Isomorphisms on inductive types

Thorsten Altenkirch

based on discussions with
Wouter Swierstra and Peter Morris

Context-free types (σ, τ)

Context-free types (σ, τ)

Context-free types (σ, τ)

Context-free types (σ, τ)

Context-free types (σ, τ)

| - | A, B, C, \ldots |
| :--- | :--- |\quad Parameters 1 - $X, Y, Z, \ldots \quad$ Variables

Context-free types (σ, τ)
$\begin{array}{ll}\text { - } A, B, C, \ldots & \text { Parameters } \\ \text { - } X, Y, Z, \ldots & \text { Variables } \\ \text { - } 0, \sigma+\tau & \text { Fibred Coproducts } \\ \text { - } 1, \sigma \times \tau & \text { Products } \\ \text { - } & \text { P }\end{array}$

- $\mu X . \sigma \quad$ Fibred initial algebras

Context-free types (σ, τ)

- $A, B, C, \ldots$$\quad$ Parameters

Context-free types (σ, τ)

- A, B, C, \ldots

Parameters

- X, Y, Z, \ldots

Variables

- $0, \sigma+\tau$

Fibred Coproducts

- $1, \sigma \times \tau$

Products

- $\mu X . \sigma$
xamples

Natural numbers $\mu X .1+X=\omega$

Context-free types (σ, τ)

- A, B, C, \ldots

Parameters

- X, Y, Z, \ldots

Variables

- $0, \sigma+\tau$

Fibred Coproducts

- $1, \sigma \times \tau$

Products

- $\mu X . \sigma$

Fibred initial algebras

Natural numbers $\mu X .1+X=\omega$
Lists $\mu X .1+A \times X=A^{*}$

Context-free types (σ, τ)

- A, B, C, \ldots Parameters
- X, Y, Z, \ldots Variables
- $0, \sigma+\tau \quad$ Fibred Coproducts
- $1, \sigma \times \tau \quad$ Products
- $\mu X . \sigma \quad$ Fibred initial algebras

Examples
Natural numbers $\mu X .1+X=\omega$
Lists $\mu X .1+A \times X=A^{*}$
Binary trees $\mu X . A+B \times X^{2}=\mu X . A+B \times X \times X$

Context-free types (σ, τ)

- A, B, C, \ldots Parameters
- X, Y, Z, \ldots Variables
- $0, \sigma+\tau \quad$ Fibred Coproducts
- $1, \sigma \times \tau \quad$ Products
- $\mu X . \sigma \quad$ Fibred initial algebras

Examples
Natural numbers $\mu X .1+X=\omega$
Lists $\mu X .1+A \times X=A^{*}$
Binary trees $\mu X . A+B \times X^{2}=\mu X . A+B \times X \times X$
Spine trees $\mu X . B \times(A \times X)^{*}=\mu X . B \times \mu Y .1+A \times X \times Y$

Fibred...

Fibred .

Fibred ...

$$
\begin{array}{lll}
\text { Simple slice } \mathbf{C} / / \Gamma(\Gamma \in \mathrm{Obj} \mathbf{C}) & \begin{array}{l}
\mathrm{Obj} \mathbf{C} / / \Gamma \\
A \rightarrow \mathrm{C} / \Gamma
\end{array} B & \begin{array}{l}
A, B \in \mathrm{Obj} \mathbf{C} \\
\Gamma \times A \rightarrow \mathrm{C} B
\end{array} \\
\text { Given } f \in \Gamma \rightarrow \Delta \\
f^{*} \in \mathbf{C} / / \Delta \rightarrow \mathbf{C} / / \Gamma
\end{array}
$$

Fibred ...

