

Isomorphisms on inductive types

Thorsten Altenkirch

based on discussions with Wouter Swierstra and Peter Morris

• A, B, C, \ldots Parameters

- A, B, C, \ldots Parameters
- X, Y, Z, \ldots Variables

- A, B, C, \ldots Parameters
- X, Y, Z, \ldots Variables
- $0, \sigma + \tau$ Fibred Coproducts

- A, B, C, \ldots Parameters
- X, Y, Z, \ldots Variables
- $0, \sigma + \tau$ Fibred Coproducts
- $1, \sigma \times \tau$ Products

- A, B, C, \ldots Parameters
- X, Y, Z, \ldots Variables
- $0, \sigma + \tau$ Fibred Coproducts
- $1, \sigma \times \tau$ Products
- $\mu X.\sigma$ Fibred initial algebras

- A, B, C, \ldots Parameters
- X, Y, Z, \ldots Variables
- $0, \sigma + \tau$ Fibred Coproducts
- $1, \sigma \times \tau$ Products
- $\mu X.\sigma$ Fibred initial algebras

Examples

- A, B, C, \ldots Parameters
- X, Y, Z, \ldots Variables
- $0, \sigma + \tau$ Fibred Coproducts
- $1, \sigma \times \tau$ Products
- $\mu X.\sigma$ Fibred initial algebras

Examples

Natural numbers $\mu X.1 + X = \omega$

- A, B, C, \ldots Parameters
- X, Y, Z, \ldots Variables
- $0, \sigma + \tau$ Fibred Coproducts
- $1, \sigma \times \tau$ Products
- $\mu X.\sigma$ Fibred initial algebras

Examples

Natural numbers $\mu X.1 + X = \omega$ Lists $\mu X.1 + A \times X = A^*$

- A, B, C, \ldots Parameters
- X, Y, Z, \ldots Variables
- $0, \sigma + \tau$ Fibred Coproducts
- $1, \sigma \times \tau$ Products
- $\mu X.\sigma$ Fibred initial algebras

Examples

Natural numbers $\mu X.1 + X = \omega$ Lists $\mu X.1 + A \times X = A^*$ Binary trees $\mu X.A + B \times X^2 = \mu X.A + B \times X \times X$

- A, B, C, \ldots Parameters
- X, Y, Z, \ldots Variables
- $0, \sigma + \tau$ Fibred Coproducts
- $1, \sigma \times \tau$ Products
- $\mu X.\sigma$ Fibred initial algebras

Examples

Natural numbers $\mu X.1 + X = \omega$ Lists $\mu X.1 + A \times X = A^*$ Binary trees $\mu X.A + B \times X^2 = \mu X.A + B \times X \times X$ Spine trees $\mu X.B \times (A \times X)^* = \mu X.B \times \mu Y.1 + A \times X \times Y$

Fibred ...

Simple slice $\mathbf{C}/\!\!/\Gamma$ ($\Gamma \in \operatorname{Obj} \mathbf{C}$) $\begin{array}{c} \operatorname{Obj} \mathbf{C}/\!\!/\Gamma & A, B \in \operatorname{Obj} \mathbf{C} \\ A \to_{\mathbf{C}/\!\!/\Gamma} B & \Gamma \times A \to_{\mathbf{C}} B \end{array}$

Fibred . . .

Simple slice $\mathbf{C}/\!\!/\Gamma$ ($\Gamma \in \operatorname{Obj} \mathbf{C}$)

Obj $\mathbf{C} /\!\!/ \Gamma$ $A, B \in \operatorname{Obj} \mathbf{C}$ $A \to_{\mathbf{C} /\!\!/ \Gamma} B$ $\Gamma \times A \to_{\mathbf{C}} B$

Given $f \in \Gamma \to \Delta$ $f^* \in \mathbf{C}/\!\!/\Delta \to \mathbf{C}/\!\!/\Gamma$

Fibred ...

Simple slice $\mathbf{C}/\!\!/\Gamma$ ($\Gamma \in \operatorname{Obj} \mathbf{C}$)

Obj $\mathbf{C} /\!\!/ \Gamma$ $A, B \in \operatorname{Obj} \mathbf{C}$ $A \to_{\mathbf{C} /\!\!/ \Gamma} B$ $\Gamma \times A \to_{\mathbf{C}} B$

Given $f \in \Gamma \to \Delta$ $f^* \in \mathbf{C}/\!\!/\Delta \to \mathbf{C}/\!\!/\Gamma$

Fibred coproducts, initial algebras: exist in all slices and are preserved by f^* .

