Towards a High Level Quantum Programming Language

Thorsten Altenkirch University of Nottingham based on joint work with Jonathan Grattage and discussions with V.P. Belavkin supported by EPSRC grant GR/S30818/01

Simulation of quantum systems is expensive:
 Exponential time to simulate polynomial circuits.

- Simulation of quantum systems is expensive:
 Exponential time to simulate polynomial circuits.
- Feynman: Can we exploit this fact to perform computations more efficiently?

- Simulation of quantum systems is expensive:
 Exponential time to simulate polynomial circuits.
- Feynman: Can we exploit this fact to perform computations more efficiently?
- Shor: Factorisation in quantum polynomial time.

- Simulation of quantum systems is expensive:
 Exponential time to simulate polynomial circuits.
- Feynman: Can we exploit this fact to perform computations more efficiently?
- Shor: Factorisation in quantum polynomial time.
- Grover: Blind search in $\Theta(\sqrt{n})$

- Simulation of quantum systems is expensive:
 Exponential time to simulate polynomial circuits.
- Feynman: Can we exploit this fact to perform computations more efficiently?
- Shor: Factorisation in quantum polynomial time.
- Grover: Blind search in $\Theta(\sqrt{n})$
- Can we build a quantum computer?

- Simulation of quantum systems is expensive:
 Exponential time to simulate polynomial circuits.
- Feynman: Can we exploit this fact to perform computations more efficiently?
- Shor: Factorisation in quantum polynomial time.
- Grover: Blind search in $\Theta(\sqrt{n})$
- Can we build a quantum computer?

yes We can run quantum algorithms.

- Simulation of quantum systems is expensive:
 Exponential time to simulate polynomial circuits.
- Feynman: Can we exploit this fact to perform computations more efficiently?
- Shor: Factorisation in quantum polynomial time.
- Grover: Blind search in $\Theta(\sqrt{n})$
- Can we build a quantum computer?
 yes We can run quantum algorithms.
 no Nature is classical after all!

 Quantum algorithms are usually presented using the circuit model.

- Quantum algorithms are usually presented using the circuit model.
- Nielsen and Chuang, p.7, Coming up with good quantum algorithms is hard.

- Quantum algorithms are usually presented using the circuit model.
- Nielsen and Chuang, p.7, Coming up with good quantum algorithms is hard.
- Richard Josza, QPL 2004: We need to develop quantum thinking!

QML: a first-order functional language for quantum computations on finite types.

- QML: a first-order functional language for quantum computations on finite types.
- Design based on semantic analogy:
 FCC Finite classical computations
 FQC Finite quantum computations

- QML: a first-order functional language for quantum computations on finite types.
- Design based on semantic analogy:
 FCC Finite classical computations
 FQC Finite quantum computations
- Quantum control and quantum data.

- QML: a first-order functional language for quantum computations on finite types.
- Design based on semantic analogy:
 FCC Finite classical computations
 FQC Finite quantum computations
- Quantum control and quantum data.
- Contraction is interpreted as sharing not cloning.

- QML: a first-order functional language for quantum computations on finite types.
- Design based on semantic analogy:
 FCC Finite classical computations
 FQC Finite quantum computations
- Quantum control and quantum data.
- Contraction is interpreted as sharing not cloning.
- Control of decoherence, hence no implicit weakening.

- QML: a first-order functional language for quantum computations on finite types.
- Design based on semantic analogy:
 FCC Finite classical computations
 FQC Finite quantum computations
- Quantum control and quantum data.
- Contraction is interpreted as sharing not cloning.
- Control of decoherence, hence no implicit weakening.
- Compiler under construction (Jonathan)

Example: Hadamard operation

Example: Hadamard operation

Matrix

$$\mathbf{H} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix}$$

Example: Hadamard operation

Matrix

$$\mathbf{H} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix}$$

QML

 $had: Q_2 \multimap Q_2$ $had x = \mathbf{if}^\circ x$ $\mathbf{then} \{qfalse \mid (-1) qtrue\}$ $\mathbf{else} \{qfalse \mid qtrue\}$

Deutsch algorithm

 $eq: Q_2 \multimap Q_2 \multimap Q_2$ $eq \ a \ b =$ let (x, y, (a', b')) =if°{qfalse | qtrue} then (qtrue, if athen ({qfalse | (-1) qtrue}, (qtrue, b)) else ($\{(-1) \text{ qfalse} \mid \text{qtrue}\}, (\text{qfalse}, b))$) else (qfalse, $\mathbf{if}^{\circ} b$ then $(\{(-1) \text{ qfalse} \mid \text{qtrue}\}, (a, \text{qtrue}))$ else ({qfalse | (-1) qtrue}, (a, qfalse))) in had x

Overview

Finite classical computation
 Finite quantum computation
 QML
 Conclusions and further work

1. Finite classical computation

Finite classical computation
 Finite quantum computation
 QML
 Conclusions and further work

Quantum mechanics is time-reversible...