Simple slice $\mathbf{C} / / \Gamma(\Gamma \in \operatorname{Obj} \mathbf{C}) \begin{array}{ll}\mathrm{Obj} \mathbf{C} / / \Gamma & A, B \in \mathrm{Obj}_{\mathbf{C}} \\ A \rightarrow_{\mathbf{C} / / \Gamma} B & \Gamma \times A \rightarrow_{\mathbf{C}} B\end{array}$
Given $f \in \Gamma \rightarrow \Delta$
$f^{*} \in \mathbf{C} / / \Delta \rightarrow \mathbf{C}$
Fibred coproducts, initial algebras:
exist in all slices and are preserved by f

Fibred

Simple slice $\mathbf{C} / / \Gamma(\Gamma \in \operatorname{Obj} \mathbf{C})$

$$
\begin{array}{ll}
\mathrm{Obj} \mathbf{C} / / \Gamma & A, B \in \mathrm{Obj} \mathbf{C} \\
A \rightarrow \mathbf{C} / / \Gamma & \Gamma \times A \rightarrow_{\mathbf{C}} B
\end{array}
$$

Given $f \in \Gamma \rightarrow \Delta$
$f^{*} \in \mathbf{C} / / \Delta \rightarrow \mathbf{C} / / \Gamma$
Fibred coproducts, initial algebras:
exist in all slices and are preserved by f^{*}.
In CCCs: Coproducts and initial algebras are always fibred.

Functorial semantics

Functorial semantics

Variable closed type σ
I - finite set of free parameters.

Functorial semantics

Variable closed type σ
I - finite set of free parameters.
$\llbracket \sigma \rrbracket^{\mathrm{F}} \in(\mathrm{I} \rightarrow \mathbf{C}) \rightarrow \mathbf{C}$

Functorial semantics

Variable closed type σ
I - finite set of free parameters.
$\llbracket \sigma \rrbracket^{\mathrm{F}} \in(\mathrm{I} \rightarrow \mathbf{C}) \rightarrow \mathbf{C}$
$\sigma \simeq \tau \quad$ iff $\llbracket \sigma \rrbracket^{\mathrm{F}}$ is naturally isomorphic to $\llbracket \tau \rrbracket^{\mathrm{F}}$
in all interpretations (or in the classifying category)

Functorial semantics

Variable closed type σ
I - finite set of free parameters.
$\llbracket \sigma \rrbracket^{\mathrm{F}} \in(\mathrm{I} \rightarrow \mathbf{C}) \rightarrow \mathbf{C}$
$\sigma \simeq \tau \quad$ iff $\llbracket \sigma \rrbracket^{\mathrm{F}}$ is naturally isomorphic to $\llbracket \tau \rrbracket^{\mathrm{F}}$
in all interpretations (or in the classifying category).
Fibred coproducts:
$\sigma \times(\tau+\rho) \simeq \sigma \times \tau+\sigma \times \rho$

Functorial semantics

Variable closed type σ
I - finite set of free parameters.

$$
\llbracket \sigma \rrbracket^{\mathrm{F}} \in(\mathrm{I} \rightarrow \mathbf{C}) \rightarrow \mathbf{C}
$$

$\sigma \simeq \tau \quad$ iff $\llbracket \sigma \rrbracket^{\mathrm{F}}$ is naturally isomorphic to $\llbracket \tau \rrbracket^{\mathrm{F}}$ in all interpretations (or in the classifying category).

Fibred coproducts:
$\sigma \times(\tau+\rho) \simeq \sigma \times \tau+\sigma \times \rho$
Fibred initial algebras:
$\mu X . A \times X+B \simeq(\mu X . A \times X+1) \times B \simeq A^{*} \times B$

Regular types

Regular types

Regular types
$\mu X . \sigma \times X+\tau$, where X is not free in σ, τ.
Observation:
Regular types can be expressed as
regular expressions $\left(1, \sigma \times \tau, 0, \sigma+\tau, \sigma^{*}\right)$
using $\mu X . A \times X+B \simeq A^{*} \times B$

Regular types
$\mu X . \sigma \times X+\tau$, where X is not free in σ, τ.
Observation:
Regular types can be expressed as
regular expressions $(1, \sigma \times \tau, 0, \sigma$
using $\mu X . A \times X+B \simeq A^{*} \times B$
$\times B$

Regular types

$\mu X . \sigma \times X+\tau$, where X is not free in σ, τ.
Observation:
Regular types can be expressed as
regular expressions ($1, \sigma \times \tau, 0, \sigma+\tau, \sigma^{*}$)
using $\mu X . A \times X+B \simeq A^{*} \times B$

$$
\begin{aligned}
& \mu X . A \times X+\mu Y . B \times Y+C \times X+D \\
& \simeq \quad \mu X . A \times X+B^{*} \times(C \times X+D)
\end{aligned}
$$