Fibred ...

Simple slice $\mathbf{C}/\!\!/\Gamma$ ($\Gamma \in \operatorname{Obj} \mathbf{C}$) $A \to_{\mathbf{C}/\!\!/\Gamma} B$ $\Gamma \times A \to_{\mathbf{C}} B$

Given $f \in \Gamma \to \Delta$ $f^* \in \mathbf{C}/\!\!/\Delta \to \mathbf{C}/\!\!/\Gamma$

Fibred coproducts, initial algebras: exist in all slices and are preserved by f^* .

In CCCs: Coproducts and initial algebras are always fibred.

Variable closed type σ I – finite set of free parameters.

Variable closed type σ I – finite set of free parameters. $\llbracket \sigma \rrbracket^{F} \in (I \to \mathbb{C}) \to \mathbb{C}$

Variable closed type σ I – finite set of free parameters.

 $[\![\sigma]\!]^{\mathrm{F}} \in (\mathrm{I} \to \mathbf{C}) \to \mathbf{C}$

 $\sigma \simeq \tau$ iff $[\![\sigma]\!]^F$ is naturally isomorphic to $[\![\tau]\!]^F$ in all interpretations (or in the classifying category).

Variable closed type σ I – finite set of free parameters.

 $[\![\sigma]\!]^{\mathrm{F}} \in (\mathrm{I} \to \mathbf{C}) \to \mathbf{C}$

 $\sigma \simeq \tau$ iff $[\![\sigma]\!]^F$ is naturally isomorphic to $[\![\tau]\!]^F$ in all interpretations (or in the classifying category).

Fibred coproducts: $\sigma \times (\tau + \rho) \simeq \sigma \times \tau + \sigma \times \rho$

Variable closed type σ I – finite set of free parameters.

 $[\![\sigma]\!]^{\mathrm{F}} \in (\mathrm{I} \to \mathbf{C}) \to \mathbf{C}$

 $\sigma \simeq \tau$ iff $[\![\sigma]\!]^F$ is naturally isomorphic to $[\![\tau]\!]^F$ in all interpretations (or in the classifying category).

Fibred coproducts: $\sigma \times (\tau + \rho) \simeq \sigma \times \tau + \sigma \times \rho$

Fibred initial algebras:

 $\mu X.A \times X + B \simeq (\mu X.A \times X + 1) \times B \simeq A^* \times B$

$\mu X.\sigma \times X + \tau$, where X is not free in σ, τ .

 $\mu X.\sigma \times X + \tau$, where X is not free in σ, τ .

Observation:

Regular types can be expressed as regular expressions $(1, \sigma \times \tau, 0, \sigma + \tau, \sigma^*)$ using $\mu X.A \times X + B \simeq A^* \times B$

 $\mu X.\sigma \times X + \tau$, where X is not free in σ, τ .

Observation: Regular types can be expressed as regular expressions $(1, \sigma \times \tau, 0, \sigma + \tau, \sigma^*)$ using $\mu X.A \times X + B \simeq A^* \times B$

 $\mu X.A \times X + \mu Y.B \times Y + C \times X + D$

 $\mu X.\sigma \times X + \tau$, where X is not free in σ, τ .

Observation: Regular types can be expressed as regular expressions $(1, \sigma \times \tau, 0, \sigma + \tau, \sigma^*)$ using $\mu X.A \times X + B \simeq A^* \times B$

> $\mu X.A \times X + \mu Y.B \times Y + C \times X + D$ $\simeq \quad \mu X.A \times X + B^* \times (C \times X + D)$

 $\mu X.\sigma \times X + \tau$, where X is not free in σ, τ .

Observation: Regular types can be expressed as regular expressions $(1, \sigma \times \tau, 0, \sigma + \tau, \sigma^*)$ using $\mu X.A \times X + B \simeq A^* \times B$

> $\mu X.A \times X + \mu Y.B \times Y + C \times X + D$ $\simeq \quad \mu X.A \times X + B^* \times (C \times X + D)$ $\simeq \quad \mu X.(A + B^* \times C) \times X + B^* \times D$

 $\mu X.\sigma \times X + \tau$, where X is not free in σ, τ .

