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How do we teach Mathematics?

Use informal set theory?


Definition  

But what is  
 
?

N \ B

A \B := {x | x 2 A ^ x 2 B}



More stupid questions

A ! B ✓ P(A⇥B)?

A⇥B ✓ P(P(A [B))?



What is the problem?

In set theory we can ask questions about 
the intensional properties of constructions 
like 


Also their definitions seem quite arbitrary.


This is a consequence of the idea that 
elements of sets exist independently of the 
set they inhabit.

N,B,⇥,!



The alternative

+

Per Martin-Löf Vladimir Voevodsky

= Homotopy Type Theory (HoTT)



Types come first!

In Type Theory elements of a type do not 
exist in isolation of the type they inhabit!


In Set Theory        is a proposition  
in Type Theory        is a judgment.


We cannot define                         on 
arbitrary types. 
       

a 2 A

a : A

A \B,A [B,A ✓ B



Univalence

Because we cannot talk about intensional 
properties of constructions …


… all constructions are invariant under 
extensional equivalence.


This is expressed formally by Voevodsky’s 
univalence principle.



Type Theory for 
dummies



Constructions in  
Type Theory

A ! B

A⇥B

B

N

a =A b

Typei

Functions

special case of     types

Tuples

special case of    types

 
Bool,


special case of a finite type
natural numbers

special case of a tree type

equality types 

universes

⇧

⌃



Anatomy of a type

Formation How to form a type?

Introduction How to form elements?

Non-dependent elimination How to define non-dependent 
functions from a type?

Dependent elimination How to define dependent 
functions from a type?

Computation How to compute?



Anatomy of a type

Formation How to form a type?

Introduction How to form elements?

Dependent elimination How to define dependent 
functions from a type?

Computation How to compute?



Example : tuples

Formation

If

!
!

then
A,B : Type

A⇥B : Type



Example : tuples

Introduction

If

!
!

then
a : A, b : B

(a, b) : A⇥B



Example : tuples

Non-dependent elimination

To define

!
!

we need


Computation

f : A⇥B ! C

g : A ! B ! C

f (a, b) ⌘ g a b



Example : tuples

Dependent elimination

To define

!
!

we need


Computation f (a, b) ⌘ g a b

f : ⇧p : A⇥B.C p

g : ⇧a : A.⇧b : B.C (a, b)C : A⇥B ! Type



Eliminator

The dependent elimination principle can also 
be expressed by an eliminator 

with the computation rule
EA⇥B : ⇧C:A⇥B!Type⇧g:⇧a:A⇧b:B.C (a,b)⇧p : A⇥B.C p

EA⇥B C g (a, b) ⌘ g a b



Propositions as types

Using the idea to identify a proposition with 
the type of its proofs


we can use dependent elimination to prove 
things.


E.g. 


where                        can be defined 
using non-dependent elimination

⇧p : A⇥B.(⇡1 p,⇡2 p) = p.

⇡i : A1 ⇥A2 ! Ai



Canonicity

The elimination principle makes sure that all 
functions applied to canonical elements can 
be eliminated.


All closed terms of a type are 
computationally equal (  ) to a term built 
from constructors.

⌘



Equality for beginners



Example : equality

Formation

If

!
!

then
a, b : A

a =A b : Type



Introduction

If

!
!

then

Example : equality

a : A

refl a : a =A a



Non-dependent elimination

To define

!
!

we need


Computation

Example : equality

f : ⇧x : A, a = x ! P x

g : P a

f a (refl a) ⌘ g



Dependent elimination

To define

!
!

we need


Computation

Example : equality

f a (refl a) ⌘ g

f : ⇧x : A,⇧p : a = x ! P xp

g : P a (refl a)
P : ⇧x : A.a = x ! Type



The structure of 
equality types

refl : ⇧a : A, a = a

(�)�1 : ⇧a,b:A, a = b ! b = a

� � � : ⇧a,b,c:Ab = c ! a = b ! a = c

Using the elimination principle we can show 
that all types have the structure of a 
groupoid.

� : ⇧a,b:A⇧p : a = b, p � (refl a) = p

⇢ : ⇧a,b:A⇧p : a = b, (refl b) � p = p

...
...

...

Each function gives rise to a functor: for  
            we have f : A ! B

f= : ⇧a.a0:Aa =A a0 ! f a = f a0



The structure of 
equality types

refl : ⇧a : A, a = a

(�)�1 : ⇧a,b:A, a = b ! b = a

� � � : ⇧a,b,c:Ab = c ! a = b ! a = c

Using the elimination principle we can show 
that all types have the structure of an            
   -groupoid.

� : ⇧a,b:A⇧p : a = b, p � (refl a) = p

⇢ : ⇧a,b:A⇧p : a = b, (refl b) � p = p

...
...

...

Each function gives rise to an  -functor: for  
            we have f : A ! B

f= : ⇧a.a0:Aa =A a0 ! f a = f a0

!

!



Univalence for cat lovers



Propositions

We say that a type is a proposition (or a 
(-1)-type) if all elements are equal. 


Hence the only observable property of this 
type is wether it is inhabited.



Sets

We say that a type is a set (or a 0-type) if 
all its equalities are propositions.


In general we say that a type is an (n+1)-
type if all its equalities are n-types



Univalence for propositions
We define logical equivalence having 
functions in both directions.  
 
 


Univalence for propositions implies that 
equality for propositions is logically 
equivalent to logical equivalence.  
 

A () B := ⌃f : A ! B

g : B ! A

(A = B) () (A () B)



Univalence for sets
Isomorphism is a refinement of logical 
equivalence:  
 
 
  

Univalence for sets implies that equality for 
sets is isomorphic to isomorphism:  
 
 

A ' B :=

⌃f : A ! B

g : B ! A

⌘ : ⇧a : A, g (f a) = a

✏ : ⇧b : B, f (g b) = b

(A = B) ' (A ' B)



Univalence for types
Equivalence is a refinement of isomorphism:  
 
 
  
 
 

Univalence implies that equality for types is 
equivalent to equivalence:  
 
  (A = B) ⇠= (A ⇠= B)

A ⇠= B :=

⌃f : A ! B

g : B ! A

⌘ : ⇧a : A, g (f a) = a

✏ : ⇧b : B, f (g b) = b

� : ⇧a : A, f= (⌘ a) = ✏ (f a)



Canonicity ?

We add univalence as a constant :  
 

However, this destroys the computational 
symmetry of introduction and elimination for 
equality types.

f : A = B ! A ⇠= B

uval : isEquivalence f



What I would have 
talked about to a 

more sophisticated 

audience



Cubical Type Theory
We consider an alternative presentation of 
equality types where equality is defined as a 
logical relation.


Since we have to deal with dependent types 
this we have to use heterogenous equality.


This is related to internal parametricity ala 
Bernardy and Moulin…


…and Coquand & Huber’s work on the 
constructive cubical set model.



Back to the future



How should we teach Mathematics?

Use informal Type Theory!


Encourages sensible use of Mathematics!


Given                      define  
 
 
 
 

A,B : X ! Prop

A \B : X ! Prop

(A \B)x = Ax ^B x


