
Why Dependent Types Matter

Thorsten Altenkirch

University of Nottingham

based on joint work with

and cartoons by
Conor McBride

Why Dependent Types Matter – p.1/32

The established social order

terms types

do all the work are never around when

there is work to be done

engage in criminal activity commit no crime

can be stopped and searched cannot be investigated.

belong to and are

hold in check by types

Why Dependent Types Matter – p.2/32

The established social order

terms

types

do all the work are never around when

there is work to be done

engage in criminal activity commit no crime

can be stopped and searched cannot be investigated.

belong to and are

hold in check by types

Why Dependent Types Matter – p.2/32

The established social order

terms types

do all the work are never around when

there is work to be done

engage in criminal activity commit no crime

can be stopped and searched cannot be investigated.

belong to and are

hold in check by types

Why Dependent Types Matter – p.2/32

The established social order

terms types

do all the work

are never around when

there is work to be done

engage in criminal activity commit no crime

can be stopped and searched cannot be investigated.

belong to and are

hold in check by types

Why Dependent Types Matter – p.2/32

The established social order

terms types

do all the work are never around when

there is work to be done

engage in criminal activity commit no crime

can be stopped and searched cannot be investigated.

belong to and are

hold in check by types

Why Dependent Types Matter – p.2/32

The established social order

terms types

do all the work are never around when

there is work to be done

engage in criminal activity

commit no crime

can be stopped and searched cannot be investigated.

belong to and are

hold in check by types

Why Dependent Types Matter – p.2/32

The established social order

terms types

do all the work are never around when

there is work to be done

engage in criminal activity commit no crime

can be stopped and searched cannot be investigated.

belong to and are

hold in check by types

Why Dependent Types Matter – p.2/32

The established social order

terms types

do all the work are never around when

there is work to be done

engage in criminal activity commit no crime

can be stopped and searched

cannot be investigated.

belong to and are

hold in check by types

Why Dependent Types Matter – p.2/32

The established social order

terms types

do all the work are never around when

there is work to be done

engage in criminal activity commit no crime

can be stopped and searched cannot be investigated.

belong to and are

hold in check by types

Why Dependent Types Matter – p.2/32

The established social order

terms types

do all the work are never around when

there is work to be done

engage in criminal activity commit no crime

can be stopped and searched cannot be investigated.

belong to and are

hold in check by types

Why Dependent Types Matter – p.2/32

The established social order

terms types

do all the work are never around when

there is work to be done

engage in criminal activity commit no crime

can be stopped and searched cannot be investigated.

belong to and are

hold in check by types

Why Dependent Types Matter – p.2/32

The established social order

terms types

do all the work are never around when

there is work to be done

engage in criminal activity commit no crime

can be stopped and searched cannot be investigated.

belong to and are

hold in check by types

Why Dependent Types Matter – p.2/32

Ersatz dependent types

In modern type systems types have to do some work

Polymorphic types can be use to represent square
matrices

Conor showed in Faking it how
to use the logic programming of
Haskell’s class system to simu-
late some usages of dependent
types.

Why Dependent Types Matter – p.3/32

Ersatz dependent types

In modern type systems types have to do some work

Polymorphic types can be use to represent square
matrices

Conor showed in Faking it how
to use the logic programming of
Haskell’s class system to simu-
late some usages of dependent
types.

Why Dependent Types Matter – p.3/32

Ersatz dependent types

In modern type systems types have to do some work

Polymorphic types can be use to represent square
matrices

��� ��� ��� 	
 �� ��� ��� � � � 	

��� ��� ��� ��� 	
 ��� � � �� �� 	 � �� ��� � � �� �� �� � 	

� � 	
 � �

� �� �� 	
 � �� � 	 �� 	 �

Conor showed in Faking it how
to use the logic programming of
Haskell’s class system to simu-
late some usages of dependent
types.