Regular types

$\mu X . \sigma \times X+\tau$, where X is not free in σ, τ.
Observation:
Regular types can be expressed as
regular expressions ($1, \sigma \times \tau, 0, \sigma+\tau, \sigma^{*}$)
using $\mu X . A \times X+B \simeq A^{*} \times B$

$$
\begin{aligned}
& \mu X . A \times X+\mu Y . B \times Y+C \times X+D \\
& \quad \simeq \mu X . A \times X+B^{*} \times(C \times X+D) \\
& \quad \simeq \mu X .\left(A+B^{*} \times C\right) \times X+B^{*} \times D
\end{aligned}
$$

Regular types

$\mu X . \sigma \times X+\tau$, where X is not free in σ, τ.
Observation:
Regular types can be expressed as regular expressions ($1, \sigma \times \tau, 0, \sigma+\tau, \sigma^{*}$)
using $\mu X . A \times X+B \simeq A^{*} \times B$

$$
\begin{aligned}
& \mu X . A \times X+\mu Y . B \times Y+C \times X+D \\
& \quad \simeq \mu X . A \times X+B^{*} \times(C \times X+D) \\
& \simeq \mu X .\left(A+B^{*} \times C\right) \times X+B^{*} \times D \\
& \simeq\left(A+B^{*} \times C\right)^{*} \times B^{*} \times D
\end{aligned}
$$

Examples of isos

Examples of isos

Examples of isos
$\omega=\mu X .1+X \simeq \mu X .1+X^{2}$
different from recursive types.

Examples of isos
$\omega=\mu X .1+X \simeq \mu X .1+X^{2}$
different from recursive types.
$\mu X .1+A \times X \simeq \mu X .(A \times X)^{*}$

Examples of isos

$$
\begin{aligned}
& \omega=\mu X .1+X \simeq \mu X .1+X^{2} \\
& \text { different from recursive types. } \\
& \mu X .1+A \times X \simeq \mu X .(A \times X)^{*}
\end{aligned}
$$

$$
(A+B)^{*} \simeq\left(A^{*} \times B\right)^{*} \times A^{*}
$$

$$
\begin{aligned}
& \omega+\{\omega\} \\
& 0,1,2, \ldots, \omega \in \omega+\{\omega\}
\end{aligned}
$$

$$
\begin{aligned}
& \omega+\{\omega\} \\
& 0,1,2, \ldots, \omega \in \omega+\{\omega\} \\
& \text { Full subcategory of Set: } \\
& \text { Obj }(\omega+\{\omega\}) \quad \alpha, \beta \in \omega+\{\omega\} \\
& \alpha \rightarrow_{\omega+\{\omega\}} \beta \quad\{i \mid i<\alpha\} \rightarrow\{j \mid j<\beta\}
\end{aligned}
$$

$$
\omega+\{\omega\}
$$

$0,1,2, \ldots, \omega \in \omega+\{\omega\}$
Full subcategory of Set
$\operatorname{Obj}(\omega+\{\omega\}) \quad \alpha, \beta \in \omega+\{\omega\}$
$\begin{array}{ll}\alpha \rightarrow_{\omega+\{\omega\}} \beta & \{i \mid i<\alpha \in \omega+\{\omega\} \\ & \end{array}$
Arithmetic
$\omega+\alpha=\alpha+\omega=\omega$

$$
\begin{aligned}
& \omega+\{\omega\} \\
& 0,1,2, \ldots, \omega \in \omega+\{\omega\} \\
& \text { Full subcategory of Set: } \\
& \begin{array}{l}
\text { Obj }(\omega+\{\omega\}) \quad \alpha, \beta \in \omega+\{\omega\} \\
\alpha \rightarrow \omega+\{\omega\} \beta \\
\text { Arithmetic } \\
\omega+\alpha=\alpha+\omega=\omega \\
0 \times \alpha=\alpha \times 0=0
\end{array} \\
& \begin{array}{l}
\omega \times i \mid i<\alpha\} \rightarrow\{j \mid j<\beta\} \\
\\
\hline
\end{array} \\
& \\
& \hline
\end{aligned}
$$

