Towards a High Level Quantum Programming Language

Thorsten Altenkirch
University of Nottingham
based on joint work with Jonathan Grattage and discussions with V.P. Belavkin
supported by EPSRC grant GR/S30818/01

Background

Background

- Simulation of quantum systems is expensive:

Exponential time to simulate polynomial circuits.

Background

- Simulation of quantum systems is expensive:

Exponential time to simulate polynomial circuits.

- Feynman: Can we exploit this fact to perform computations more efficiently?

Background

- Simulation of quantum systems is expensive:

Exponential time to simulate polynomial circuits.

- Feynman: Can we exploit this fact to perform computations more efficiently?
- Shor: Factorisation in quantum polynomial time.

Background

- Simulation of quantum systems is expensive:

Exponential time to simulate polynomial circuits.

- Feynman: Can we exploit this fact to perform computations more efficiently?
- Shor: Factorisation in quantum polynomial time.
- Grover: Blind search in $\Theta(\sqrt{n})$

Background

- Simulation of quantum systems is expensive:

Exponential time to simulate polynomial circuits.

- Feynman: Can we exploit this fact to perform computations more efficiently?
- Shor: Factorisation in quantum polynomial time.
- Grover: Blind search in $\Theta(\sqrt{n})$
- Can we build a quantum computer?

Background

- Simulation of quantum systems is expensive: Exponential time to simulate polynomial circuits.
- Feynman: Can we exploit this fact to perform computations more efficiently?
- Shor: Factorisation in quantum polynomial time.
- Grover: Blind search in $\Theta(\sqrt{n})$
- Can we build a quantum computer?
yes We can run quantum algorithms.

Background

- Simulation of quantum systems is expensive: Exponential time to simulate polynomial circuits.
- Feynman: Can we exploit this fact to perform computations more efficiently?
- Shor: Factorisation in quantum polynomial time.
- Grover: Blind search in $\Theta(\sqrt{n})$
- Can we build a quantum computer?
yes We can run quantum algorithms.
no Nature is classical after all!

The quantum software crisis

The quantum software crisis

Quantum algorithms are usually presented using the circuit model.

The quantum software crisis

- Quantum algorithms are usually presented using the circuit model.
- Nielsen and Chuang, p.7, Coming up with good quantum algorithms is hard.

The quantum software crisis

- Quantum algorithms are usually presented using the circuit model.
- Nielsen and Chuang, p.7, Coming up with good quantum algorithms is hard.
- Richard Josza, QPL 2004: We need to develop quantum thinking!

QML

QML

- QML: a first-order functional language for quantum computations on finite types.

QML

- QML: a first-order functional language for quantum computations on finite types.
- Design based on semantic analogy:

FCC Finite classical computations
FQC Finite quantum computations

QML

- QML: a first-order functional language for quantum computations on finite types.
- Design based on semantic analogy: FCC Finite classical computations FQC Finite quantum computations
- Quantum control and quantum data.

QML

- QML: a first-order functional language for quantum computations on finite types.
- Design based on semantic analogy:

FCC Finite classical computations
FQC Finite quantum computations

- Quantum control and quantum data.
- Contraction is interpreted as sharing not cloning.

QML

- QML: a first-order functional language for quantum computations on finite types.
- Design based on semantic analogy:

FCC Finite classical computations
FQC Finite quantum computations

- Quantum control and quantum data.
- Contraction is interpreted as sharing not cloning.
- Control of decoherence, hence no implicit weakening.