Why Dependent Types Matter – p.3/32

Ersatz dependent types

In modern type systems types have to do some work

Polymorphic types can be use to represent square
matrices

��� ��� ��� 	
 �� ��� ��� � � � 	

��� ��� ��� ��� 	
 ��� � � �� �� 	 � �� ��� � � �� �� �� � 	

� � 	
 � �

� �� �� 	
 � �� � 	 �� 	 �

Conor showed in Faking it how
to use the logic programming of
Haskell’s class system to simu-
late some usages of dependent
types.

Why Dependent Types Matter – p.3/32

Ersatz dependent types

In modern type systems types have to do some work

Polymorphic types can be use to represent square
matrices

��� ��� ��� 	
 �� ��� ��� � � � 	

��� ��� ��� ��� 	
 ��� � � �� �� 	 � �� ��� � � �� �� �� � 	

� � 	
 � �

� �� �� 	
 � �� � 	 �� 	 �

Conor showed in Faking it how
to use the logic programming of
Haskell’s class system to simu-
late some usages of dependent
types.

Why Dependent Types Matter – p.3/32

Breaking the old social order

Data is validated wrt other data

If types are to capture the validity of data, we must let
them depend on terms.

Why Dependent Types Matter – p.4/32

Breaking the old social order

Data is validated wrt other data

If types are to capture the validity of data, we must let
them depend on terms.

Why Dependent Types Matter – p.4/32

Breaking the old social order

Data is validated wrt other data

If types are to capture the validity of data, we must let
them depend on terms.

Why Dependent Types Matter – p.4/32

Breaking the old social order

Data is validated wrt other data

If types are to capture the validity of data, we must let
them depend on terms.

Why Dependent Types Matter – p.4/32

Breaking the old social order

Data is validated wrt other data

If types are to capture the validity of data, we must let
them depend on terms.

Why Dependent Types Matter – p.4/32

Breaking the old social order

Data is validated wrt other data

If types are to capture the validity of data, we must let
them depend on terms.

Why Dependent Types Matter – p.4/32

Overview

Examples for programming with dependent types:
– safe access to lists/vectors
– safe eval

– generic equality

Illustrating patterns in DTP
verify ,
reflect

Emphasis on safe and efficient execution

Using epigram currently developed by Conor,
using ideas from

LEGO / OLEG
ALF

Why Dependent Types Matter – p.5/32

Overview

Examples for programming with dependent types:

– safe access to lists/vectors
– safe eval

– generic equality

Illustrating patterns in DTP
verify ,
reflect

Emphasis on safe and efficient execution

Using epigram currently developed by Conor,
using ideas from

LEGO / OLEG
ALF

Why Dependent Types Matter – p.5/32

Overview

Examples for programming with dependent types:

� � �

– safe access to lists/vectors

– safe eval
– generic equality

Illustrating patterns in DTP
verify ,
reflect

Emphasis on safe and efficient execution

Using epigram currently developed by Conor,
using ideas from

LEGO / OLEG
ALF

Why Dependent Types Matter – p.5/32

Overview

Examples for programming with dependent types:

� � �

– safe access to lists/vectors

� � �
�

– safe eval

– generic equality

Illustrating patterns in DTP
verify ,
reflect

Emphasis on safe and efficient execution

Using epigram currently developed by Conor,
using ideas from

LEGO / OLEG
ALF

Why Dependent Types Matter – p.5/32

Overview

Examples for programming with dependent types:

� � �

– safe access to lists/vectors

� � �
�

– safe eval

�� – generic equality

Illustrating patterns in DTP
verify ,
reflect

Emphasis on safe and efficient execution

Using epigram currently developed by Conor,
using ideas from

LEGO / OLEG
ALF

Why Dependent Types Matter – p.5/32

Overview

Examples for programming with dependent types:

