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Background

Simulation of quantum systems is expensive:
Exponential time to simulate polynomial circuits.

Feynman: Can we exploit this fact to perform
computations more efficiently?

Shor: Factorisation in quantum polynomial time.

Grover: Blind search in

Can we build a quantum computer?

yes We can run quantum algorithms.

no Nature is classical after all!
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The quantum software crisis

Quantum algorithms are usually presented
using the circuit model.

Nielsen and Chuang, p.7, Coming up with
good quantum algorithms is hard.
Richard Josza, QPL 2004: We need to
develop quantum thinking!
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QML

QML: a first-order functional language for quantum
computations on finite types.

Design based on semantic analogy:

Finite classical computations

Finite quantum computations

Quantum control and quantum data.

Contraction is interpreted as sharing not cloning.

Control of decoherence,
hence no implicit weakening.

Compiler under construction (Jonathan)
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Example: Hadamard operation

Matrix

QML
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Overview

1. Finite classical computation

2. Finite quantum computation

3. QML

4. Conclusions and further work
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Classical computations on finite types

Quantum mechanics is time-reversible. . .

. . . hence quantum computation is based on reversible
operations.

However: Newtonian mechanics, Maxwellian
electrodynamics are also time-reversible. . .

. . . hence classical computation should be based on
reversible operations.
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Classical computation ( )

Given finite sets (input) and (output):

� �

a finite set of initial heaps ,

an initial heap ,

a finite set of garbage states ,

a bijection ,
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Composing computations
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Extensional equality

A classical computation
induces a function U by

//

��

OO

U
//

We say that two computations are
extensionally equivalent, if they give rise to
the same function.

MGS Xmas 04 – p.12/??



Extensional equality

A classical computation i �$ j b j j %
induces a function U i c by

e k // e
lnm

��

oqpsr t uOO

U g //

We say that two computations are
extensionally equivalent, if they give rise to
the same function.

MGS Xmas 04 – p.12/??



Extensional equality

A classical computation i �$ j b j j %
induces a function U i c by

e k // e
lnm

��

oqpsr t uOO

U g //

We say that two computations are
extensionally equivalent, if they give rise to
the same function.

MGS Xmas 04 – p.12/??



Extensional equality . . .

Theorem:

U

$ v i % �$ U

% v$ U i %

Hence, classical computations upto extensional
equality give rise to the category .

Theorem: Any function on finite sets
can be realized by a computation.

Translation for Category Theoreticians:
U is full and faithful.
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Example � :
function wyx c $ � j � % �
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�
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2. Finite quantum computation

1. Finite classical computation

2. Finite quantum computation

3. QML basics

4. Compiling QML

5. Conclusions and further work
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Pure quantum values

A pure quantum value over a finite set is
given by with unit norm:

is monadic, giving rise to the category
of (finite dimensional) vector spaces.
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Vector spaces as a monad

��� � � �� � � �

�� ��� �� c � � � � � �

�� ��� �� � � � �� � � � ���� � � � +, � �

$ � � � % c �� � �� ��� � $ � �� � % � � �

�� � � � � � � � � � �$ �� � %?� $ � � %# � � � � � � �� � � �
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Reversible quantum operations

Reversible operations on pure quantum
values are given by unitary operators.

On finite dimensional vector spaces:
unitary = norm preserving linear iso.

The inverse is given by the adjoint:
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Quantum computations ( )

Given finite sets (input) and (output):

� �

a finite set , the base of the space of initial
heaps,

a heap initialisation vector ,

a finite set , the base of the space of
garbage states,

a unitary operator unitary .
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Composing quantum computations
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Extensional equality?

. . . is a bit more subtle.

There is no (sensible) operator on vector
spaces replacing .

Indeed: Forgetting part of a pure state
results in a mixed state.
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Density operators

Mixed states are represented by density
operators (positive operators with
unit trace).

is interpreted as the system is in the
pure state with probability .
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Superoperators

Morphisms on mixed states are completely
positive linear operators on the space of
density operators, called superoperators.

Every unitary operator gives rise to a
superoperator .

There is an operator

super

called partial trace.
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Extensional equality

A quantum computation gives
rise to a superoperator U super

//

��

OO

U
//

We say that two computations are
extensionally equivalent, if they give rise to
the same superoperator.
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Extensional equality . . .

Theorem:

U

$ v i % �$ U

% v$ U i %

Hence, quantum computations upto extensional
equality give rise to the category .

Theorem: Every superoperator super

(on finite Hilbert spaces) comes from a quantum
computation.
(U is full and faithful).
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Classical vs quantum

classical ( ) quantum ( )

finite sets finite dimensional Hilbert spaces

bijections unitary operators

cartesian product ( ) tensor product ( )

functions superoperators

projections partial trace
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� ¯ , classically
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� ¯ , quantum

� � � � � � �

� � � � '&%$ !"# �

^³° ^´|~

input:

output:

Decoherence!
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� ¯ , quantum

� � � � � � �

� � � � '&%$ !"# �

^³° ^´|~
input:

� x µ � # � ¶ xµ � # � ¶ *

output:

Decoherence!
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� ¯ , quantum

� � � � � � �

� � � � '&%$ !"# �

^³° ^´|~
input:

� x µ � # � ¶ xµ � # � ¶ *
output:

x � � # � ¶ * x � � # � ¶ *

Decoherence!
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� ¯ , quantum

� � � � � � �

� � � � '&%$ !"# �

^³° ^´|~
input:

� x µ � # � ¶ xµ � # � ¶ *
output:

x � � # � ¶ * x � � # � ¶ *
Decoherence!