- Quantum mechanics is time-reversible...
- ...hence quantum computation is based on reversible operations.

- Quantum mechanics is time-reversible...
- ...hence quantum computation is based on reversible operations.
- However: Newtonian mechanics, Maxwellian electrodynamics are also time-reversible...

- Quantum mechanics is time-reversible...
- ...hence quantum computation is based on reversible operations.
- However: Newtonian mechanics, Maxwellian electrodynamics are also time-reversible...
- ...hence classical computation should be based on reversible operations.

Classical computation (FCC)

Classical computation (FCC)

Given finite sets A (input) and B (output):

Classical computation (FCC)

Given finite sets A (input) and B (output):

$$\begin{array}{cccc}
-A & B \\
\phi & \\
h & H & G \\
\end{array}$$

- a finite set of initial heaps H,
- an initial heap $h \in H$,
- \bullet a finite set of garbage states G,
- a bijection $\phi \in A \times H \simeq B \times G$,

Composing computations

Composing computations

 $\phi_{\beta \circ lpha}$

• A classical computation $\alpha = (H, h, G, \phi)$ induces a function $U\alpha \in A \rightarrow B$ by

$$\begin{array}{c} A \times H \xrightarrow{\phi} B \times G \\ \uparrow (-,h) & & \downarrow \pi_1 \\ A \xrightarrow{\psi \alpha} B \end{array}$$

• A classical computation $\alpha = (H, h, G, \phi)$ induces a function $\cup \alpha \in A \rightarrow B$ by

$$\begin{array}{c} A \times H \xrightarrow{\phi} B \times G \\ \uparrow (-,h) & \downarrow \pi_1 \\ A \xrightarrow{\psi \alpha} B \end{array}$$

 We say that two computations are extensionally equivalent, if they give rise to the same function.

• Theorem:

$$\mathbf{U}\left(\boldsymbol{\beta}\circ\boldsymbol{\alpha}\right)=\left(\mathbf{U}\,\boldsymbol{\beta}\right)\circ\left(\mathbf{U}\,\boldsymbol{\alpha}\right)$$

Theorem:

$$\mathbf{U}\left(\boldsymbol{\beta}\circ\boldsymbol{\alpha}\right)=\left(\mathbf{U}\,\boldsymbol{\beta}\right)\circ\left(\mathbf{U}\,\boldsymbol{\alpha}\right)$$

Hence, classical computations upto extensional equality give rise to the category FCC.

Theorem:

$$\mathbf{U}\left(\boldsymbol{\beta}\circ\boldsymbol{\alpha}\right)=\left(\mathbf{U}\,\boldsymbol{\beta}\right)\circ\left(\mathbf{U}\,\boldsymbol{\alpha}\right)$$

- Hence, classical computations upto extensional equality give rise to the category FCC.
- Theorem: Any function $f \in A \rightarrow B$ on finite sets A, B can be realized by a computation.

Theorem:

$$\mathbf{U}\left(\beta\circ\alpha\right)=\left(\mathbf{U}\,\beta\right)\circ\left(\mathbf{U}\,\alpha\right)$$

- Hence, classical computations upto extensional equality give rise to the category FCC.
- Theorem: Any function $f \in A \rightarrow B$ on finite sets A, B can be realized by a computation.
- Translation for Category Theoreticians:
 U is full and faithful.