QML

- QML: a first-order functional language for quantum computations on finite types.
- Design based on semantic analogy:

FCC Finite classical computations
FQC Finite quantum computations

- Quantum control and quantum data.
- Contraction is interpreted as sharing not cloning.
- Control of decoherence, hence no implicit weakening.
- Compiler under construction (Jonathan)

Example: Hadamard operation

Example: Hadamard operation

Matrix

$$
H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

Example: Hadamard operation

Matrix

$$
H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

QML

$$
\begin{aligned}
\text { had }: Q_{2} & \multimap Q_{2} \\
\text { had } x= & \text { if }^{\circ} x \\
& \text { then }\{\text { qfalse } \mid(-1) \text { qtrue }\} \\
& \text { else }\{\text { qfalse } \mid \text { qtrue }\}
\end{aligned}
$$

Deutsch algorithm

$e q: Q_{2} \multimap Q_{2} \multimap Q_{2}$
eq $a b=$
let $\left(x, y,\left(a^{\prime}, b^{\prime}\right)\right)=$ if $^{\circ}\{$ qfalse | qtrue $\}$
then (qtrue, $\mathrm{if}^{\circ} a$
then $(\{$ qfalse $\mid(-1)$ qtrue $\},($ qtrue,$b))$
else $(\{(-1)$ qfalse | qtrue $\},($ qfalse,$b)))$
else (qfalse, if $^{\circ} b$
then $(\{(-1)$ qfalse | qtrue $\},(a$, qtrue $))$ else (\{qfalse | (-1) qtrue $\},(a$, qfalse $)))$
in had x

Overview

1. Finite classical computation
2. Finite quantum computation
3. QML
4. Conclusions and further work

1. Finite classical computation

2. Finite quantum computation
3. QML
4. Conclusions and further work

Classical computations on finite types

Classical computations on finite types

- Quantum mechanics is time-reversible...

Classical computations on finite types

- Quantum mechanics is time-reversible...
- ... hence quantum computation is based on reversible operations.

Classical computations on finite types

- Quantum mechanics is time-reversible...
- ... hence quantum computation is based on reversible operations.
- However: Newtonian mechanics, Maxwellian electrodynamics are also time-reversible...

Classical computations on finite types

- Quantum mechanics is time-reversible...
- ... hence quantum computation is based on reversible operations.
- However: Newtonian mechanics, Maxwellian electrodynamics are also time-reversible. . .
- ... hence classical computation should be based on reversible operations.

Classical computation (FCC)

Classical computation (FCC)

Given finite sets A (input) and B (output):

Classical computation (FCC)

Given finite sets A (input) and B (output):

- a finite set of initial heaps H,
- an initial heap $h \in H$,
- a finite set of garbage states G,
- a bijection $\phi \in A \times H \simeq B \times G$,

Composing computations

Composing computations

Extensional equality

Extensional equality

- A classical computation $\alpha=(H, h, G, \phi)$ induces a function $\mathrm{U} \alpha \in A \rightarrow B$ by

Extensional equality

- A classical computation $\alpha=(H, h, G, \phi)$ induces a function $\mathrm{U} \alpha \in A \rightarrow B$ by
- We say that two computations are extensionally equivalent, if they give rise to the same function.

Extensional equality ...

- Theorem:

$$
\mathbf{U}(\beta \circ \alpha)=(\mathbf{U} \beta) \circ(\mathbf{U} \alpha)
$$

Extensional equality ...

- Theorem:

$$
\mathbf{U}(\beta \circ \alpha)=(\mathbf{U} \beta) \circ(\mathbf{U} \alpha)
$$

- Hence, classical computations upto extensional equality give rise to the category FCC.

Extensional equality ...

- Theorem:

$$
\mathbf{U}(\beta \circ \alpha)=(\mathbf{U} \beta) \circ(\mathbf{U} \alpha)
$$

- Hence, classical computations upto extensional equality give rise to the category FCC.
- Theorem: Any function $f \in A \rightarrow B$ on finite sets A, B can be realized by a computation.

Extensional equality ...

- Theorem:

$$
\mathbf{U}(\beta \circ \alpha)=(\mathbf{U} \beta) \circ(\mathbf{U} \alpha)
$$

- Hence, classical computations upto extensional equality give rise to the category FCC.
- Theorem: Any function $f \in A \rightarrow B$ on finite sets A, B can be realized by a computation.
- Translation for Category Theoreticians: U is full and faithful.

