensions (Homotopy levels)

- We say that a type is contractible or 0-dimensional, if it contains exactly one element, i.e. there is $(a: A) \times(b: A) \longrightarrow a=b$.
- A type is $n+1$-dimensional, if all its equalities are n-dimensional.
- We arrive at the following hierarchy:

0 contractible types
1 propositions
2 sets
3 ???

- We can show that if a type is n-dimensional then it is also $n+1$-dimensional.
- Uniqueness of equality proofs means that all types are 2-dimensional.

Weak equivalence

- The notion of weak equivalence can be expressed in Type Theory.
- A function $f: A \longrightarrow B$ is a weak equivalence if the type $(a: B) \times f a=b$ is contractible for $b: B$.
- A and B are weakly equivalent.
- Weak equivalence in different dimensions:
0 contractible types trivial

1	propositions	logical equivalence
2	sets	isomorphism
3	$? ? ?$	weak equivalence

- Univalence axiom (Voevodsky): Weak equivalence is weakly equivalent to equality.
- Univalence implies functional extensionality (Voevodsky): Any two functions which are pointwise equal are equal.

Why are we interested in this?

- We have found a fascinating connection between Type Theory and Homotopy Theory.
- We can use Type Theory to formalize constructions in Homotopy Theory.
- However, most Computer Scientists don't care about Homotopy theory.
- Is there a way to motivate the univalence axiom which has nothing to do with homotopy theory?

Extensionality

Leibniz principle

Any two objects should either have a property which distinguishes them or they should be equal.

- This principle justifies functional extensionality (black box view of functions).
- Isomorphic sets cannot be distinguished in Type Theory - hence they should be equal.
- Isomorphism is not the correct notion from dimension 3 because it lacks a coherence property.
- This is fixed by weak equivalence (being a weak equivalence is propositional while being an isomorphism is not.
- Note that the Leibniz principle is not satisfied by Extensional Type Theory.

Open problem

Canonicity

Any closed term inhabiting a datatype (like \mathbb{N}) should be definitionally (strictly) equal to a term in constructor form (starting with a constructor).

- This is justified by Intensional Type Theory due to the normalisation property.
- Assuming univalence destroys canonicity.
- How can we have the univalence principle and keep canonicity?
- How can we eliminate univalence?

Deja vue

- This is reminiscient to the problem of eliminating functional extensionality in Type Theory.

$$
\begin{aligned}
& \text { ext : }(f g:(x: A) \longrightarrow B x) \\
& \quad \longrightarrow((x: A) \longrightarrow f x=g x) \longrightarrow f=g
\end{aligned}
$$

- We have proposed a solution to this problem (LICS 99) which relies on a translation using the Setoid model.
- This was later (PLPV 08) refined in joint work with Conor McBride and others (Observational Type Theory).
- However, the construction relies on a strong form of proof irrelevance.

Sketch of the construction

- We define a translation from a source type theory to a target type theory.
- The target type theory doesn't have a equality types.
- The source type theory does have equality types and ext is inhabited. This is explained by the translation.
- The translation preserves datatypes (like \mathbb{N}) and hence canonicity holds.
- The target type theory features a universe of (strictly) proof-irrelevant propositions Prop.

Prop

- Prop is a subuniverse of Set, i.e. P : Prop implies P : Set.
- If P : Prop and $p q: P$ then p and q are definitionally equal.
- Prop is closed under Π - and Σ-types. That is
- If $A:$ Set and $P: A \longrightarrow \operatorname{Prop}$ then $(x: A) \longrightarrow P x:$ Prop
- If $P:$ Prop and $Q: P \longrightarrow$ Prop then $(x: P) \times Q x:$ Prop.
- T: Prop and \perp : Prop.