Observation: Regular types can be expressed as regular expressions $(1, \sigma \times \tau, 0, \sigma + \tau, \sigma^*)$ using $\mu X.A \times X + B \simeq A^* \times B$

 $\mu X.A \times X + \mu Y.B \times Y + C \times X + D$ $\simeq \quad \mu X.A \times X + B^* \times (C \times X + D)$ $\simeq \quad \mu X.(A + B^* \times C) \times X + B^* \times D$ $\simeq \quad (A + B^* \times C)^* \times B^* \times D$

$\omega = \mu X.1 + X \simeq \mu X.1 + X^2$

$\omega = \mu X.1 + X \simeq \mu X.1 + X^2$

different from recursive types.

 $\omega = \mu X.1 + X \simeq \mu X.1 + X^2$ different from recursive types.

 $\mu X.1 + A \times X \simeq \mu X.(A \times X)^*$

 $\omega = \mu X.1 + X \simeq \mu X.1 + X^2$ different from recursive types.

 $\mu X.1 + A \times X \simeq \mu X.(A \times X)^*$

 $(A+B)^* \simeq (A^* \times B)^* \times A^*$

$0, 1, 2, \ldots, \omega \in \omega + \{\omega\}$

$$\omega + \{\omega\}$$

Full subcategory of **Set**:

 $\begin{array}{ll} \operatorname{Obj}\left(\omega + \{\omega\}\right) & \alpha, \beta \in \omega + \{\omega\}\\ \alpha \to_{\omega + \{\omega\}} \beta & \{i \mid i < \alpha\} \to \{j \mid j < \beta\} \end{array}$

$$\omega + \{\omega\}$$

Full subcategory of **Set**:

 $\begin{array}{ll} \operatorname{Obj}\left(\omega + \{\omega\}\right) & \alpha, \beta \in \omega + \{\omega\} \\ \alpha \rightarrow_{\omega + \{\omega\}} \beta & \{i \mid i < \alpha\} \rightarrow \{j \mid j < \beta\} \end{array}$

Arithmetic

 $\omega + \alpha = \alpha + \omega = \omega$

$$\omega + \{\omega\}$$

Full subcategory of **Set**:

 $\begin{array}{ll} \operatorname{Obj}\left(\omega + \{\omega\}\right) & \alpha, \beta \in \omega + \{\omega\} \\ \alpha \to_{\omega + \{\omega\}} \beta & \{i \mid i < \alpha\} \to \{j \mid j < \beta\} \end{array}$

Arithmetic

 $\omega + \alpha = \alpha + \omega = \omega$ $0 \times \alpha = \alpha \times 0 = 0$

$$\omega + \{\omega\}$$

Full subcategory of **Set**:

 $\begin{array}{ll} \operatorname{Obj} \left(\omega + \{\omega\} \right) & \alpha, \beta \in \omega + \{\omega\} \\ \alpha \to_{\omega + \{\omega\}} \beta & \{i \mid i < \alpha\} \to \{j \mid j < \beta\} \end{array}$

Arithmetic

$$\begin{aligned}
\omega + \alpha &= \alpha + \omega = \omega \\
0 \times \alpha &= \alpha \times 0 = 0 \\
\alpha \times \omega &= \omega \times \alpha = \omega \quad \text{if } \alpha > 0
\end{aligned}$$

$$\omega + \{\omega\}$$

Full subcategory of **Set**:

 $\begin{array}{ll} \operatorname{Obj}\left(\omega + \{\omega\}\right) & \alpha, \beta \in \omega + \{\omega\} \\ \alpha \to_{\omega + \{\omega\}} \beta & \{i \mid i < \alpha\} \to \{j \mid j < \beta\} \end{array}$

Arithmetic

$$\begin{aligned}
\omega + \alpha &= \alpha + \omega = \omega \\
0 \times \alpha &= \alpha \times 0 = 0 \\
\alpha \times \omega &= \omega \times \alpha = \omega & \text{if } \alpha > 0
\end{aligned}$$