Example π_{1} :

function

$$
\begin{aligned}
& \pi_{1} \in(2,2) \rightarrow 2 \\
& \pi_{1}(x, y)=x
\end{aligned}
$$

Example π_{1} :

function

$$
\begin{aligned}
& \pi_{1} \in(2,2) \rightarrow 2 \\
& \pi_{1}(x, y)=x
\end{aligned}
$$

computation

$$
\begin{aligned}
& 2 \longrightarrow \\
& 2 \longrightarrow \phi_{\pi_{1}}
\end{aligned}
$$

Example δ :

function

$$
\begin{aligned}
& \delta \in 2 \rightarrow(2,2) \\
& \delta x=(x, x)
\end{aligned}
$$

Example δ :

function

$$
\begin{aligned}
& \delta \in 2 \rightarrow(2,2) \\
& \delta x=(x, x)
\end{aligned}
$$

computation

ϕ_{δ}

$$
\begin{aligned}
& \phi_{\delta} \in(2,2) \rightarrow(2,2) \\
& \phi_{\delta}(0, x)=(0, x) \\
& \phi_{\delta}(1, x)=(1, \neg x)
\end{aligned}
$$

2. Finite quantum computation

1. Finite classical computation
2. QML basics
3. Compiling QML
4. Conclusions and further work

Pure quantum values

Pure quantum values

- A pure quantum value over a finite set A is given by $\vec{v} \in A \rightarrow \mathbb{C}$ with unit norm:

$$
\|\vec{v}\|=\Sigma a \in A \cdot|\vec{v} a|^{2}=1
$$

Pure quantum values

- A pure quantum value over a finite set A is given by $\vec{v} \in A \rightarrow \mathbb{C}$ with unit norm:

$$
\|\vec{v}\|=\Sigma a \in A \cdot|\vec{v} a|^{2}=1
$$

- $A \rightarrow \mathbb{C}$ is monadic, giving rise to the category of (finite dimensional) vector spaces.

Vector spaces as a monad

type Vec $a=a \rightarrow \mathbb{C}$
return $\in \operatorname{Eq} a \Rightarrow a \rightarrow \operatorname{Vec} a$
return $a b=$ if $a \equiv b$ then 1 else 0
$(\gg=) \in$ Finite $a \Rightarrow$
Vec $a \rightarrow(a \rightarrow$ Vec $b) \rightarrow$ Vec b
as $\gg f=\lambda b \rightarrow \operatorname{sum}[($ as $a) *(f a b)$
$a \leftarrow$ enumerate]

Reversible quantum operations

Reversible quantum operations

- Reversible operations on pure quantum values are given by unitary operators.

Reversible quantum operations

- Reversible operations on pure quantum values are given by unitary operators.
- On finite dimensional vector spaces: unitary = norm preserving linear iso.

Reversible quantum operations

- Reversible operations on pure quantum values are given by unitary operators.
- On finite dimensional vector spaces: unitary = norm preserving linear iso.
- The inverse is given by the adjoint:

$$
\begin{aligned}
& \text { adj } \in(a \rightarrow \operatorname{Vec} b) \rightarrow b \rightarrow \operatorname{Vec} a \\
& \text { adj } f b a=\text { conjugate }(f a b)
\end{aligned}
$$

Quantum computations (FQC)

Quantum computations (FQC)
 Given finite sets A (input) and B (output):

Quantum computations (FQC)

Given finite sets A (input) and B (output):

- a finite set H, the base of the space of initial heaps,
- a heap initialisation vector $\vec{h} \in H \rightarrow \mathbb{C}$,
- a finite set G, the base of the space of garbage states,
, a unitary operator $\phi \in A \otimes H \multimap_{\text {unitary }} B \otimes G$.

Composing quantum computations

Composing quantum computations

Extensional equality?

Extensional equality?

- . . . is a bit more subtle.

Extensional equality?

- . . . is a bit more subtle.
- There is no (sensible) operator on vector spaces replacing $\pi_{1} \in B \times G \rightarrow B$.

Extensional equality?

- . . . is a bit more subtle.
- There is no (sensible) operator on vector spaces replacing $\pi_{1} \in B \times G \rightarrow B$.
- Indeed: Forgetting part of a pure state results in a mixed state.