The translation

- A closed type A : Set in the source theory is translated as a setoid in the target theory, i.e.
- A.set : Set a type in the target theory
- \sim A : A.set \longrightarrow A.set \longrightarrow Prop a relation
- Proofs of refl, sym, trans.
- A family of types $B: A \longrightarrow$ Set is modelled as a functor from (A.set,$\sim A$) into the category of Setoids, i.e.
- A family B.fam : A.set \longrightarrow Setoid in the target theory.
- A term subst : (a~A $\left.a^{\prime}\right) \longrightarrow(B . f a m a)$.set $\longrightarrow\left(B . f a m a^{\prime}\right)$.set.
- Proofs that subst is functorial upto setoid equality.

Translating Π-types

- Given a setoid A : Set and a family of setoids $B: A \longrightarrow$ Set we construct a setoid $\Pi A B$: Set
- $(\Pi A B)$.set is the set of functions which preserve equality, i.e. $(f:(x: A . s e t) \longrightarrow(B . f a m x)$. set $) \times((p: x \sim A y) \longrightarrow$ B. subst $p(f x) \sim(B . f a m y) f y$
- Equality $f \sim(\square A B) g$ is extensional equality, i.e.

$$
(x: \text { A.set }) \longrightarrow f x \sim(B . f a m x) g x
$$

- In fact we have to generalize this construction to the case $B: A \longrightarrow$ Set and $C:(a: A) \times B a \longrightarrow$ Set leading to
$\Pi B C: A \longrightarrow$ Set.

Interpreting equality

- In the source type theory we interpret equality using $\sim A$.
- Equality for П-types is extensional by definition.
- We can derive the eliminator from subst and the fact that equality is definitionally proof-irrelevant.
- \mathbb{N} is translated by itself using the definable recursive equality on natural numbers.
- We can also interpret quotient types.
- We can use logical equivalence as the equality for propositions hence we can eliminate univalence for propositions.

Proof - irrelevance

- We need equations between equality proofs at several points of the construction, e.g. when verifying the functor laws for subst for $П$.
- All these equations hold trivially because of definitional proof-irrelevance.
- In the end we need to derive J from subst.
- This also requires definitional proof-irrleevance.

Observational Type Theory

- Instead of defining the Source Type Theory by a translation, we can define it directly.
- We define $=: A \longrightarrow A \longrightarrow$ Prop by recursion over the type A and subst : $(P: A \longrightarrow$ Type $) \longrightarrow a=b \longrightarrow P a \longrightarrow P b$ by recursion over the family $P: A \longrightarrow$ Type.
- The other constants don't need to be defined because they live in Prop.
- Using a clever trick we can also address the problem that subst P refl is not definitionally equal to the identity.
- For details see our PLPV 2008 paper (jointly with Conor McBride and Wouter Swierstra).

From Setoids to Groupoids

- The setoid construction allows us to interpret types upto dimension 2.
- Replacing setoids by groupoids we can interpret types upto dimension 3.
- We have to use Groupoids enriched over Setoids:
$\sim A: A$.set \longrightarrow A.set \longrightarrow Prop is replaced by
$\sim A$: . set \longrightarrow A.set \longrightarrow Setoid.
- The groupoid equations hold up to setoid equality.
- We can define equality of the universe of sets as isomorphism hence we can interpret univalence at dimension 2.
- Carrying out this construction in detail would provide an alternative to Harper's and Licata's proof of canonicity of 2-dimensional Type Theory.
- Our proposal would also address the issue that they have been using an extensional Type Theory at dimension 2.

From Groupoids to ω-Groupoids

- We would like to eliminate the Prop-universe.
- If we can construct a groupoid model enriched over itself we should be able to do this.
- And we should be able to interpret univalence at any level.
- This would require to construct an ω-Groupoid model of Type Theory.
- As a first step we need to define what is a ω-Groupoid in Type Theory.

What are weak ω-groupoids?

- There are a number of definitions in the literature, e.g. based on contractible globular operads.
- We need to formalize them in Type Theory ...
- Formalizing the required categorical concepts creates a considerable overhead.
- Also it is not always clear how to represent them in the absence of UIP.
- E.g. what are strict ω-groupoids?