Initial algebras

$$\llbracket \mu X.\sigma \rrbracket = \begin{cases} \llbracket \sigma \rrbracket 0 & \text{if} \llbracket \sigma \rrbracket 0 = \llbracket \sigma \rrbracket 1 \\ \omega & \text{otherwise} \end{cases}$$

$$\omega + \{\omega\}$$

Full subcategory of **Set**:

$$\begin{array}{ll} \operatorname{Obj}\left(\omega + \{\omega\}\right) & \alpha, \beta \in \omega + \{\omega\}\\ \alpha \to_{\omega + \{\omega\}} \beta & \{i \mid i < \alpha\} \to \{j \mid j < \beta\} \end{array}$$

Arithmetic

$$\begin{aligned}
\omega + \alpha &= \alpha + \omega = \omega \\
0 \times \alpha &= \alpha \times 0 = 0 \\
\alpha \times \omega &= \omega \times \alpha = \omega & \text{if } \alpha > 0
\end{aligned}$$

Initial algebras

$$\llbracket \mu X.\sigma \rrbracket = \begin{cases} \llbracket \sigma \rrbracket 0 & \text{if} \llbracket \sigma \rrbracket 0 = \llbracket \sigma \rrbracket 1 \\ \omega & \text{otherwise} \end{cases}$$

Observation: For closed σ , τ :

 $\sigma\simeq\tau\quad \text{iff}\quad [\![\sigma]\!]=[\![\tau]\!]$

$$\omega + \{\omega\}$$

Full subcategory of **Set**:

$$\begin{array}{ll} \operatorname{Obj}\left(\omega + \{\omega\}\right) & \alpha, \beta \in \omega + \{\omega\}\\ \alpha \to_{\omega + \{\omega\}} \beta & \{i \mid i < \alpha\} \to \{j \mid j < \beta\} \end{array}$$

Arithmetic

$$\omega + \alpha = \alpha + \omega = \omega$$

$$0 \times \alpha = \alpha \times 0 = 0$$

$$\alpha \times \omega = \omega \times \alpha = \omega$$
 if $\alpha > 0$

Initial algebras

$$\llbracket \mu X.\sigma \rrbracket = \begin{cases} \llbracket \sigma \rrbracket 0 & \text{if} \llbracket \sigma \rrbracket 0 = \llbracket \sigma \rrbracket 1 \\ \omega & \text{otherwise} \end{cases}$$

Observation: For closed σ , τ :

 $\sigma \simeq \tau$ iff $\llbracket \sigma \rrbracket = \llbracket \tau \rrbracket$ Closed isos are easy.

WIT 2005 – p.7/?

 $\sigma, \text{ regular expression over I} \\ \llbracket \sigma \rrbracket^{\mathrm{L}} \in \mathrm{I}^* \to \mathbf{Bool}$

 σ , regular expression over I $\llbracket \sigma \rrbracket^{L} \in I^{*} \rightarrow \mathbf{Bool}$

 $\llbracket 0 \rrbracket^{\mathrm{L}} w = \mathrm{False}$

 σ , regular expression over I $\llbracket \sigma \rrbracket^{L} \in I^{*} \rightarrow \textbf{Bool}$

 $\llbracket 0 \rrbracket^{\mathrm{L}} w = \text{False}$ $\llbracket \sigma + \tau \rrbracket^{\mathrm{L}} w = \llbracket \sigma \rrbracket^{\mathrm{L}} w \vee \llbracket \tau \rrbracket^{\mathrm{L}} w$

 σ , regular expression over I $\llbracket \sigma \rrbracket^{L} \in I^{*} \rightarrow \textbf{Bool}$

 $\llbracket 0 \rrbracket^{L} w = False$ $\llbracket \sigma + \tau \rrbracket^{L} w = \llbracket \sigma \rrbracket^{L} w \lor \llbracket \tau \rrbracket^{L} w$ $\llbracket A \rrbracket^{L} w = [A] \equiv w \quad \text{for } A \in I$

 σ , regular expression over I $\llbracket \sigma \rrbracket^{L} \in I^{*} \rightarrow \textbf{Bool}$

 $\llbracket 0 \rrbracket^{L} w = False$ $\llbracket \sigma + \tau \rrbracket^{L} w = \llbracket \sigma \rrbracket^{L} w \lor \llbracket \tau \rrbracket^{L} w$ $\llbracket A \rrbracket^{L} w = [A] \equiv w \quad \text{for } A \in I$ $\llbracket 1 \rrbracket^{L} w = [] \equiv w$