Density operators

Density operators

- Mixed states are represented by density operators $\rho \in A \multimap A$ (positive operators with unit trace).

Density operators

- Mixed states are represented by density operators $\rho \in A \multimap A$ (positive operators with unit trace).
- $\rho \vec{v}=\lambda \vec{v}$ is interpreted as the system is in the pure state \vec{v} with probability λ.

Superoperators

Superoperators

- Morphisms on mixed states are completely positive linear operators on the space of density operators, called superoperators.

Superoperators

- Morphisms on mixed states are completely positive linear operators on the space of density operators, called superoperators.
- Every unitary operator ϕ gives rise to a superoperator $\widehat{\phi}$.

Superoperators

- Morphisms on mixed states are completely positive linear operators on the space of density operators, called superoperators.
- Every unitary operator ϕ gives rise to a superoperator $\widehat{\phi}$.
- There is an operator

$$
\operatorname{tr}_{B, G} \in B \otimes G \multimap_{\text {super }} B
$$

called partial trace.

Extensional equality

Extensional equality

- A quantum computation $\alpha \in$ FQC $A B$ gives rise to a superoperator $\mathrm{U} \alpha \in A \multimap_{\text {super }} B$

Extensional equality

- A quantum computation $\alpha \in$ FQC $A B$ gives rise to a superoperator $\mathrm{U} \alpha \in A \multimap_{\text {super }} B$

- We say that two computations are extensionally equivalent, if they give rise to the same superoperator.

Extensional equality ...

- Theorem:

$$
\mathbf{U}(\beta \circ \alpha)=(\mathbf{U} \beta) \circ(\mathbf{U} \alpha)
$$

Extensional equality ...

- Theorem:

$$
\mathbf{U}(\beta \circ \alpha)=(\mathbf{U} \beta) \circ(\mathbf{U} \alpha)
$$

- Hence, quantum computations upto extensional equality give rise to the category FQC.

Extensional equality ...

- Theorem:

$$
\mathbf{U}(\beta \circ \alpha)=(\mathbf{U} \beta) \circ(\mathbf{U} \alpha)
$$

- Hence, quantum computations upto extensional equality give rise to the category FQC.
- Theorem: Every superoperator $F \in A \multimap_{\text {super }} B$ (on finite Hilbert spaces) comes from a quantum computation.

Extensional equality ...

- Theorem:

$$
\mathbf{U}(\beta \circ \alpha)=(\mathbf{U} \beta) \circ(\mathbf{U} \alpha)
$$

- Hence, quantum computations upto extensional equality give rise to the category FQC.
- Theorem: Every superoperator $F \in A \multimap_{\text {super }} B$ (on finite Hilbert spaces) comes from a quantum computation.
(U is full and faithful).

Classical vs quantum

Classical vs quantum

classical (FCC)
quantum (FQC)

Classical vs quantum

classical (FCC)
quantum (FQC)
finite sets

Classical vs quantum

classical (FCC)
finite sets
quantum (FQC)
finite dimensional Hilbert spaces

Classical vs quantum

classical (FCC)
finite sets
bijections
quantum (FQC)
finite dimensional Hilbert spaces

Classical vs quantum

classical (FCC)
finite sets
bijections
quantum (FQC)
finite dimensional Hilbert spaces
unitary operators

Classical vs quantum

classical (FCC)	quantum (FQC)
finite sets	finite dimensional Hilbert spaces
bijections	unitary operators
cartesian product (x)	

Classical vs quantum

classical (FCC)	quantum (FQC)
finite sets	finite dimensional Hilbert spaces
bijections	unitary operators
cartesian product (\times)	tensor product (\otimes)

Classical vs quantum

classical (FCC)	quantum (FQC)
finite sets	finite dimensional Hilbert spaces
bijections	unitary operators
cartesian product (\times)	tensor product (\otimes)
functions	

Classical vs quantum

classical (FCC)	quantum (FQC)
finite sets	finite dimensional Hilbert spaces
bijections	unitary operators
cartesian product (\times)	tensor product (\otimes)
functions	superoperators