Example π_1 :

function

$$\pi_1 \in (2,2) \to 2$$

$$\pi_1 (x,y) = x$$

Example π_1 :

function $\pi_1 \in (2,2) \rightarrow 2$ $\pi_1 (x,y) = x$

computation

 ϕ_{π_1}

Example δ :

function $\delta \in 2 \rightarrow (2, 2)$ $\delta x = (x, x)$

Example δ :

function $\delta \in 2 \rightarrow (2, 2)$ $\delta x = (x, x)$

computation

$$\begin{array}{c} x:2 & & \\ 0:2 & & \\ \end{array} \begin{array}{c} & \\ x:2 \end{array} \end{array}$$

 ϕ_{δ}

$$\phi_{\delta} \in (2,2) \rightarrow (2,2)$$

$$\phi_{\delta} (0,x) = (0,x)$$

$$\phi_{\delta} (1,x) = (1,\neg x)$$

2. Finite quantum computation

- 1. Finite classical computation
- 2. Finite quantum computation
- 3. QML basics
- 4. Compiling QML
- 5. Conclusions and further work

Pure quantum values

Pure quantum values

• A pure quantum value over a finite set A is given by $\vec{v} \in A \to \mathbb{C}$ with unit norm:

 $||\vec{v}|| = \Sigma a \in A. |\vec{v}a|^2 = 1$

Pure quantum values

• A pure quantum value over a finite set A is given by $\vec{v} \in A \to \mathbb{C}$ with unit norm:

 $||\vec{v}|| = \Sigma a \in A. |\vec{v}a|^2 = 1$

 A → C is monadic, giving rise to the category of (finite dimensional) vector spaces.

Vector spaces as a monad

type Vec $a = a \rightarrow \mathbb{C}$ return $\in \text{Eq} \ a \Rightarrow a \rightarrow \text{Vec} \ a$ return $a \ b = \text{if} \ a \equiv b \text{ then } 1 \text{ else } 0$ $(\gg) \in \text{Finite } a \Rightarrow$ $\text{Vec } a \rightarrow (a \rightarrow \text{Vec } b) \rightarrow \text{Vec } b$ $as \gg f = \lambda b \rightarrow sum \ [(as \ a) * (f \ a \ b)]$ $| a \leftarrow enumerate]$

Reversible operations on pure quantum values are given by *unitary operators*.

- Reversible operations on pure quantum values are given by *unitary operators*.
- On finite dimensional vector spaces: unitary = norm preserving linear iso.

- Reversible operations on pure quantum values are given by *unitary operators*.
- On finite dimensional vector spaces: unitary = norm preserving linear iso.
- The inverse is given by the adjoint:
 adj ∈ (a → Vec b) → b → Vec a
 adj f b a = conjugate (f a b)

Quantum computations (FQC)

Quantum computations (FQC) Given finite sets *A* (input) and *B* (output):

Quantum computations (FQC) Given finite sets A (input) and B (output):

- a finite set H, the base of the space of initial heaps,
- a heap initialisation vector $\vec{h} \in H \to \mathbb{C}$,
- a finite set G, the base of the space of garbage states,
- a unitary operator $\phi \in A \otimes H \multimap_{\text{unitary}} B \otimes G$.

MGS Xmas 04 - p.20/?

Composing quantum computations

Composing quantum computations

 $\phi_{\beta \circ lpha}$

MGS Xmas 04 - p.22/?*

... is a bit more subtle.

- ... is a bit more subtle.
- There is no (sensible) operator on vector spaces replacing $\pi_1 \in B \times G \rightarrow B$.

- ... is a bit more subtle.
- There is no (sensible) operator on vector spaces replacing $\pi_1 \in B \times G \rightarrow B$.
- Indeed: Forgetting part of a pure state results in a mixed state.

Density operators

Density operators

 Mixed states are represented by *density* operators ρ ∈ A → A (positive operators with unit trace).

Density operators

- Mixed states are represented by *density* operators ρ ∈ A → A (positive operators with unit trace).
- $\rho \vec{v} = \lambda \vec{v}$ is interpreted as the system is in the pure state \vec{v} with probability λ .

 Morphisms on mixed states are completely positive linear operators on the space of density operators, called superoperators.

- Morphisms on mixed states are completely positive linear operators on the space of density operators, called superoperators.
- Every unitary operator ϕ gives rise to a superoperator $\widehat{\phi}$.

- Morphisms on mixed states are completely positive linear operators on the space of density operators, called superoperators.
- Every unitary operator ϕ gives rise to a superoperator $\widehat{\phi}$.
- There is an operator

$$\operatorname{tr}_{B,G} \in B \otimes G \multimap_{\operatorname{super}} B$$

called partial trace.