 σ , regular expression over I $\llbracket \sigma \rrbracket^{L} \in I^{*} \rightarrow \textbf{Bool}$

$$\begin{bmatrix} 0 \end{bmatrix}^{L} w = False$$
$$\begin{bmatrix} \sigma + \tau \end{bmatrix}^{L} w = \llbracket \sigma \rrbracket^{L} w \lor \llbracket \tau \rrbracket^{L} w$$
$$\begin{bmatrix} A \rrbracket^{L} w = [A] \equiv w \quad \text{for } A \in I$$
$$\llbracket 1 \rrbracket^{L} w = [] \equiv w$$
$$\llbracket \sigma \times \tau \rrbracket^{L} w = \exists_{\{v,v' \mid vv' = w\}} \llbracket \sigma \rrbracket^{L} v \land \llbracket \tau \rrbracket^{L} v'$$

 σ , regular expression over I $\llbracket \sigma \rrbracket^{L} \in I^{*} \rightarrow \textbf{Bool}$

$$\begin{bmatrix} 0 \end{bmatrix}^{L} w = False$$

$$\begin{bmatrix} \sigma + \tau \end{bmatrix}^{L} w = \llbracket \sigma \rrbracket^{L} w \lor \llbracket \tau \rrbracket^{L} w$$

$$\begin{bmatrix} A \rrbracket^{L} w = [A] \equiv w \quad \text{for } A \in I$$

$$\llbracket 1 \rrbracket^{L} w = \llbracket \equiv w$$

$$\llbracket \sigma \times \tau \rrbracket^{L} w = \exists_{\{v,v' \mid vv' \equiv w\}} \llbracket \sigma \rrbracket^{L} v \land \llbracket \tau \rrbracket^{L} v'$$

$$\llbracket \sigma^{*} \rrbracket^{L} w = \exists_{\{v,v' \mid vv' \equiv w, v \neq [I\}} \llbracket \sigma \rrbracket^{L} v \land \llbracket \sigma^{*} \rrbracket^{L} v'$$

$$\lor \Box w$$

 $[\![\sigma]\!]^{\mathrm{F}} \operatorname{VS} [\![\sigma]\!]^{\mathrm{L}}$

 $[\![\sigma]\!]^{\mathrm{F}} \operatorname{VS} [\![\sigma]\!]^{\mathrm{L}}$

 $\bullet \quad A\times B\simeq B\times A$

 $\llbracket \sigma \rrbracket^{\mathrm{F}} \mathrm{VS} \llbracket \sigma \rrbracket^{\mathrm{L}}$

• $A \times B \simeq B \times A$ but $[\![A \times B]\!]^{\mathrm{L}} \neq [\![B \times A]\!]^{\mathrm{L}}$

- $A \times B \simeq B \times A$ but $[\![A \times B]\!]^{\mathrm{L}} \neq [\![B \times A]\!]^{\mathrm{L}}$
- $A \not\simeq A + A$

- $A \times B \simeq B \times A$ but $[\![A \times B]\!]^{\mathrm{L}} \neq [\![B \times A]\!]^{\mathrm{L}}$
- $A \not\simeq A + A$ but $\llbracket A \rrbracket^{\mathsf{L}} = \llbracket A + A \rrbracket^{\mathsf{L}}$

- $A \times B \simeq B \times A$ but $[\![A \times B]\!]^{\mathrm{L}} \neq [\![B \times A]\!]^{\mathrm{L}}$
- $A \not\simeq A + A$ but $\llbracket A \rrbracket^{\mathrm{L}} = \llbracket A + A \rrbracket^{\mathrm{L}}$

Modifications:

- $A \times B \simeq B \times A$ but $[\![A \times B]\!]^{\mathrm{L}} \neq [\![B \times A]\!]^{\mathrm{L}}$
- $A \not\simeq A + A$ but $\llbracket A \rrbracket^{\mathsf{L}} = \llbracket A + A \rrbracket^{\mathsf{L}}$

Modifications:

• Consider multisets instead of words. Replace $-^*$ by $- \rightarrow \omega$.