Classical vs quantum

classical (FCC)	quantum (FQC)
finite sets	finite dimensional Hilbert spaces
bijections	unitary operators
cartesian product (\times)	tensor product (\otimes)
functions	superoperators
projections	

Classical vs quantum

classical (FCC)	quantum (FQC)
finite sets	finite dimensional Hilbert spaces
bijections	unitary operators
cartesian product (\times)	tensor product (\otimes)
functions	superoperators
projections	partial trace

$\pi_{1} \circ \delta$, classically

$$
\pi_{1} \circ \delta: 2 \rightarrow 2
$$

$\pi_{1} \circ \delta$, classically

$$
\pi_{1} \circ \delta: 2 \rightarrow 2
$$

$\pi_{1} \circ \delta$, classically

$$
\pi_{1} \circ \delta: 2 \rightarrow 2
$$

$2 \longrightarrow 2$

$\pi_{1} \circ \delta$, quantum

$\pi_{1} \circ \delta$, quantum

input: $\left\{\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle\right\}$

$\pi_{1} \circ \delta$, quantum

input: $\left\{\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle\right\}$
output: $\frac{1}{2}\{|0\rangle\}+\frac{1}{2}\{|1\rangle\}$

$\pi_{1} \circ \delta$, quantum

input: $\left\{\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle\right\}$
output: $\frac{1}{2}\{|0\rangle\}+\frac{1}{2}\{|1\rangle\}$
Decoherence!

Control of decoherence

Control of decoherence

QML is based on strict linear logic

Control of decoherence

- QML is based on strict linear logic
- Contraction is implicit and realized by ϕ_{δ}.

Control of decoherence

- QML is based on strict linear logic
- Contraction is implicit and realized by ϕ_{δ}.
- Weakening is explicit and leads to decoherence.

3. QML

1. Finite classical computation
2. Finite quantum computation
3. Conclusions and further work

QML overview

QML overview

Types

$$
\sigma=1|\sigma \otimes \tau| \sigma \oplus \tau
$$

QML overview

Types

$$
\sigma=1|\sigma \otimes \tau| \sigma \oplus \tau
$$

Terms

$$
t=x \mid \text { let } x=t \text { in } u \mid x \uparrow \vec{y}
$$

$$
|()|(t, u) \mid \operatorname{let}(x, y)=t \text { in } u
$$

$$
\operatorname{qinl} t \mid \operatorname{qinr} u
$$

$$
\text { case } t \text { of }\left\{\text { qinl } x \Rightarrow u \mid \text { qinr } y \Rightarrow u^{\prime}\right\}
$$

$$
\operatorname{case}^{\circ} t \text { of }\left\{\text { qinl } x \Rightarrow u \mid \text { qinr } y \Rightarrow u^{\prime}\right\}
$$

$\mid\{(\kappa) t \mid(\iota) u\}$

Qbits

$Q_{2}=1 \oplus 1$
qtrue $=$ qinl ()
qfalse $=$ qinr ()
if t then u else u^{\prime}
$=$ case $\left\{\right.$ qinl ${ }_{-} \Rightarrow u \mid$ qinr $\left._{-} \Rightarrow u^{\prime}\right\}$
if $^{\circ} t$ then u else u^{\prime}
$=\operatorname{case}^{\circ}\left\{\right.$ qinl $_{-} \Rightarrow u \mid$ qinr $\left._{-} \Rightarrow u^{\prime}\right\}$

QML overview ...

QML overview ...

Typing judgements

$$
\begin{array}{cc}
\Gamma \vdash t: \sigma & \text { programs } \\
\Gamma \vdash^{\circ} t: \sigma & \text { strict programs }
\end{array}
$$

QML overview ...