Globular sets

We define a globular set G : Glob coinductively:

$$
\begin{aligned}
\text { obj }_{G} & : \text { Set } \\
\operatorname{hom}_{G} & : \text { obj }_{G} \rightarrow \text { obj }_{G} \rightarrow \infty \text { Glob }
\end{aligned}
$$

Given globular sets A, B a morphism $f: \operatorname{Glob}(A, B)$ between them is given by

$$
\begin{aligned}
\operatorname{obj}_{f} & : \\
\operatorname{hom}_{f} \quad & \text { obj }_{A} \rightarrow \text { obj }_{B} \\
& \\
& \text { Пa, } b: \text { obj }_{A} . \\
& \operatorname{Glob}\left(\operatorname{hom}_{A} a b, \operatorname{hom}_{B}\left(\text { obj }_{f} a, \text { obj }_{f} b\right)\right)
\end{aligned}
$$

As an example we can define the terminal object in $\mathbf{1}_{\text {Glob }}$: Glob by the equations

$$
\begin{aligned}
\mathrm{obj}_{\mathbf{1}_{\text {Glob }}} & =\mathbf{1}_{\text {Set }} \\
\text { hom }_{\mathbf{1}_{\text {Glob }}} x y & =\mathbf{1}_{\text {Glob }}
\end{aligned}
$$

The Identity Globular set

More interestingly, the globular set of identity proofs over a given set A, $\mathrm{Id}^{\omega} A$: Glob can be defined as follows:

$$
\begin{aligned}
\mathrm{obj}_{\mathrm{Id}}{ }^{\omega} A & =A \\
\operatorname{hom}_{\mathrm{Id}^{\omega} A} a b & =\mathrm{Id}^{\omega}(a=b)
\end{aligned}
$$

Globular sets as a presheaf

Our definition of globular sets is equivalent to the usual one as a presheaf category over the diagram:

$$
0 \underset{t_{0}}{\stackrel{s_{0}}{\longrightarrow}} 1 \underset{t_{1}}{\stackrel{s_{1}}{\longrightarrow}} 2 \ldots n \underset{t_{n}}{s_{n}}(n+1) \ldots
$$

with the globular identities:

$$
\begin{aligned}
t_{i+1} \circ s_{i} & =s_{i+1} \circ t_{i} \\
t_{i+1} \circ t_{i} & =s_{i+1} \circ t_{i}
\end{aligned}
$$

A syntactic approach

- When is a globular set a weak ω-groupoid?
- We define a syntax for objects in a weak ω-groupoid.
- A globular set is a weak ω-groupoid, if we can interpret the syntax.
- This is reminiscient of environment λ-models.

The syntactical framework

Contexts

$$
\begin{gathered}
\text { Con : Set } \\
\frac{C: \text { Con } \Gamma}{(\Gamma, C): \text { Con }}
\end{gathered}
$$

Categories

$$
\begin{array}{ll}
& \frac{\Gamma: \text { Con }}{} \begin{array}{l}
\text { Cat } \Gamma: \text { Set } \\
\bullet: \text { Cat } \Gamma
\end{array} \\
\frac{C: \operatorname{Cat} \Gamma a, b: \text { Obj } C}{C[a, b]: \operatorname{Cat} \Gamma}
\end{array}
$$

Objects

$$
\frac{C: \operatorname{Cat} \Gamma}{\text { Obj } C, \operatorname{Var} C: \operatorname{Set}}
$$

Interpretation

(1) An assignment of sets to contexts:

$$
\frac{\Gamma: \text { Con }}{\llbracket \Gamma \rrbracket: \text { Set }}
$$

(2) An assignment of globular sets to category expressions:

$$
\frac{C: \text { Cat } \Gamma \quad \gamma: \llbracket \Gamma \rrbracket}{\llbracket C \rrbracket \gamma: \text { Glob }}
$$

