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The established social order

terms types

do all the work are never around when

there is work to be done

engage in criminal activity commit no crime

can be stopped and searched cannot be investigated.

belong to and are

hold in check by types
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Ersatz dependent types

In modern type systems types have to do some work

Polymorphic types can be use to represent square
matrices

Conor showed in Faking it how
to use the logic programming of
Haskell’s class system to simu-
late some usages of dependent
types.
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Breaking the old social order

Data is validated wrt other data

If types are to capture the validity of data, we must let
them depend on terms.
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Overview

Examples for programming with dependent types:
– safe access to lists/vectors
– safe eval

– generic equality

Illustrating patterns in DTP
verify ,
reflect

Emphasis on safe and efficient execution

Using epigram currently developed by Conor,
using ideas from

LEGO / OLEG
ALF
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� � �

— no dependent types

let

� �� � � ��
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� �

� � � � � � � �
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Hindley-Milner: Type quantification and application can
be made implicit.

Split left hand sides using type information
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The function is partial

leads to a runtime error.

Reason: The type of is not informative enough.
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Problems with �

Programs cluttered with coercions.

Programming requires theorem proving.

Equality on functions is not extensional, i.e.

let

cannot be derived.
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Solutions ?

In many cases the need for propositional equality can
be avoided.

DML shows that many equalities needed in
programming can be proven automatically.
Proposal: Integrate an extensible constraint prover into
the elaboration process.

The problem with extensional equality can be overcome
using a different approach to equality.
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Eval

Implement an evaluator for
a simply typed object language.

We use type-checking to avoid run-time errors.

First we implement a simply typed version.

Then a dependently typed version,
exploiting the verify pattern.
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Eval — simply typed
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Safe eval ?
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Safe eval ?

We know that will never crash . . .

. . . but the compiler doesn’t!

is inefficient:
Values carry tags at runtime

checks the tags
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Object language using dependent types
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Eval — dependently
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Safe eval !

The compiler knows that will never crash.

We can generate a certificate (proof carrying code).

is efficient:
No tags at runtime.
No checking.

Why Dependent Types Matter – p.26/32



Safe eval !

The compiler knows that	 � � �
�

will never crash.

We can generate a certificate (proof carrying code).

is efficient:
No tags at runtime.
No checking.

Why Dependent Types Matter – p.26/32



Safe eval !

The compiler knows that	 � � �
�

will never crash.

We can generate a certificate (proof carrying code).

is efficient:
No tags at runtime.
No checking.

Why Dependent Types Matter – p.26/32



Safe eval !

The compiler knows that	 � � �
�

will never crash.

We can generate a certificate (proof carrying code).

	 � � �
�

is efficient:

No tags at runtime.
No checking.

Why Dependent Types Matter – p.26/32



Safe eval !

The compiler knows that	 � � �
�

will never crash.

We can generate a certificate (proof carrying code).

	 � � �
�

is efficient:
No tags at runtime.

No checking.

Why Dependent Types Matter – p.26/32



Safe eval !

The compiler knows that	 � � �
�

will never crash.

We can generate a certificate (proof carrying code).

	 � � �
�

is efficient:
No tags at runtime.
No checking.

Why Dependent Types Matter – p.26/32



Generic equality

Implement a generic equality function for non nested,
concrete data types

Usually requires a language extension (Generic
Haskell)

Topic developed further in our (Conor and me) paper:
Generic programming within dependently typed
programming
Working Conference on Generic Programming 2002
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Generic equality
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Advantages of Dependently Typed Programming

Avoidance of run-time errors

More efficient code (elimination of tags)

Extensions of Type System as library

Easier to reason about

Already comes with a verification language
(totality checker)

Safety constraints can be checked statically (safe
mobile code)
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Important issues

Definitional equality should be well behaved

Inductive families have to be supported

Type inference is generalized by elaboration
Extensible elaboration ?

Programs are constructed interactively,
starting with the type as a partial specification
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