$$
\omega+\{\omega\}
$$

$0,1,2, \ldots, \omega \in \omega+\{\omega\}$
Full subcategory of Set
$\operatorname{Obj}(\omega+\{\omega\}) \quad \alpha, \beta \in \omega+\{\omega\}$
$\alpha \rightarrow_{\omega+\{\omega\}} \beta \quad\{i \mid i<\alpha\} \rightarrow\{j \mid j<\beta\}$
Arithmetic
$\omega+\alpha=\alpha+\omega=\omega$
$0 \times \alpha=\alpha \times 0=0$
$\alpha \times \omega=\omega \times \alpha=\omega \quad$ if $\alpha>0$
$\omega+\{\omega\}$
$0,1,2, \ldots, \omega \in \omega+\{\omega\}$
Full subcategory of Set:
$\operatorname{Obj}(\omega+\{\omega\}) \quad \alpha, \beta \in \omega+\{\omega\}$

$$
\alpha \rightarrow_{\omega+\{\omega\}} \beta \quad\{i \mid i<\alpha\} \rightarrow\{j \mid j<\beta\}
$$

Arithmetic
$\omega+\alpha=\alpha+\omega=\omega$
$0 \times \alpha=\alpha \times 0=0$
$\alpha \times \omega=\omega \times \alpha=\omega \quad$ if $\alpha>0$
Initial algebras

$$
\llbracket \mu X . \sigma \rrbracket= \begin{cases}\llbracket \sigma \rrbracket 0 & \text { if } \llbracket \sigma \rrbracket 0=\llbracket \sigma \rrbracket 1 \\ \omega & \text { otherwise }\end{cases}
$$

$$
\omega+\{\omega\}
$$

$$
0,1,2, \ldots, \omega \in \omega+\{\omega\}
$$

Full subcategory of Set:

$$
\begin{array}{ll}
\operatorname{Obj}(\omega+\{\omega\}) & \alpha, \beta \in \omega+\{\omega\} \\
\alpha \rightarrow \omega+\{\omega\} \beta & \{i \mid i<\alpha\} \rightarrow\{j \mid j<\beta\}
\end{array}
$$

Arithmetic

$$
\begin{aligned}
& \omega+\alpha=\alpha+\omega=\omega \\
& 0 \times \alpha=\alpha \times 0=0 \\
& \alpha \times \omega=\omega \times \alpha=\omega \quad \text { if } \alpha>0
\end{aligned}
$$

Initial algebras

$$
\llbracket \mu X . \sigma \rrbracket= \begin{cases}\llbracket \sigma \rrbracket 0 & \text { if } \llbracket \sigma \rrbracket 0=\llbracket \sigma \rrbracket 1 \\ \omega & \text { otherwise }\end{cases}
$$

Observation:
For closed σ, τ :

$$
\sigma \simeq \tau \quad \text { iff } \quad \llbracket \sigma \rrbracket=\llbracket \tau \rrbracket
$$

$$
\omega+\{\omega\}
$$

$$
0,1,2, \ldots, \omega \in \omega+\{\omega\}
$$

Full subcategory of Set:

$$
\begin{array}{ll}
\operatorname{Obj}(\omega+\{\omega\}) & \alpha, \beta \in \omega+\{\omega\} \\
\alpha \rightarrow \omega+\{\omega\} \beta & \{i \mid i<\alpha\} \rightarrow\{j \mid j<\beta\}
\end{array}
$$

Arithmetic

$$
\begin{aligned}
& \omega+\alpha=\alpha+\omega=\omega \\
& 0 \times \alpha=\alpha \times 0=0 \\
& \alpha \times \omega=\omega \times \alpha=\omega \quad \text { if } \alpha>0
\end{aligned}
$$

Initial algebras

$$
\llbracket \mu X . \sigma \rrbracket= \begin{cases}\llbracket \sigma \rrbracket 0 & \text { if } \llbracket \sigma \rrbracket 0=\llbracket \sigma \rrbracket 1 \\ \omega & \text { otherwise }\end{cases}
$$

Observation:
For closed σ, τ :
$\sigma \simeq \tau \quad$ iff $\quad \llbracket \sigma \rrbracket=\llbracket \tau \rrbracket \quad$ Closed isos are easy.