MGS Xmas 04 - p.25/?*

• A quantum computation $\alpha \in \mathbf{FQC} A B$ gives rise to a superoperator $\cup \alpha \in A \multimap_{\mathsf{super}} B$

$$\begin{array}{c} A \otimes H \xrightarrow{\phi} B \otimes G \\ \uparrow & \uparrow & \downarrow^{\mathrm{tr}_G} \\ A \xrightarrow{} & H \xrightarrow{\phi} B \end{array}$$

• A quantum computation $\alpha \in \mathbf{FQC} A B$ gives rise to a superoperator $\cup \alpha \in A \multimap_{\mathsf{super}} B$

 We say that two computations are extensionally equivalent, if they give rise to the same superoperator.

• Theorem:

$$\mathbf{U}\left(\boldsymbol{\beta}\circ\boldsymbol{\alpha}\right)=\left(\mathbf{U}\,\boldsymbol{\beta}\right)\circ\left(\mathbf{U}\,\boldsymbol{\alpha}\right)$$

Theorem:

$$\mathbf{U}\left(\boldsymbol{\beta}\circ\boldsymbol{\alpha}\right)=\left(\mathbf{U}\,\boldsymbol{\beta}\right)\circ\left(\mathbf{U}\,\boldsymbol{\alpha}\right)$$

Hence, quantum computations upto extensional equality give rise to the category FQC.

Theorem:

$$\mathbf{U}\left(\beta\circ\alpha\right)=\left(\mathbf{U}\,\beta\right)\circ\left(\mathbf{U}\,\alpha\right)$$

- Hence, quantum computations upto extensional equality give rise to the category FQC.
- Theorem: Every superoperator F ∈ A →_{super} B
 (on finite Hilbert spaces) comes from a quantum computation.

Theorem:

$$\mathbf{U}\left(\boldsymbol{\beta}\circ\boldsymbol{\alpha}\right)=\left(\mathbf{U}\,\boldsymbol{\beta}\right)\circ\left(\mathbf{U}\,\boldsymbol{\alpha}\right)$$

- Hence, quantum computations upto extensional equality give rise to the category FQC.
- Theorem: Every superoperator F ∈ A →_{super} B (on finite Hilbert spaces) comes from a quantum computation.
 (U is full and faithful).

classical (\mathbf{FCC})	quantum (FQC)
finite sets	

quantum (FQC)
finite dimensional Hilbert spaces

quantum (FQC)
finite dimensional Hilbert spaces

classical (FCC)	quantum (FQC)
finite sets	finite dimensional Hilbert spaces
bijections	unitary operators

classical (FCC)	quantum (FQC)
finite sets	finite dimensional Hilbert spaces
bijections	unitary operators
cartesian product (\times)	

classical (FCC)	quantum (FQC)
finite sets	finite dimensional Hilbert spaces
bijections	unitary operators
cartesian product (\times)	tensor product (\otimes)

classical (FCC)	quantum (FQC)
finite sets	finite dimensional Hilbert spaces
bijections	unitary operators
cartesian product (\times)	tensor product (\otimes)
functions	

classical (FCC)	quantum (FQC)
finite sets	finite dimensional Hilbert spaces
bijections	unitary operators
cartesian product (\times)	tensor product (\otimes)
functions	superoperators

classical (FCC)	quantum (FQC)
finite sets	finite dimensional Hilbert spaces
bijections	unitary operators
cartesian product (\times)	tensor product (\otimes)
functions	superoperators
projections	

classical (FCC)	quantum (FQC)
finite sets	finite dimensional Hilbert spaces
bijections	unitary operators
cartesian product (\times)	tensor product (\otimes)
functions	superoperators
projections	partial trace

$\pi_1 \circ \delta$, classically

$\pi_1 \circ \delta : 2 \to 2$

$\pi_1 \circ \delta$, classically

$\pi_1 \circ \delta : 2 \to \overline{2}$

$\pi_1 \circ \delta$, classically

$\pi_1 \circ \delta : 2 \to 2$

2

2

QML is based on strict linear logic

QML is based on strict linear logic
 Contraction is implicit and realized by φ_δ.

- QML is based on strict linear logic
- Contraction is implicit and realized by ϕ_{δ} .
- Weakening is explicit and leads to decoherence.