Typing judgements

$$
\begin{aligned}
& \Gamma \vdash t: \sigma \quad \text { programs } \\
& \Gamma \vdash^{\circ} t: \sigma \text { strict programs }
\end{aligned}
$$

Semantics

$$
\frac{\Gamma \vdash t: \sigma}{\llbracket t \rrbracket \in \mathrm{FQC} \llbracket \Gamma \rrbracket \llbracket \sigma \rrbracket} \quad \frac{\Gamma \vdash^{\circ} t: \sigma}{\llbracket t \rrbracket \in \mathrm{FQC}^{\circ} \llbracket \Gamma \rrbracket \llbracket \sigma \rrbracket}
$$

The let-rule

$$
\begin{gathered}
\Gamma \vdash t: \sigma \\
\Delta, x: \sigma \vdash u: \tau \\
\Gamma \otimes \Delta \vdash \operatorname{let} x=t \text { in } u: \tau \\
\text { let }
\end{gathered}
$$

The let-rule

$\Gamma \vdash t: \sigma$
$\Delta, x: \sigma \vdash u: \tau$
$\Gamma \otimes \Delta \vdash \operatorname{let} x=t$ in $u: \tau$
let

Q on contexts

Q on contexts

$$
\begin{array}{ll}
\Gamma, x: \sigma \otimes \Delta, x: \sigma & =(\Gamma \otimes \Delta), x: \sigma \\
\Gamma, x: \sigma \otimes \Delta & =(\Gamma \otimes \Delta), x: \sigma \text { if } x \notin \operatorname{dom} \Delta \\
\bullet \otimes \Delta & =\Delta
\end{array}
$$

Q on contexts

$$
\begin{array}{ll}
\Gamma, x: \sigma \otimes \Delta, x: \sigma & =(\Gamma \otimes \Delta), x: \sigma \\
\Gamma, x: \sigma \otimes \Delta & =(\Gamma \otimes \Delta), x: \sigma \text { if } x \notin \operatorname{dom} \Delta \\
\bullet \otimes \Delta & =\Delta
\end{array}
$$

$$
\begin{gathered}
\Gamma \otimes \Delta \Delta \phi_{\mathrm{C}_{\mathrm{r}, \Delta}}-\Gamma \\
H_{\mathrm{T}, \Delta}-\mathrm{D}
\end{gathered}
$$

Another source of decoherence

Another source of decoherence

- forget mentions x
forget : $2 \multimap 2$
forget $x=$ if x then qtrue else qtrue

Another source of decoherence

- forget mentions x
forget : $2 \multimap 2$
forget $x=$ if x then qtrue else qtrue
- but doesn't use it.

Another source of decoherence

- forget mentions x

$$
\text { forget : } 2 \multimap 2
$$

$$
\text { forget } x=\text { if } x \text { then qtrue else qtrue }
$$

- but doesn't use it.
- Hence, it has to measure it!

\oplus-elim

\oplus-elim

$\Gamma \vdash c: \sigma \oplus \tau$
$\Delta, x: \sigma \vdash t: \rho$
$\Delta, y: \tau \vdash u: \rho$
$\overline{\Gamma \otimes \Delta \vdash \text { case } c \text { of }\{\text { inl } x \Rightarrow t \mid \operatorname{inr} y \Rightarrow u\}: \rho}+\operatorname{elim}$

\oplus-elim

$$
\begin{aligned}
& \Gamma \vdash c: \sigma \oplus \tau \\
& \Delta, x: \sigma \vdash t: \rho \\
& \Delta, y: \tau \vdash u: \rho
\end{aligned}
$$

$\overline{\Gamma \otimes \Delta \vdash \text { case } c \text { of }\{\text { inl } x \Rightarrow t \mid \operatorname{inr} y \Rightarrow u\}: \rho}+\operatorname{elim}$

\oplus-elim decoherence-free

\oplus-elim decoherence-free

$$
\begin{gathered}
\Gamma \vdash^{a} c: \sigma \oplus \tau \\
\Delta, x: \sigma \vdash^{\circ} t: \rho \\
\Delta, y: \tau \vdash^{\circ} u: \rho t \perp u \\
\Gamma \otimes \Delta \vdash^{a} \text { case }^{\circ} c \text { of }\{\operatorname{inl} x \Rightarrow t \mid \operatorname{inr} y \Rightarrow u\}: \rho
\end{gathered}-\operatorname{elim}^{\circ} \quad \text {. }
$$