Formal languages, revisited

Formal languages, revisited
$\underset{\substack{\text { o, regular expression over } \\ \|\left.\sigma\right|^{4} \in \mathrm{I}^{+} \rightarrow \text { Bool }}}{ }$

Formal languages, revisited
σ, regular expression over I
$\llbracket \sigma \rrbracket^{\mathrm{L}} \in \mathrm{I}^{*} \rightarrow$ Bool

$$
\begin{aligned}
\llbracket 0 \rrbracket^{\mathrm{L}} w & =\text { False } \\
\llbracket \sigma+\tau \rrbracket^{\mathrm{L}} w & =\llbracket \sigma \rrbracket^{\mathrm{L}} w \vee \llbracket \tau \rrbracket^{\mathrm{L}} w
\end{aligned}
$$

Formal languages, revisited

σ, regular expression over I
$\llbracket \sigma \rrbracket^{\mathrm{L}} \in \mathrm{I}^{*} \rightarrow$ Bool

$$
\begin{aligned}
\llbracket 0 \rrbracket^{\mathrm{L}} w & =\text { False } \\
\llbracket \sigma+\tau \rrbracket^{\mathrm{L}} w & =\llbracket \sigma \rrbracket^{\mathrm{L}} w \vee \llbracket \tau \rrbracket^{\mathrm{L}} w \\
\llbracket A \rrbracket^{\mathrm{L}} w & =[A] \equiv w \quad \text { for } A \in \mathrm{I}
\end{aligned}
$$

Formal languages, revisited

σ, regular expression over I
$\llbracket \sigma \rrbracket^{\mathrm{L}} \in \mathrm{I}^{*} \rightarrow$ Bool

$$
\begin{aligned}
\llbracket 0 \rrbracket^{\mathrm{L}} w & =\text { False } \\
\llbracket \sigma+\tau \rrbracket^{\mathrm{L}} w & =\llbracket \sigma \rrbracket^{\mathrm{L}} w \vee \llbracket \tau \rrbracket^{\mathrm{L}} w \\
\llbracket A \rrbracket^{\mathrm{L}} w & =[A] \equiv w \quad \text { for } A \in \mathrm{I} \\
\llbracket 1 \rrbracket^{\mathrm{L}} w & =[\equiv \equiv w
\end{aligned}
$$

Formal languages, revisited
σ, regular expression over I
$\llbracket \sigma \rrbracket^{\mathrm{L}} \in \mathrm{I}^{*} \rightarrow$ Bool

$$
\begin{aligned}
\llbracket 0 \rrbracket^{\mathrm{L}} w & =\text { False } \\
\llbracket \sigma+\tau \rrbracket^{\mathrm{L}} w & =\llbracket \sigma \rrbracket^{\mathrm{L}} w \vee \llbracket \tau \rrbracket^{\mathrm{L}} w \\
\llbracket A \rrbracket^{\mathrm{L}} w & =[A] \equiv w \quad \text { for } A \in \mathrm{I} \\
\llbracket 1 \rrbracket^{\mathrm{L}} w & =\llbracket \equiv w \\
\llbracket \sigma \times \tau \rrbracket^{\mathrm{L}} w & =\exists_{\left\{v, v^{\prime} \mid v v^{\prime}=w\right\}} \llbracket \sigma \rrbracket^{\mathrm{L}} v \wedge \llbracket \tau \rrbracket^{\mathrm{L}} v^{\prime}
\end{aligned}
$$

Formal languages, revisited
σ, regular expression over I

$$
\llbracket \sigma \rrbracket^{\mathrm{L}} \in \mathrm{I}^{*} \rightarrow \text { Bool }
$$

