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Is Computation universal?

Alonzo Church Alan Turing

λ- calculus Turing machines

computable functions



The Church-Turing thesis

All computational formalisms define 
the same set of computable functions



The Church-Turing thesis

What do we mean by all formalisms?

All computational formalisms define 
the same set of computable functions



The Church-Turing thesis (CTT)

Most people believe CTT

Hypercomputing?

All physically realizable computational 
formalisms define the same set of 

computable functions



The Church-Turing thesis

Most people believe CT

Hypercomputing?

All physically realizable computational 
formalisms define the same set of 

computable functions

Throw you TM in a 
black hole...



Feasible computation?
Not all computable problems can be 
solved in practice.

TAUT Example: Is

                                                                           
a tautology?

The best known algorithm for TAUT 
requires exponential time in the number 
of propositional variables.

(P ∧Q→ R)↔ (P → Q→ R)



The extended Church-Turing thesis (ECT)

Challenged by non-standard 
computational formalisms

P-systems inspired by biology

Quantum Computing inspired by 
quantum physics

All physically realizable computational 
formalisms define the same set of 

feasible computable functions



 Factor & Primes

The best known algorithm for factorisation needs 
exponential time.

Hence factorisation is not feasible.

However, there is a polynomial algorithm for 
PRIMES (feasible).

Important for public key cryptography (e.g. RSA)

Input: a number (e.g. 15)

Output: a (nontrivial) factor 
(e.g. 3 or 5) or “prime”

FACTOR
Input: a number (e.g. 15, 7)

Output:yes (e.g. for 7)
             no (e.g. for 15)

PRIMES



Shor’s algorithm

1994 : Shor develops an (probabilistic) 
algorithm that would solve FACTOR in 
polynomial time on a (hypothetical) 
quantum computer.

This indicates that the ECT doesn’t hold 
for quantum computing

Peter Shor (MIT)



Quantum Physics
in 10 minutes



Is light wave or 
particle?

Isaac Newton 
(1643 - 1727)

Light is made 
of particles

Christiaan Huygens 
(1629 –1695)

Light is a 
wave

http://en.wikipedia.org/wiki/1629
http://en.wikipedia.org/wiki/1629
http://en.wikipedia.org/wiki/1695
http://en.wikipedia.org/wiki/1695


Young’s double slit experiment

In 1801 Thomas 
Young 
performed the 
double slit 
experiment

It produces an 
interference 
pattern

Light is a wave! 



The photoelectric effect

Photons can dislocate electrons 
in certain materials

The energy of the electrons only 
depends on the frequency of the 
light

Not on intensity!

Below a certain intensity no 
electrons can dislocated.

Conclusion: light consists of 
particles (photons).



Wave particle duality
Electrons also behave this 
way.

Copenhagen interpretation

Particles are probability 
waves

Amplitude corresponds to the 
probability that we observe 
the particle.

Niels Bohr 
(1885 – 1962)



Einstein-Podelsky-Rosen paradox (EPR)

Thought experiment about 
non-locality

Two particles with opposite 
spin are produced.

They are measured far apart.

According to QM we always 
measure both particle if we 
measure one.

EPR argue that there have to 
be hidden variables



Bell inequality
Local variables or non-locality?

Is there an experiment to show who is 
right? 

Bell showed that there are experiments 
which refute hidden-variable theory

An intuitive account of Bell’s theorem 
has been given by Mermin



Mermin’s thought experiment

Each time we press the 
button on C both 
detectors show a red or 
green light.

If both detectors have 
the same settings (1,2,3) 
the same light goes on.

If the detectors have 
different settings the 
same light goes on in 1/4 
of the cases.



“The conundrum of the device”

Each particle has to carry the information which light to flash for each 
setting (3 bits).

Both particles have the same instruction set.

Assume the instruction set is RRG.

If we measure different bits, the same light goes on in at least 1/3 of all 
cases.

The same is true for all other instruction sets.

This is incompatible with the observation that same light went on only in 1/4 
of all cases!



Non-locality rules !
Mermin’s experiment cannot explain by hidden 
variables.

QM has a simple explanation: We are measuring 
the spin of entangled particles with orientations 
0º, 120º, 240º.

If the settings are different, the probability that 
the measurements agree is given by             and:

While Mermin’s experiment is a thought 
experiment, similar experiments have been carried 
out in practice.

cos2 θ
2

cos2 0◦

2 = 1

cos2 120◦

2 = cos2 240◦

2 = 1
4



How to build your own 
quantum computer

in theory



Quantum memory: the qubit
α |0〉 + β |1〉

α, β ∈ C
superposition of 2 probability 

amplitudes given as complex numbers

|α|2 + |β|2 = 1

Probability that 
the qubit is 0

Probability that 
the qubit is 1

Examples: |0〉 |1〉 1√
2
(|0〉 + |1〉) 1√

2
(|0〉 − |1〉)

base states superpositions

The Bloch sphere

subset of a 2-dimensional complex vectorspace



Operations on qubits: 
Measurement 

α |0〉 + β |1〉
probabilistic

irreversible

Example

1√
2
(|0〉 + |1〉)

|0〉

|1〉

|α|2

|β|2

|0〉

|1〉

1
2

1
2



Operations on qubits:    
Unitaries

deterministic

reversible

correspond to 
rotations of the 
Bloch sphere

[
u00 u01

u10 u11

]
linear independent + 

norm preserving

Examples

1√
2

[
1 1
1 −1

]

negation (X) Hadamard (H)

!→ (αu00 + βu10) |0〉+ (αu01 + βu11) |1〉

α |0〉 + β |1〉

[
0 1
1 0

]



Two qubits (and more)
Tensorproduct of 
qubits

subset of a 4-
dimensional 
vectorspace

How many 
dimensions do we 
get for 3 qubits?

