HoTT Christmas

You guys are both my witnesses... He insinuated that ZFC set theory is superior to Type Theory!

Thorsten Altenkirch
Functional Programming Laboratory

How do we teach Mathematics?

- Use informal set theory?
- Definition

$$
A \cap B:=\{x \mid x \in A \wedge x \in B\}
$$

- But what is
$\mathbb{N} \cap \mathbb{B}$
?

More stupid questions

$$
A \times B \subseteq \mathcal{P}(\mathcal{P}(A \cup B)) ?
$$

$$
A \rightarrow B \subseteq \mathcal{P}(A \times B) ?
$$

What is the problem?

- In set theory we can ask questions about the intensional properties of constructions like $\mathbb{N}, \mathbb{B}, \times, \rightarrow$
- Also their definitions seem quite arbitrary.
- This is a consequence of the idea that elements of sets exist independently of the set they inhabit.

The alternative

Per Martin-Löf
Vladimir Voevodsky

= Homotopy Type Theory (HoTT)

Types come first!

- In Type Theory elements of a type do not exist in isolation of the type they inhabit!
- In Set Theory $a \in A$ is a proposition in Type Theory a : A is a judgment.
- We cannot define $A \cap B, A \cup B, A \subseteq B$ on arbitrary types.

Univalence

- Because we cannot talk about intensional properties of constructions ...
- ... all constructions are invariant under extensional equivalence.
- This is expressed formally by Voevodsky's univalence principle.

Type Theory for dummies

Constructions in
 Type Theory

$A \rightarrow B$	Functions special case of Π types
$A \times B$	Tuples
\mathbb{B}	Bocial case of Σ types

Anatomy of a type

Formation	How to form a type?
Introduction	How to form elements?
Non-dependent elimination	How to define non-dependent functions from a type?
Dependent elimination	How to define dependent functions from a type?
Computation	How to compute?

Anatomy of a type

Formation	How to form a type?
Introduction	How to form elements?
Dependent elimination	How to define dependent functions from a type?
Computation	How to compute?

Example : tuples

Example : tuples

Example : tuples

Non-dependent elimination	To define
	$f: A \times$we need wh
	$g: A \rightarrow B \rightarrow C$

Example : tuples

	To define
Dependent elimination	$f: \Pi p: A \times B . C p$
we need	
$C: A \times B \rightarrow$ Type	$g: \Pi a: A . \Pi b: B . C(a, b)$
Computation	$f(a, b) \equiv g a b$

Eliminator

- The dependent elimination principle can also be expressed by an eliminator

$$
E_{A \times B}: \Pi_{C: A \times B \rightarrow \mathbf{T y p e}} \Pi_{g: \Pi a: A \Pi b: B . C(a, b)} \Pi p: A \times B . C p
$$

- with the computation rule

$$
E_{A \times B} C g(a, b) \equiv g a b
$$

Propositions as types

- Using the idea to identify a proposition with the type of its proofs
- we can use dependent elimination to prove things.
- E.g. $\Pi p: A \times B .\left(\pi_{1} p, \pi_{2} p\right)=p$.
- where $\pi_{i}: A_{1} \times A_{2} \rightarrow A_{i}$ can be defined using non-dependent elimination

Canonicity

- The elimination principle makes sure that all functions applied to canonical elements can be eliminated.
- All closed terms of a type are computationally equal (\Rightarrow) to a term built from constructors.

Equality for beginners

Example : equality

Example : equality

Example : equality

Non-dependent elimination	To define
	$f: \Pi x: A, a=x \rightarrow P x$
we need	
	$g: P a$
Computation	$f a($ refl $a) \equiv g$

Example : equality

To define Dependent elimination	$f: \Pi x: A, \Pi p: a=x \rightarrow P x p$
	$g: P a($ we need $a)$
	$f a($ refl $a) \equiv g$

The structure of equality types

- Using the elimination principle we can show that all types have the structure of a groupoid.

$$
\begin{array}{rlll}
\text { refl } & : \Pi a: A, a=a & \lambda & \\
(-)^{-1} & : \Pi_{a, b: A}, a=b \rightarrow b=a & \rho & : \\
-\circ- & \Pi_{a, b: A} \Pi p: a=b,(\text { refl } b) \circ p=p \\
- & : \Pi_{a, b, c: A} b=c \rightarrow a=b \rightarrow a=c & \vdots & \vdots
\end{array}
$$