Finite classical computation
 Finite quantum computation
 QML
 Conclusions and further work

QML overview

QML overview

Types $\sigma = 1 \mid \sigma \otimes \tau \mid \sigma \oplus \tau$

QML overview

Types

$$\sigma = 1 \mid \sigma \otimes \tau \mid \sigma \oplus \tau$$

Terms

 $t = x \mid \text{let } x = t \text{ in } u \mid x \uparrow \vec{y}$ $\mid () \mid (t, u) \mid \text{let } (x, y) = t \text{ in } u$ $\mid \text{qinl } t \mid \text{qinr } u$ $\mid \text{case } t \text{ of } \{\text{qinl } x \Rightarrow u \mid \text{qinr } y \Rightarrow u'\}$ $\mid \text{case}^{\circ} t \text{ of } \{\text{qinl } x \Rightarrow u \mid \text{qinr } y \Rightarrow u'\}$ $\mid \{(\kappa) \ t \mid (\iota) \ u\}$

Qbits

 $Q_{2} = 1 \oplus 1$ qtrue = qinl () qfalse = qinr () if t then u else u' = case {qinl _ \Rightarrow u | qinr _ \Rightarrow u'} if^o t then u else u' = case^o{qinl _ \Rightarrow u | qinr _ \Rightarrow u'}

QML overview ...

MGS Xmas 04 - p.34/?

QML overview ...

Typing judgements $\Gamma \vdash t : \sigma$ $\Gamma \vdash c : \sigma$ $\Gamma \vdash c : \sigma$ strict programs

QML overview ...

Typing judgements $\Gamma \vdash t : \sigma$ programs $\Gamma \vdash^{\circ} t : \sigma$ strict programs

Semantics

 $\frac{\Gamma \vdash t : \sigma}{\llbracket t \rrbracket \in \mathbf{FQC}\llbracket \Gamma \rrbracket \llbracket \sigma \rrbracket} \qquad \frac{\Gamma \vdash^{\circ} t : \sigma}{\llbracket t \rrbracket \in \mathbf{FQC}^{\circ}\llbracket \Gamma \rrbracket \llbracket \sigma \rrbracket}$

The let-rule

$$\begin{array}{c} \Gamma \vdash t : \sigma \\ \Delta, \, x : \sigma \vdash u : \tau \\ \hline \Gamma \otimes \Delta \vdash \texttt{let} \ x = t \ \texttt{in} \ u : \tau \end{array} \text{let} \end{array}$$

The let-rule

$$\begin{split} \Gamma \vdash t : \sigma \\ \Delta, \, x : \sigma \vdash u : \tau \\ \hline \Gamma \otimes \Delta \vdash \texttt{let} \ x = t \ \texttt{in} \ u : \tau \end{split} \text{let} \end{split}$$

$\begin{array}{lll} \Gamma, x : \sigma \otimes \Delta, x : \sigma &= (\Gamma \otimes \Delta), x : \sigma \\ \Gamma, x : \sigma \otimes \Delta &= (\Gamma \otimes \Delta), x : \sigma & \text{if } x \notin \text{dom } \Delta \\ \bullet \otimes \Delta &= \Delta \end{array}$

$$\begin{array}{c|c} \Gamma \otimes \Delta & & & \\ \hline & & \\ H_{\Gamma,\Delta} & \vdash & \\ \hline & & & \Delta \end{array}$$

MGS Xmas 04 - p.37/?

• forget mentions xforget: $2 \rightarrow 2$ forget x = if x then qtrue else qtrue

forget mentions x forget : 2 → 2
 forget x = if x then qtrue else qtrue
 but doesn't use it.

forget mentions x *forget*: 2 → 2 *forget* x = if x then qtrue else qtrue
but doesn't use it.
Hence, it has to measure it!