$$
\begin{aligned}
& \llbracket 0 \rrbracket^{\mathrm{L}} w=\text { False } \\
& \llbracket \sigma+\tau \rrbracket^{\mathrm{L}} w=\llbracket \sigma \rrbracket^{\mathrm{L}} w \vee \llbracket \tau \rrbracket^{\mathrm{L}} w \\
& \llbracket A \rrbracket^{\mathrm{L}} w=[A] \equiv w \quad \text { for } A \in \mathrm{I} \\
& \llbracket 1 \rrbracket^{\mathrm{L}} w=\llbracket \equiv w \\
& \llbracket \sigma \times \tau \rrbracket^{\mathrm{L}} w=\exists_{\left\{v, v^{\prime} \mid v v^{\prime}=w\right\}} \llbracket \sigma \rrbracket^{\mathrm{L}} v \wedge \llbracket \tau \rrbracket^{\mathrm{L}} v^{\prime} \\
& \llbracket \sigma^{*} \rrbracket^{\mathrm{L}} w=\exists_{\left\{v, v^{\prime} v v v^{\prime}=w, v \neq \llbracket\right\}} \llbracket \sigma \rrbracket^{\mathrm{L}} v \wedge \llbracket \sigma^{*} \rrbracket^{\mathrm{L}} v^{\prime} \\
& \vee[] \equiv w
\end{aligned}
$$

$\| \sigma \mathbb{F}^{\mathrm{P}}$ vs $\left.\| \sigma\right]^{\mathrm{L}}$

$[\llbracket]^{『} v s[\sigma]^{]^{1}}$

- $A \times B \simeq B \times A \quad$ but $\llbracket A \times B \rrbracket^{\mathrm{L}} \neq \llbracket B \times A \rrbracket^{\mathrm{L}}$

WIT 2005 - p.9/??
$\llbracket \sigma \mathbb{F}^{\mathrm{F}}$ vs $\llbracket \sigma \rrbracket^{\mathrm{L}}$
\qquad
$\llbracket \sigma \rrbracket^{\mathbb{R}}$ vs $\llbracket \sigma \rrbracket^{\text {L }}$

- $A \times B \simeq B \times A$ but $\left.[A \times B]^{\downarrow} \neq[B \times A]\right]$
$\llbracket \sigma \rrbracket^{\mathrm{F}}$ vs $\llbracket \sigma \rrbracket^{\mathrm{L}}$
- $A \times B \simeq B \times A$ but $\llbracket A \times B \rrbracket^{\mathrm{L}} \neq \llbracket B \times A \rrbracket^{\mathrm{L}}$

Modifications

$[\llbracket]^{『} v s[\sigma]^{]^{1}}$

- $A \times B \simeq B \times A \quad$ but $\llbracket A \times B \rrbracket^{\mathrm{L}} \neq \llbracket B \times A \rrbracket^{\mathrm{L}}$
- $A \not \approx A+A$ but $\llbracket A \rrbracket^{\mathrm{L}}=\llbracket A+A \rrbracket^{\mathrm{L}}$

Modifications:

- Consider multisets instead of words.

Replace -* by $-\rightarrow \omega$.

$[q]^{『} v s[\sigma]^{]^{1}}$

- $A \times B \simeq B \times A \quad$ but $\llbracket A \times B \rrbracket^{\mathrm{L}} \neq \llbracket B \times A \rrbracket^{\mathrm{L}}$
- $A \not \not \nsim A+A \quad$ but $\quad \llbracket A \rrbracket^{\mathrm{L}}=\llbracket A+A \rrbracket^{\mathrm{L}}$

Modifications:

- Consider multisets instead of words.

Replace -* by $-\rightarrow \omega$.

- Consider muliplicities instead of acceptance.

Replace $-\rightarrow$ Bool by $-\rightarrow(\omega+\{\omega\})$.

Multiset semantics

Multiset semantics

Multiset semantics

Multiset semantics
$[\sigma]^{M} \in(\mathrm{I} \rightarrow \omega) \rightarrow(\omega+\{\omega\}$

$$
\begin{aligned}
\llbracket 0]^{\mathrm{M}} w & =0 \\
\llbracket \sigma+\tau \rrbracket^{\mathrm{M}} w & =\llbracket \sigma \rrbracket^{\mathrm{M}} w+\llbracket \tau \rrbracket^{\mathrm{M}} w
\end{aligned}
$$