MGS Xmas 04 – p.29/??



Control of decoherence

QML is based on strict linear logic

Contraction is implicit and realized by .

Weakening is explicit and leads to
decoherence.
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3. QML

1. Finite classical computation

2. Finite quantum computation

3. QML

4. Conclusions and further work
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QML overview

Types

Terms
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QML overview

Types · � � # · ¸ # · ¸
Terms � �� # +� �� � � �� � # � ��¹# $ % #$ � j � % # +� �$ � j { % � � �� �# � º¼»  � # � º » ' �# � ½, � �(¾ � ��� º »  � � # � º » ' { � ¿ *# � ½, � � �(¾ � ��� º »  � � # � º » ' { � ¿ *# �$ À % � # $�Á % � *
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Qbits

� � � �

� &') " � � º¼»  $ %

� ���  �!" � � º¼» ' $ %

�� � ����� � � +, � � ¿

�� ½, � ��� º »  � # � º » ' � ¿ *

�� � � ���� � � � +, � � ¿

�� ½, � � ��� º »  � # � º » ' � ¿ *
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QML overview . . .

Typing judgements
programs

strict programs

Semantics
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QML overview . . .

Typing judgementsÂ ÃÄ � · programsÂ Ã � Ä � · strict programs

Semantics Â ÃÄ � ·ÅÄ Æ c Å Â Æ Å · Æ

Â Ã � Ä � ·ÅÄ Æ c � Å Â Æ Å · Æ
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The let-rule

Â ÃÄ � ·
j � � · Ã�Ç � ¸  " &Â ÃÉÈ Ê Ë � �Ä ÌÎÍ Ç � ¸

;;
;;

;

�

�����

�

;;
;;

;;

99
99

99
�

�

������

������ �
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The let-rule

Â ÃÄ � ·
j � � · Ã�Ç � ¸  " &Â ÃÉÈ Ê Ë � �Ä ÌÎÍ Ç � ¸

Â ÏÑÐÓÒ Ô Õ
;;

;;
;

Ö
×Ør Ù � Ö ����� Ú Û Ü

Ú �

;;
;;

;;

99
99

99 Ú�

× �

������

������ ×�
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on contexts

if dom

�
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on contexts

Â j � � · j � � · � $ Â % j � � ·Â j � � · � $ Â % j � � · if � Ýc

dom� �

�
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on contexts

Â j � � · j � � · � $ Â % j � � ·Â j � � · � $ Â % j � � · if � Ýc

dom� �
Â ÏÑÐÓÒ Ô Â

Ør Ù �
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Another source of decoherence

mentions

but doesn’t use it.

Hence, it has to measure it!
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-elim

::
::

:

�

�����

�

�
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DD
�

�

zzzzzz �
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-elim decoherence-free
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-elim decoherence-free
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zzzzzz
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4 5

This program has a type error, because
.

This program typechecks, because
.
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4 5

678 9 : ;=< > ? >

678 9 : ;�@ A BC D @ E FHGI J KMLN O G PHQ G J KMLN O
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.

This program typechecks, because
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4 5

678 9 : ;=< > ? >

678 9 : ;�@ A BC D @ E FHGI J KMLN O G PHQ G J KMLN O

This program has a type error, becauseR SUTV W R S TV W.

This program typechecks, because
.

MGS Xmas 04 – p.40/??



4 5

678 9 : ;=< > ? >

678 9 : ;�@ A BC D @ E FHGI J KMLN O G PHQ G J KMLN O

This program has a type error, becauseR SUTV W R S TV W.

XY 6 : < > ? >

XY 6 : @ A BC D @ E FHGI J Z\[ ]H^ O G PHQ G J KMLN O

This program typechecks, because
.
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4 5

678 9 : ;=< > ? >

678 9 : ;�@ A BC D @ E FHGI J KMLN O G PHQ G J KMLN O

This program has a type error, becauseR SUTV W R S TV W.

XY 6 : < > ? >

XY 6 : @ A BC D @ E FHGI J Z\[ ]H^ O G PHQ G J KMLN O

This program typechecks, becauseR _�` aMb W R SUTV W.
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4. QML

1. Finite classical computation

2. Finite quantum computation

3. QML

4. Conclusions and further work
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Conclusions

Our semantic ideas proved useful when
designing a quantum programming language,
analogous concepts are modelled by the
same syntactic constructs.

Our analysis also highlights the differences
between classical and quantum
programming.

Quantum programming introduces the
problem of control of decoherence, which we
address by making forgetting variables
explicit and by having different if-then-else
constructs.
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Further work

We have to analyze more quantum programs
to evaluate the practical usefulness of our
approach.

Are we able to come up with completely new
algorithms using QML?

How to deal with higher order programs?

How to deal with infinite datatypes?

Investigate the similarities/differences
between FCC and FQC from a categorical
point of view.
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The end

Thank you for your attention.

Draft paper: quant-ph/0409065 from arxiv.org
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