α |00〉 + β |01〉 + γ |10〉 + δ |11〉

|α|2 + |β|2 + |γ|2 + |δ|2 = 1

Examples:

1√
2
(|00〉 + |11〉)

entangled state 
(Bell state)

= 1√
2
(|0〉 + |1〉) 1√

2
(|0〉 + |1〉)

1
2 (|00〉 + |01〉 + |10〉 + |11〉)

separable state



Measurements on 2 qubits
1
2 (|00〉 + |01〉 + |10〉 + |11〉)

|00〉 |01〉

1
2

1
20 1

|10〉 |11〉

1
2

1
2 10

1st qubit

2nd qubit

1√
2
(|10〉 + |11〉)

1
2

1
20 1

1√
2
(|00〉 + |01〉)



Measurements on 2 qubits
1√
2
(|00〉 + |11〉)

1st qubit

2nd qubit

|00〉

1 0

|00〉 |11〉

1
2

1
20 1

|11〉

11



Unitaries on several qubits

a b c d
0 0 0 0
0 1 0 1
1 0 1 1
1 1 1 0

cnot

cond-U

a • c

b !"#$%&'( d

•

U
•
•!"#$%&'(

Toffolli



Deutsch’s algorithm

Determine wether f is constant.

But you may use f only once.

Impossible !

Given a classical gate f



Deutsch’s algorithm

There is a quantum circuit to determine 
wether f is constant.

Using the unitary only once!

Replace f

by a unitary:
x x

Uf

y y ⊕ f(x)



Deutsch’s algorithm
|0〉 H x x H !"#$%&'(M

Uf

|1〉 H y y ⊕ f(x)
Measurement.

 0 : f constant
1 : f not constant

Quantumparallelism: we observe a 
global property of f



Deutsch’s Algorithm: How does it work?

x x

Uf

y y ⊕ f(x)1√
2
(|0〉 − |1〉) (−1)f x 1√

2
(|0〉 − |1〉)

1√
2
(|0〉 + |1〉)

f 0 = f 1 ± 1
4 (|0〉+ |1〉)(|0〉 − |1〉)

f 0 != f 1 ± 1
4 (|0〉 − |1〉)(|0〉 − |1〉)

H

± 1√
2
|0〉 (|0〉 − |1〉)

± 1√
2
|1〉 (|0〉 − |1〉)



Shor’s algorithm

Shor’s algorithm also exploits quantum 
parallelism.

Shor exploits a (probabilistic) reduction 
of FACTOR to order-finding

Order finding: Given            with no 
common factors, determine    such    
that  

x < N
r

xr ≡ 1 mod N



Shor’s algorithm

Need to implement reversible arithmetic 

Essential ingredient: Quantum Fourier 
Transform QFT

QFT turns a frequency distribution into 
a value distribution.

|0 . . . 0〉 Hn • QFT−1 !"#$%&'(M

|x〉 xj mod N



Quantum Fourier Transform

The (fast) Fourier transform is used in signal 
processing to obtain a frequency spectrum of a 
signal.

Shor realized that we can apply Fourier transform 
to the (hidden) quantum state

Applying the same idea as for the fast Fourier 
transform this results in a polynomially sized 
circuit.

Here we are observing the frequency of the 
modular exponentiation

Deutsch’s Algorithm

|j1〉 H R2 · · · Rn−1 Rn · · · · · · |0〉 + e2πi0.j1...jn |1〉

|j2〉 • · · · H · · · Rn−2 Rn−1 · · · |0〉 + e2πi0.j2...jn |1〉
· · · · · · · · · · · ·

|jn−1〉 · · · • · · · • · · · H R2 |0〉 + e2πi0.jn−1jn |1〉
|jn〉 · · · • · · · • · · · • |0〉 + e2πi0.jn |1〉

1

Deutsch’s Algorithm

|j1〉 H R2 · · · Rn−1 Rn · · · · · · |0〉 + e2πi0.j1...jn |1〉

|j2〉 • · · · H · · · Rn−2 Rn−1 · · · |0〉 + e2πi0.j2...jn |1〉
· · · · · · · · · · · ·

|jn−1〉 · · · • · · · • · · · H R2 |0〉 + e2πi0.jn−1jn |1〉
|jn〉 · · · • · · · • · · · • |0〉 + e2πi0.jn |1〉

1



Research topics
Quantum hardware

Ion trap

One-way quantum computer

Quantum algorithms

Quantum error correction

Grover’s algorithm

Mathematical structures

Coecke’s Kindergarten QM

Quantum Programming Languages

QML, QIO monad