Multiset semantics

$$
\begin{aligned}
& \llbracket \sigma \rrbracket^{\mathrm{M}} \in(\mathrm{I} \rightarrow \omega) \rightarrow(\omega+\{\omega\}) \\
& \llbracket 0 \rrbracket^{\mathrm{M}} w=0 \\
& \llbracket \sigma+\tau \rrbracket^{\mathrm{M}} w=\llbracket \sigma \rrbracket^{\mathrm{M}} w+\llbracket \tau \rrbracket^{\mathrm{M}} w \\
& \llbracket A \rrbracket^{\mathrm{M}} w=\delta(\delta A) w \quad \text { for } A \in \mathrm{I}
\end{aligned}
$$

$$
\delta x y= \begin{cases}1 & \text { if } x \equiv y \\ 0 & \text { otherwise }\end{cases}
$$

Multiset semantics

$$
\begin{aligned}
& \llbracket \sigma \rrbracket^{\mathrm{M}} \in(\mathrm{I} \rightarrow \omega) \rightarrow(\omega+\{\omega\}) \\
& \llbracket 0 \rrbracket^{\mathrm{M}} w=0 \\
& \llbracket \sigma+\tau \rrbracket^{\mathrm{M}} w=\llbracket \sigma \rrbracket^{\mathrm{M}} w+\llbracket \tau \rrbracket^{\mathrm{M}} w \\
& \llbracket A \rrbracket^{\mathrm{M}} w=\delta(\delta A) w \quad \text { for } A \in \mathrm{I} \\
& \llbracket 1 \rrbracket^{\mathrm{M}} w=\delta \overrightarrow{0} w
\end{aligned}
$$

$$
\delta x y= \begin{cases}1 & \text { if } x \equiv y \\ 0 & \text { otherwise }\end{cases}
$$

Multiset semantics

$$
\begin{aligned}
& \llbracket \sigma \rrbracket^{\mathrm{M}} \in(\mathrm{I} \rightarrow \omega) \rightarrow(\omega+\{\omega\}) \\
& \llbracket 0 \rrbracket^{\mathrm{M}} w=0 \\
& \llbracket \sigma+\tau \rrbracket^{\mathrm{M}} w=\llbracket \sigma \rrbracket^{\mathrm{M}} w+\llbracket \tau \rrbracket^{\mathrm{M}} w \\
& \llbracket A \rrbracket^{\mathrm{M}} w=\delta(\delta A) w \quad \text { for } A \in \mathrm{I} \\
& \llbracket 1 \rrbracket^{\mathrm{M}} w=\delta \overrightarrow{0} w \\
& \llbracket \sigma \times \tau \rrbracket^{\mathrm{M}} w=\Sigma_{\left\{v, v^{\prime} \mid v+v^{\prime}=w\right\}} \llbracket \sigma \rrbracket^{\mathrm{M}} v \times \llbracket \tau \rrbracket^{\mathrm{M}} v^{\prime}
\end{aligned}
$$

$$
\delta x y= \begin{cases}1 & \text { if } x \equiv y \\ 0 & \text { otherwise }\end{cases}
$$

Multiset semantics

$$
\begin{aligned}
& \llbracket \sigma \rrbracket^{\mathrm{M}} \in(\mathrm{I} \rightarrow \omega) \rightarrow(\omega+\{\omega\}) \\
& \llbracket 0 \rrbracket^{\mathrm{M}} w=0 \\
& \llbracket \sigma+\tau \rrbracket^{\mathrm{M}} w=\llbracket \sigma \rrbracket^{\mathrm{M}} w+\llbracket \tau \rrbracket^{\mathrm{M}} w \\
& \llbracket A \rrbracket^{\mathrm{M}} w=\delta(\delta A) w \quad \text { for } A \in \mathrm{I} \\
& \llbracket 1 \rrbracket^{\mathrm{M}} w=\delta \overrightarrow{0} w \\
& \llbracket \sigma \times \tau \rrbracket^{\mathrm{M}} w=\Sigma_{\left\{v, v^{\prime} \mid v+v^{\prime}=w\right\}} \llbracket \sigma \rrbracket^{\mathrm{M}} v \times \llbracket \tau \rrbracket^{\mathrm{M}} v^{\prime} \\
& \llbracket \sigma^{*} \rrbracket^{\mathrm{M}} w=\Sigma_{\left\{v, v^{\prime} \mid v+v^{\prime}=w, v \neq \overrightarrow{0}\right\}} \llbracket \sigma \rrbracket^{\mathrm{M}} v \times \llbracket \sigma^{*} \rrbracket^{\mathrm{M}} v^{\prime} \\
& +(\delta \overrightarrow{0} w)+\omega \times\left(\llbracket \sigma \rrbracket^{\mathrm{M}} \overrightarrow{0}\right) \\
& \delta x y= \begin{cases}1 & \text { if } x \equiv y \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