⊕-elim

$$\begin{array}{c} \Gamma \vdash c : \sigma \oplus \tau \\ \Delta, \, x : \sigma \vdash t : \rho \\ \Delta, \, y : \tau \vdash u : \rho \\ \hline \Gamma \otimes \Delta \vdash \mathsf{case} \, c \, \mathsf{of} \, \{ \mathsf{inl} \, x \Rightarrow t \, | \, \mathsf{inr} \, y \Rightarrow u \} : \rho \end{array} + \mathsf{elim} \end{array}$$

⊕-elim

$$\begin{array}{c} \Gamma \vdash c : \sigma \oplus \tau \\ \Delta, \, x : \sigma \vdash t : \rho \\ \Delta, \, y : \tau \vdash u : \rho \\ \hline \Gamma \otimes \Delta \vdash \mathsf{case} \ c \ \mathsf{of} \ \{ \mathsf{inl} \ x \Rightarrow t \, | \, \mathsf{inr} \ y \Rightarrow u \} : \rho \end{array} + \mathsf{elim} \end{array}$$

—-elim decoherence-free

-elim decoherence-free

$$\begin{split} \Gamma \vdash^{a} c : \sigma \oplus \tau \\ \Delta, \ x : \sigma \vdash^{\circ} t : \rho \\ \Delta, \ y : \tau \vdash^{\circ} u : \rho \quad t \perp u \\ \hline \Gamma \otimes \Delta \vdash^{a} \mathsf{case}^{\circ} \ c \text{ of } \{ \mathsf{inl} \ x \Rightarrow t \mid \mathsf{inr} \ y \Rightarrow u \} : \rho \\ \end{split} \oplus - \mathsf{elim}^{\circ} \end{split}$$

—-elim decoherence-free

$$\begin{array}{c} \Gamma \vdash^{a} c : \sigma \oplus \tau \\ \Delta, \ x : \sigma \vdash^{\circ} t : \rho \\ \Delta, \ y : \tau \vdash^{\circ} u : \rho \quad t \perp u \\ \hline \Gamma \otimes \Delta \vdash^{a} \mathsf{case}^{\circ} \ c \ \mathsf{of} \ \{ \mathsf{inl} \ x \Rightarrow t \mid \mathsf{inr} \ y \Rightarrow u \} : \rho \end{array} \oplus -\operatorname{elim}^{\circ} \end{array}$$

\mathbf{if}°

forget': $2 \rightarrow 2$ forget' $x = \mathbf{if}^{\circ} x$ then qtrue else qtrue

forget': 2 → 2 forget' $x = if^{\circ} x$ then qtrue else qtrue • This program has a type error, because qtrue \neq qtrue. forget': $2 \rightarrow 2$ forget' $x = \mathbf{i}\mathbf{f}^{\circ} x$ then qtrue else qtrue This program has a type error, because qtrue $\not\perp$ qtrue. qnot: $2 \rightarrow 2$ qnot $x = \mathbf{i}\mathbf{f}^{\circ} x$ then qfalse else qtrue forget': 2 → 2
forget' x = if° x then qtrue else qtrue
This program has a type error, because qtrue ¼ qtrue.

qnot: 2 → 2
qnot x = if° x then qfalse else qtrue
This program typechecks, because qfalse ⊥ qtrue.

Finite classical computation
 Finite quantum computation
 QML
 Conclusions and further work

 Our semantic ideas proved useful when designing a quantum programming language, analogous concepts are modelled by the same syntactic constructs.

- Our semantic ideas proved useful when designing a quantum programming language, analogous concepts are modelled by the same syntactic constructs.
- Our analysis also highlights the differences between classical and quantum programming.

- Our semantic ideas proved useful when designing a quantum programming language, analogous concepts are modelled by the same syntactic constructs.
- Our analysis also highlights the differences between classical and quantum programming.
- Quantum programming introduces the problem of *control of decoherence*, which we address by making forgetting variables explicit and by having different if-then-else constructs.

 We have to analyze more quantum programs to evaluate the practical usefulness of our approach.

- We have to analyze more quantum programs to evaluate the practical usefulness of our approach.
- Are we able to come up with completely new algorithms using QML?

- We have to analyze more quantum programs to evaluate the practical usefulness of our approach.
- Are we able to come up with completely new algorithms using QML?
- How to deal with higher order programs?

- We have to analyze more quantum programs to evaluate the practical usefulness of our approach.
- Are we able to come up with completely new algorithms using QML?
- How to deal with higher order programs?
- How to deal with infinite datatypes?

- We have to analyze more quantum programs to evaluate the practical usefulness of our approach.
- Are we able to come up with completely new algorithms using QML?
- How to deal with higher order programs?
- How to deal with infinite datatypes?
- Investigate the similarities/differences between FCC and FQC from a categorical point of view.

Thank you for your attention.

Draft paper: quant-ph/0409065 from arxiv.org

MGS Xmas 04 - p.44/?