� � �

– safe access to lists/vectors

� � �
�

– safe eval

�� – generic equality

Illustrating patterns in DTP

verify ,
reflect

Emphasis on safe and efficient execution

Using epigram currently developed by Conor,
using ideas from

LEGO / OLEG
ALF

Why Dependent Types Matter – p.5/32

Overview

Examples for programming with dependent types:

� � �

– safe access to lists/vectors

� � �
�

– safe eval

�� – generic equality

Illustrating patterns in DTP
verify � � �

, � � �
�

reflect

Emphasis on safe and efficient execution

Using epigram currently developed by Conor,
using ideas from

LEGO / OLEG
ALF

Why Dependent Types Matter – p.5/32

Overview

Examples for programming with dependent types:

� � �

– safe access to lists/vectors

� � �
�

– safe eval

�� – generic equality

Illustrating patterns in DTP
verify � � �

, � � �
�

reflect ��

Emphasis on safe and efficient execution

Using epigram currently developed by Conor,
using ideas from

LEGO / OLEG
ALF

Why Dependent Types Matter – p.5/32

Overview

Examples for programming with dependent types:

� � �

– safe access to lists/vectors

� � �
�

– safe eval

�� – generic equality

Illustrating patterns in DTP
verify � � �

, � � �
�

reflect ��

Emphasis on safe and efficient execution

Using epigram currently developed by Conor,
using ideas from

LEGO / OLEG
ALF

Why Dependent Types Matter – p.5/32

Overview

Examples for programming with dependent types:

� � �

– safe access to lists/vectors

� � �
�

– safe eval

�� – generic equality

Illustrating patterns in DTP
verify � � �

, � � �
�

reflect ��

Emphasis on safe and efficient execution

Using epigram currently developed by Conor,
using ideas from

LEGO / OLEG
ALF

Why Dependent Types Matter – p.5/32

Overview

Examples for programming with dependent types:

� � �

– safe access to lists/vectors

� � �
�

– safe eval

�� – generic equality

Illustrating patterns in DTP
verify � � �

, � � �
�

reflect ��

Emphasis on safe and efficient execution

Using epigram currently developed by Conor,
using ideas from

LEGO / OLEG

ALF

Why Dependent Types Matter – p.5/32

Overview

Examples for programming with dependent types:

� � �

– safe access to lists/vectors

� � �
�

– safe eval

�� – generic equality

Illustrating patterns in DTP
verify � � �

, � � �
�

reflect ��

Emphasis on safe and efficient execution

Using epigram currently developed by Conor,
using ideas from

LEGO / OLEG
ALF

Why Dependent Types Matter – p.5/32

� � �

— no dependent types

let

� �� � � ��
	 � � � � �
� �

� � � � � � � �

� � � � � � � �

Hindley-Milner: Type quantification and application can
be made implicit.

Split left hand sides using type information

Why Dependent Types Matter – p.6/32

� � �

— no dependent types

let

� � ��
	 � � � � �
� �

� � � � � � �

� � � � � � �
Hindley-Milner: Type quantification and application can
be made implicit.

Split left hand sides using type information

Why Dependent Types Matter – p.6/32

� � �

— no dependent types

let

� � ��
	 � � � � �
� �

� � � � � � �

� � �

�� � � � �

� � � � � � �	 � �� � � � �

Hindley-Milner: Type quantification and application can
be made implicit.

Split left hand sides using type information

Why Dependent Types Matter – p.6/32

� � �

— no dependent types

let

� � ��
	 � � � � �
� �

� � � � � � �

� � �

�� � � � �

� � � � � � �	 � �� � � � �

� � � � � � �	 � �� � �	 � � � �

Hindley-Milner: Type quantification and application can
be made implicit.

Split left hand sides using type information

Why Dependent Types Matter – p.6/32

� � �

— no dependent types

let

� � ��
	 � � � � �
� �

� � � � � � �

� � �

�� � � � �

� � � � � � �	 � �� � � � �

� � � � � � �	 � �� � �	 � � � �

Hindley-Milner: Type quantification and application can
be made implicit.