$\llbracket \sigma \mathbb{F}^{\mathrm{F}}$ vs $\llbracket \sigma \rrbracket^{\mathrm{M}}$
$\simeq \tau$ iff $[\sigma]^{M}=[\tau \tau]^{m}$? ? ?

Proof idea: if

Proof idea: if

Given $f \in(\mathrm{I} \rightarrow \omega) \rightarrow(\omega+\{\omega\})$
define pow $f \in(\mathrm{I} \rightarrow \mathrm{S}$
define pow $f \in(\mathrm{I} \rightarrow$ Set $) \rightarrow$ Set

Proof idea: if

Given $f \in(\mathrm{I} \rightarrow \omega) \rightarrow(\omega+\{\omega\})$
define pow $f \in(\mathrm{I} \rightarrow \mathbf{S e t})$
define pow $f \in(\mathrm{I} \rightarrow$ Set $) \rightarrow$ Set
as pow $f \vec{X}=\Sigma_{g \in \mathrm{I} \rightarrow \omega}(f g) \times \Pi p \in \mathrm{I} .(g p) \rightarrow(\vec{X} p)$

Proof idea: if

Given $f \in(\mathrm{I} \rightarrow \omega) \rightarrow(\omega+\{\omega\})$
define pow $f \in(\mathrm{I} \rightarrow$ Set $) \rightarrow$ Set
as pow $f \vec{X}=\Sigma_{g \in \mathrm{I} \rightarrow \omega}(f g) \times \Pi p \in \mathrm{I} .(g p) \rightarrow(\vec{X} p)$
Observe that pow $\llbracket \sigma \rrbracket^{\mathrm{M}} \simeq \llbracket \sigma \rrbracket^{\mathrm{F}}$
because pow - preserves $0,+, 1, \times,-^{*}$.

Proof idea: only if

Using ideas from:
Abbott,A.,Ghani 05 Containers - Constructing Strictly Positive Types, Theoretical Computer Science, special issue on Applied Semantics (APPSEM).
we define a notion of morphisms on the multiset semantics. Using our representation theorem we can show that $f=g$, if pow $f \simeq$ pow g.

Questions

Questions

- Are commutative semigroup equations $(A+B)^{*} \simeq\left(A^{*} \times B\right)^{*} \times A^{*}$ enough to characterize the isos on regular types?

Questions

- Are commutative semigroup equations + $(A+B)^{*} \simeq\left(A^{*} \times B\right)^{*} \times A^{*}$ enough to characterize the isos on
regular types? regular types?
- Is the multi-set equivalence of regular expressions decidable? (think so).

Questions

- Are commutative semigroup equations + $(A+B)^{*} \simeq\left(A^{*} \times B\right)^{*} \times A^{*}$ enough to characterize the isos on regular types?
- Is the multi-set equivalence of regular expressions decidable? (I think so).
- What about context-free types in general? (No idea, maybe undecidable).

Questions

- Are commutative semigroup equations + $(A+B)^{*} \simeq\left(A^{*} \times B\right)^{*} \times A^{*}$ enough to characterize the isos on
regular types? regular types?
- Is the multi-set equivalence of regular expressions decidable?
-

What about context-free types in general? (No idea, maybe
undecidable)

- What is the relation to recursive types (cf. Marcello's work).

Questions

- Are commutative semigroup equations + $(A+B)^{*} \simeq\left(A^{*} \times B\right)^{*} \times A^{*}$ enough to characterize the isos on regular types?
- Is the multi-set equivalence of regular expressions decidable? (I think so).
- What about context-free types in general? (No idea, maybe undecidable).
- What is the relation to recursive types (cf. Marcello's work).
- Can we use \mathbb{R} (or \mathbb{C}) to decide the iomorphism problem for regular expressions? E.g. interpret $x^{*}=\frac{1}{1-x}$.