\oplus-elim decoherence-free

$$
\begin{aligned}
& \Gamma \vdash^{a} c: \sigma \oplus \tau \\
& \Delta, x: \sigma \vdash^{\circ} t: \rho \\
& \Delta, y: \tau \vdash^{\circ} u: \rho t \perp u
\end{aligned}
$$

$$
\overline{\Gamma \otimes \Delta \vdash^{a} \text { case }^{\circ} c \text { of }\{\operatorname{inl} x \Rightarrow t \mid \operatorname{inr} y \Rightarrow u\}: \rho} \oplus-\operatorname{elim}^{\circ}
$$

if $^{\circ}$
if $^{\circ}$

> forget $^{\prime}: 2 \multimap 2$
> forget $^{\prime} x=\mathbf{i f}^{\circ} x$ then qtrue else qtrue

if $^{\circ}$

$$
\begin{aligned}
& \text { forget }^{\prime}: 2 \multimap 2 \\
& \text { forget }^{\prime} x=\mathrm{if}^{\circ} x \text { then qtrue else qtrue }
\end{aligned}
$$

This program has a type error, because qtrue $\not \perp$ qtrue.

if $^{\circ}$

$$
\begin{aligned}
& \text { forget }^{\prime}: 2 \multimap 2 \\
& \text { forget }^{\prime} x=\mathrm{if}^{\circ} x \text { then qtrue else qtrue }
\end{aligned}
$$

- This program has a type error, because qtrue $\not \subset$ qtrue.

$$
\begin{aligned}
& \text { qnot }: 2 \multimap 2 \\
& \text { qnot } x=\text { if }^{\circ} x \text { then qfalse else qtrue }
\end{aligned}
$$

$$
\begin{aligned}
& \text { forget }^{\prime}: 2 \multimap 2 \\
& \text { forget }^{\prime} x=\mathbf{i f}^{\circ} x \text { then qtrue else qtrue }
\end{aligned}
$$

- This program has a type error, because qtrue $\not \perp$ qtrue.

$$
\begin{aligned}
& \text { qnot }: 2 \multimap 2 \\
& \text { qnot } x=\text { if }^{\circ} x \text { then qfalse else qtrue }
\end{aligned}
$$

- This program typechecks, because qfalse \perp qtrue.

4. QML

1. Finite classical computation
2. Finite quantum computation
3. QML

Conclusions

Conclusions

- Our semantic ideas proved useful when designing a quantum programming language, analogous concepts are modelled by the same syntactic constructs.

Conclusions

- Our semantic ideas proved useful when designing a quantum programming language, analogous concepts are modelled by the same syntactic constructs.
- Our analysis also highlights the differences between classical and quantum programming.

Conclusions

Our semantic ideas proved useful when designing a quantum programming language, analogous concepts are modelled by the same syntactic constructs.

- Our analysis also highlights the differences between classical and quantum programming.
- Quantum programming introduces the problem of control of decoherence, which we address by making forgetting variables explicit and by having different if-then-else constructs.

Further work

Further work

- We have to analyze more quantum programs to evaluate the practical usefulness of our approach.

Further work

- We have to analyze more quantum programs to evaluate the practical usefulness of our approach.
- Are we able to come up with completely new algorithms using QML?

Further work

- We have to analyze more quantum programs to evaluate the practical usefulness of our approach.
- Are we able to come up with completely new algorithms using QML?
- How to deal with higher order programs?

Further work

- We have to analyze more quantum programs to evaluate the practical usefulness of our approach.
- Are we able to come up with completely new algorithms using QML?
- How to deal with higher order programs?
- How to deal with infinite datatypes?

Further work

- We have to analyze more quantum programs to evaluate the practical usefulness of our approach.
- Are we able to come up with completely new algorithms using QML?
- How to deal with higher order programs?
- How to deal with infinite datatypes?
- Investigate the similarities/differences between FCC and FQC from a categorical point of view.

The end

Thank you for your attention.

Draft paper: quant-ph/0409065 from arxiv.org