- Each function gives rise to a functor: for $f: A \rightarrow B$ we have

$$
f^{=}: \Pi_{a \cdot a^{\prime}: A} a={ }_{A} a^{\prime} \rightarrow f a=f a^{\prime}
$$

The structure of equality types

- Using the elimination principle we can show that all types have the structure of an ω-groupoid.

$$
\begin{aligned}
& \text { refl : } \Pi a: A, a=a \\
& \lambda: \Pi_{a, b: A} \Pi p: a=b, p \circ(\operatorname{refl} a)=p \\
& (-)^{-1}: \Pi_{a, b: A}, a=b \rightarrow b=a \\
& \rho: \Pi_{a, b: A} \Pi p: a=b,(\operatorname{ref} b) \circ p=p \\
& -\circ-\quad \Pi_{a, b, c: A} b=c \rightarrow a=b \rightarrow a=c \quad \vdots \quad \vdots \quad
\end{aligned}
$$

- Each function gives rise to an w-functor: for $f: A \rightarrow B$ we have

$$
f=: \Pi_{a \cdot a^{\prime}: A} a={ }_{A} a^{\prime} \rightarrow f a=f a^{\prime}
$$

Univalence for cat lovers

Propositions

- We say that a type is a proposition (or a (-1)-type) if all elements are equal.
- Hence the only observable property of this type is wether it is inhabited.

Sets

- We say that a type is a set (or a 0-type) if all its equalities are propositions.
- In general we say that a type is an ($n+1$)type if all its equalities are n-types

Univalence for propositions

- We define logical equivalence having functions in both directions.

$$
\begin{array}{r}
A \Longleftrightarrow B:=\Sigma f: A \rightarrow B \\
g: B \rightarrow A
\end{array}
$$

- Univalence for propositions implies that equality for propositions is logically equivalent to logical equivalence.

$$
(A=B) \Longleftrightarrow(A \Longleftrightarrow B)
$$

Univalence for sets

- Isomorphism is a refinement of logical equivalence: $A \simeq B:=$

$$
\begin{aligned}
\Sigma f & : A \rightarrow B \\
g & : B \rightarrow A \\
\eta & : \Pi a: A, g(f a)=a \\
\epsilon & : \Pi b: B, f(g b)=b
\end{aligned}
$$

- Univalence for sets implies that equality for sets is isomorphic to isomorphism:

$$
(A=B) \simeq(A \simeq B)
$$

Univalence for types

- Equivalence is a refinement of isomorphism:

$$
\begin{aligned}
A \cong B & := \\
& \Sigma f: A \rightarrow B \\
& g: B \rightarrow A \\
& \eta: \Pi a: A, g(f a)=a \\
& \epsilon: \Pi b: B, f(g b)=b \\
& \delta: \Pi a: A, f^{=}(\eta a)=\epsilon(f a)
\end{aligned}
$$

- Univalence implies that equality for types is equivalent to equivalence:

$$
(A=B) \cong(A \cong B)
$$

Canonicity?

- We add univalence as a constant :

$$
\begin{aligned}
& f: A=B \rightarrow A \cong B \\
& \text { uval : isEquivalence } f
\end{aligned}
$$

- However, this destroys the computational symmetry of introduction and elimination for equality types.

What I would have talked about to a more sophisticated audience

Cubical Type Theory

- We consider an alternative presentation of equality types where equality is defined as a logical relation.
- Since we have to deal with dependent types this we have to use heterogenous equality.
- This is related to internal parametricity ala Bernardy and Moulin...
- ...and Coquand \& Huber's work on the constructive cubical set model.

Back to the future

How should we teach Mathematics?

- Use informal Type Theory!
- Encourages sensible use of Mathematics!
- Given $A, B: X \rightarrow$ Prop define

$$
\begin{aligned}
& A \cap B: X \rightarrow \text { Prop } \\
& (A \cap B) x=A x \wedge B x
\end{aligned}
$$