$\llbracket \sigma \rrbracket^{\mathrm{F}} \operatorname{vs} \llbracket \sigma \rrbracket^{\mathrm{L}}$

- $A \times B \simeq B \times A$ but $[\![A \times B]\!]^{\mathrm{L}} \neq [\![B \times A]\!]^{\mathrm{L}}$
- $A \not\simeq A + A$ but $\llbracket A \rrbracket^{\mathrm{L}} = \llbracket A + A \rrbracket^{\mathrm{L}}$

Modifications:

- Consider multisets instead of words. Replace $-^*$ by $- \rightarrow \omega$.
- Consider multiplicities instead of acceptance. Replace $- \rightarrow$ Bool by $- \rightarrow (\omega + \{\omega\})$.

$[\![\sigma]\!]^{\mathrm{M}} \in (\mathrm{I} \to \omega) \to (\omega + \{\omega\})$

$[\![\sigma]\!]^{\mathrm{M}} \in (\mathrm{I} \to \omega) \to (\omega + \{\omega\})$

$$\llbracket \sigma \rrbracket^{\mathsf{M}} \in (\mathbf{I} \to \omega) \to (\omega + \{\omega\})$$

$$[\![0]\!]^{\mathrm{M}} w = 0$$

$$[\![\sigma]\!]^{\mathsf{M}} \in (\mathbf{I} \to \omega) \to (\omega + \{\omega\})$$

$$[\![0]\!]^{M} w = 0$$
$$[\![\sigma + \tau]\!]^{M} w = [\![\sigma]\!]^{M} w + [\![\tau]\!]^{M} w$$

$$\llbracket \sigma \rrbracket^{\mathsf{M}} \in (\mathbf{I} \to \omega) \to (\omega + \{\omega\})$$

$$\begin{bmatrix} 0 \end{bmatrix}^{M} w = 0$$
$$\begin{bmatrix} \sigma + \tau \end{bmatrix}^{M} w = \llbracket \sigma \rrbracket^{M} w + \llbracket \tau \rrbracket^{M} w$$
$$\llbracket A \rrbracket^{M} w = \delta (\delta A) w \quad \text{for } A \in I$$

$$\delta x y = \begin{cases} 1 & \text{if } x \equiv y \\ 0 & \text{otherwise} \end{cases}$$

$$\llbracket \sigma \rrbracket^{\mathsf{M}} \in (\mathbf{I} \to \omega) \to (\omega + \{\omega\})$$

$$\begin{bmatrix} 0 \end{bmatrix}^{M} w = 0$$
$$\begin{bmatrix} \sigma + \tau \end{bmatrix}^{M} w = \llbracket \sigma \rrbracket^{M} w + \llbracket \tau \rrbracket^{M} w$$
$$\llbracket A \rrbracket^{M} w = \delta (\delta A) w \quad \text{for } A \in I$$
$$\llbracket 1 \rrbracket^{M} w = \delta \vec{0} w$$

$$\delta x y = \begin{cases} 1 & \text{if } x \equiv y \\ 0 & \text{otherwise} \end{cases}$$

$$\llbracket \sigma \rrbracket^{\mathsf{M}} \in (\mathbf{I} \to \omega) \to (\omega + \{\omega\})$$

$$\begin{bmatrix} 0 \end{bmatrix}^{M} w = 0$$

$$\begin{bmatrix} \sigma + \tau \end{bmatrix}^{M} w = \llbracket \sigma \rrbracket^{M} w + \llbracket \tau \rrbracket^{M} w$$

$$\llbracket A \rrbracket^{M} w = \delta (\delta A) w \quad \text{for } A \in I$$

$$\llbracket 1 \rrbracket^{M} w = \delta \vec{0} w$$

$$\llbracket \sigma \times \tau \rrbracket^{M} w = \Sigma_{\{v,v' \mid v+v'=w\}} \llbracket \sigma \rrbracket^{M} v \times \llbracket \tau \rrbracket^{M} v'$$

$$\delta x y = \begin{cases} 1 & \text{if } x \equiv y \\ 0 & \text{otherwise} \end{cases}$$

$$\llbracket \sigma \rrbracket^{\mathsf{M}} \in (\mathbf{I} \to \omega) \to (\omega + \{\omega\})$$