(3) Assignments of elements of object sets to object expressions and variables

$$
\frac{C: \operatorname{Cat} \Gamma \quad A: \operatorname{Obj} C \quad \gamma: \llbracket \Gamma \rrbracket}{\llbracket A \rrbracket \gamma: \mathrm{obj}_{\llbracket C \rrbracket \gamma}}
$$

- Subject to some (obvious) conditions such as:

$$
\begin{aligned}
\llbracket \bullet \rrbracket \gamma & =G \\
\llbracket C[a, b] \rrbracket \gamma & =\operatorname{hom}_{\llbracket C \rrbracket \gamma}(\llbracket a \rrbracket \gamma)(\llbracket b \rrbracket \gamma)
\end{aligned}
$$

Composition

Telescopes

A telescope t : Tel $C n$ is a path of length n from a category C of to one of its (indirect) hom-categories:

$$
\frac{C: \text { Cat } \Gamma \quad n: \mathbb{N}}{\text { Tel } C n: \operatorname{Set}}
$$

We can turn telescopes into categories:

$$
\frac{t: \text { Tel } C n}{C+t: \text { Cat } \Gamma}
$$

Formalizing composition

$$
\frac{\alpha: \operatorname{Obj}(t \Downarrow) \quad \beta: \operatorname{Obj}(u \Downarrow)}{\beta \circ \alpha: \operatorname{Obj}(u \circ t \Downarrow)}
$$

is a new constructor of Obj where

$$
\frac{t: \operatorname{Tel}(C[a, b]) n \quad u: \operatorname{Tel}(C[b, c]) n}{u \circ t: \operatorname{Tel}(C[a, c])}
$$

is a function on telescopes defined by cases

$$
\bullet \circ \bullet C=\bullet \quad u\left[a^{\prime}, b^{\prime}\right] \circ t[a, b]=(u \circ t)\left[a^{\prime} \circ a, b^{\prime} \circ b\right]
$$

Laws

For example the left unit law in dimension 1:

$$
\begin{equation*}
\mathrm{id}_{b} \circ f=f \tag{1}
\end{equation*}
$$

and in dimension 2.

$$
\mathrm{id}_{b}^{2} \circ \alpha=\alpha
$$

where $\mathrm{id}_{b}^{2}=\mathrm{id}_{\mathrm{id}_{b}}$
In the strict case the 2nd equation only type-checks due to the first. In the weak case we have to apply the previous isomorphism explicitely.

Coherence

Example:

In summary and full generality:
For any pair of coherence cells with the same domain and target, there must be a mediating coherence cell.

Problem

This definition of coherence is too strong!

Formalizing coherence

$$
\begin{gathered}
\frac{x: \text { Obj } C}{\text { hollow } x: \text { Set }} \\
\text { hollow }\left(\lambda_{--}\right)=\top \ldots \\
f g: \text { Obj } C[a, b] \quad p: \text { hollow } f \quad q: \text { hollow } g \\
\operatorname{coh} p q: \text { Obj } C[a, b][f, g] \\
\text { hollow }(\operatorname{coh} p q)=\top
\end{gathered}
$$

Summary

- To be able to eliminate univalence we want to interpret Type Theory in a weak ω-groupoid in Type Theory.
- As a first step we need to define what is a weak ω-groupoid.
- Our approach is to define a syntax for objects in a weak ω-groupoid.
- A globular set is a weak ω groupoid if we can interpret this syntax.
- See our draft paper for details: A Syntactical Approach to Weak ω-Groupoids

Further work

- We need to fix our definition of coherence!
- The current definition is quite complex - can we simplify it?
- Can we actually show that the identity globular set is a weak ω-groupoid, internalizing results by Lumsdaine and Garner/van de Berg?
- What is a model of Type Theory in a weak ω-groupoid.
- Can we use this construction to eliminate univalence?