Split left hand sides using type information

Why Dependent Types Matter – p.6/32

� � �

— no dependent types

let

� � ��
	 � � � � �
� �

� � � � � � �

� � �

�� � � � �

� � � � � � �	 � �� � � � �

� � � � � � �	 � �� � �	 � � � � � � � � �

Hindley-Milner: Type quantification and application can
be made implicit.

Split left hand sides using type information

Why Dependent Types Matter – p.6/32

� � �

is not good

let

� � ��
	 � � � � �
� �

� � � � � � �

� � �

�� � � � �

� � � � � � �	 � �� � � � �

� � � � � � �	 � �� � �	 � � � � � � �� �

The function is partial

leads to a runtime error.

Reason: The type of is not informative enough.

Why Dependent Types Matter – p.7/32

� � �

is not good

let

� � ��
	 � � � � �
� �

� � � � � � �

� � �

�� � � � �

� � � � � � �	 � �� � � � �

� � � � � � �	 � �� � �	 � � � � � � �� �

The function � � �

is partial

� � � � ��
�

� �

leads to a runtime error.

Reason: The type of is not informative enough.

Why Dependent Types Matter – p.7/32

� � �

is not good

let

� � ��
	 � � � � �
� �

� � � � � � �

� � �

�� � � � �

� � � � � � �	 � �� � � � �

� � � � � � �	 � �� � �	 � � � � � � �� �

The function � � �

is partial

� � � � ��
�

� �

leads to a runtime error.

Reason: The type of � � �

is not informative enough.

Why Dependent Types Matter – p.7/32

data types

data where�
� � �� � � �
� �

� � �
� �

	 � � �
� �

data

� ��

where� �
	 � � ��

� ��

�� �
� � �� 	 � �

� �� � � � � � � �� 	 � �

� � �	 � � �� � ��
	 � �

Why Dependent Types Matter – p.8/32

data types

data where�
� � �� � � �
� �

� � �
� �

	 � � �
� �

data

� ��

where� �
	 � � ��

�� � � �� 	 � �

� � � � � � �� 	 � �

� � �	 � �� � ��
	 � �

Why Dependent Types Matter – p.8/32

Better data types, better � � �

data where

data where

let

is a total function.

is not well-typed.

Why Dependent Types Matter – p.9/32

Better data types, better � � �

data

� � ��� �

where� �� � � �

� � ��� �

� �
� � � �� � � � �

� � ��� � � � � �� �

� � � � � � �� � � � �

data where

let

is a total function.

is not well-typed.

Why Dependent Types Matter – p.9/32

Better data types, better � � �

data

� � ��� �

where� �� � � �

� � ��� �

� �
� � � �� � � � �

� � ��� � � � � �� �

� � � � � � �� � � � �

data

� � � � � ��� �

where�� � � � � � �� � � �� � � �

� � ��� � 	 � � 	� � �� � � �

� � �� �� 	 	 � � �� � � � � � �

let

is a total function.

is not well-typed.

Why Dependent Types Matter – p.9/32

Better data types, better � � �

data

� � ��� �

where� �� � � �

� � ��� �

� � � � �� � � � �

� � � �� �

� � � � � �� � � � �

data

� � � � � ��� �

where�� � � � � � �� � � �� � � �

	 � � 	� � �� � � �

� � �� � 	 	 � � �� � � � � � �

let

is a total function.

is not well-typed.

Why Dependent Types Matter – p.9/32

Better data types, better � � �

data

� � ��� �

where� �� � � �

� � ��� �

� � � � �� � � � �

� � � �� �

� � � � � �� � � � �

data

� � � � � ��� �

where�� � � � � � �� � � �� � � �

	 � � 	� � �� � � �

� � �� � 	 	 � � �� � � � � � �

let

� � ��� � � � �� � � � � � � �� �

� � �� � � � �

is a total function.

is not well-typed.