$$\begin{split} \llbracket 0 \rrbracket^{\mathsf{M}} w &= 0 \\ \llbracket \sigma + \tau \rrbracket^{\mathsf{M}} w &= \llbracket \sigma \rrbracket^{\mathsf{M}} w + \llbracket \tau \rrbracket^{\mathsf{M}} w \\ \llbracket A \rrbracket^{\mathsf{M}} w &= \delta \left(\delta A \right) w \quad \text{for } A \in \mathbf{I} \\ \llbracket 1 \rrbracket^{\mathsf{M}} w &= \delta \left(\delta A \right) w \\ \llbracket \sigma \times \tau \rrbracket^{\mathsf{M}} w &= \Sigma_{\{v,v' \mid v+v'=w\}} \llbracket \sigma \rrbracket^{\mathsf{M}} v \times \llbracket \tau \rrbracket^{\mathsf{M}} v' \\ \llbracket \sigma^* \rrbracket^{\mathsf{M}} w &= \Sigma_{\{v,v' \mid v+v'=w, v\neq \vec{0}\}} \llbracket \sigma \rrbracket^{\mathsf{M}} v \times \llbracket \sigma^* \rrbracket^{\mathsf{M}} v' \\ &+ (\delta \vec{0} w) + \omega \times (\llbracket \sigma \rrbracket^{\mathsf{M}} \vec{0}) \end{split}$$

 $\delta x y = \begin{cases} 1 & \text{if } x \equiv y \\ 0 & \text{otherwise} \end{cases}$

 $\llbracket \sigma \rrbracket^{\mathrm{F}} \mathrm{VS} \llbracket \sigma \rrbracket^{\mathrm{M}}$

$\sigma \simeq \tau \text{ iff } \llbracket \sigma \rrbracket^{M} = \llbracket \tau \rrbracket^{M} ???$

Given $f \in (I \to \omega) \to (\omega + \{\omega\})$ define pow $f \in (I \to \mathbf{Set}) \to \mathbf{Set}$

Given $f \in (I \to \omega) \to (\omega + \{\omega\})$ define pow $f \in (I \to \mathbf{Set}) \to \mathbf{Set}$ as pow $f \vec{X} = \Sigma_{g \in I \to \omega} (fg) \times \Pi p \in I.(g p) \to (\vec{X} p)$

Given $f \in (I \to \omega) \to (\omega + \{\omega\})$ define pow $f \in (I \to \mathbf{Set}) \to \mathbf{Set}$ as pow $f \vec{X} = \Sigma_{g \in I \to \omega} (fg) \times \Pi p \in I.(g p) \to (\vec{X} p)$ Observe that pow $[\![\sigma]\!]^{\mathrm{M}} \simeq [\![\sigma]\!]^{\mathrm{F}}$ because pow – preserves $0, +, 1, \times, -^*$.

Proof idea: only if

Using ideas from:

Abbott,A.,Ghani 05 Containers - Constructing Strictly Positive Types, Theoretical Computer Science, special issue on Applied Semantics (APPSEM).

we define a notion of morphisms on the multiset semantics. Using our representation theorem we can show that f = g, if pow $f \simeq pow g$.

 Are commutative semigroup equations + (A + B)^{*} ≃ (A^{*} × B)^{*} × A^{*} enough to characterize the isos on regular types?

- Are commutative semigroup equations + (A + B)* ≃ (A* × B)* × A* enough to characterize the isos on regular types?
- Is the multi-set equivalence of regular expressions decidable? (I think so).

- Are commutative semigroup equations + (A + B)* ≃ (A* × B)* × A* enough to characterize the isos on regular types?
- Is the multi-set equivalence of regular expressions decidable? (I think so).
- What about context-free types in general? (No idea, maybe undecidable).

- Are commutative semigroup equations + (A + B)* ≃ (A* × B)* × A* enough to characterize the isos on regular types?
- Is the multi-set equivalence of regular expressions decidable? (I think so).
- What about context-free types in general? (No idea, maybe undecidable).
- What is the relation to recursive types (cf. Marcello's work).

- Are commutative semigroup equations + (A + B)* ≃ (A* × B)* × A* enough to characterize the isos on regular types?
- Is the multi-set equivalence of regular expressions decidable? (I think so).
- What about context-free types in general? (No idea, maybe undecidable).
- What is the relation to recursive types (cf. Marcello's work).
- Can we use \mathbb{R} (or \mathbb{C}) to decide the iomorphism problem for regular expressions? E.g. interpret $x^* = \frac{1}{1-x}$.