Why Dependent Types Matter – p.9/32

Better data types, better � � �

data

� � ��� �

where� �� � � �

� � ��� �

� � � � �� � � � �

� � � �� �

� � � � � �� � � � �

data

� � � � � ��� �

where�� � � � � � �� � � �� � � �

	 � � 	� � �� � � �

� � �� � 	 	 � � �� � � � � � �

let

� � �� � � � � � � �� �

� � � � � � �

is a total function.

is not well-typed.

Why Dependent Types Matter – p.9/32

Better data types, better � � �

data

� � ��� �

where� �� � � �

� � ��� �

� � � � �� � � � �

� � � �� �

� � � � � �� � � � �

data

� � � � � ��� �

where�� � � � � � �� � � �� � � �

	 � � 	� � �� � � �

� � �� � 	 	 � � �� � � � � � �

let

� � �� � � � � � � �� �

� � � � � � �

� � � � � � � �

is a total function.

is not well-typed.

Why Dependent Types Matter – p.9/32

Better data types, better � � �

data

� � ��� �

where� �� � � �

� � ��� �

� � � � �� � � � �

� � � �� �

� � � � � �� � � � �

data

� � � � � ��� �

where�� � � � � � �� � � �� � � �

	 � � 	� � �� � � �

� � �� � 	 	 � � �� � � � � � �

let

� � �� � � � � � � �� �

� � � � � � �

� � � � � � � � �

� � � � � � � � � � � �

is a total function.

is not well-typed.

Why Dependent Types Matter – p.9/32

Better data types, better � � �

data

� � ��� �

where� �� � � �

� � ��� �

� � � � �� � � � �

� � � �� �

� � � � � �� � � � �

data

� � � � � ��� �

where�� � � � � � �� � � �� � � �

	 � � 	� � �� � � �

� � �� � 	 	 � � �� � � � � � �

let

� � �� � � � � � � �� �

� � � � � � �

� � � � � � �� � 	 	� � � � � � �

� � � � � � � � � � � �

is a total function.

is not well-typed.

Why Dependent Types Matter – p.9/32

Better data types, better � � �

data

� � ��� �

where� �� � � �

� � ��� �

� � � � �� � � � �

� � � �� �

� � � � � �� � � � �

data

� � � � � ��� �

where�� � � � � � �� � � �� � � �

	 � � 	� � �� � � �

� � �� � 	 	 � � �� � � � � � �

let

� � �� � � � � � � �� �

� � � � � � �

� � � � � � �� � 	 	 � � � � � � �

� � � � � � �� � 	 	 � � � � � � � � � �

is a total function.

is not well-typed.

Why Dependent Types Matter – p.9/32

Better data types, better � � �

data

� � ��� �

where� �� � � �

� � ��� �

� � � � �� � � � �

� � � �� �

� � � � � �� � � � �

data

� � � � � ��� �

where�� � � � � � �� � � �� � � �

	 � � 	� � �� � � �

� � �� � 	 	 � � �� � � � � � �

let

� � �� � � � � � � �� �

� � � � � � �

� � � � � � � � � 	 	� � � � � � 	

� � � � � � � � � 	 	� � � � � � � � � � � � 	� �

� � �

is a total function.

is not well-typed.

Why Dependent Types Matter – p.9/32

Better data types, better � � �

data

� � ��� �

where� �� � � �

� � ��� �

� � � � �� � � � �

� � � �� �

� � � � � �� � � � �

data

� � � � � ��� �

where�� � � � � � �� � � �� � � �

	 � � 	� � �� � � �

� � �� � 	 	 � � �� � � � � � �

let

� � �� � � � � � � �� �

� � � � � � �

� � � � � � � � � 	 	� � � � � � 	

� � � � � � � � � 	 	� � � � � � � � � � � � 	� �

� � �

is a total function.

� � �� �� � � �

is not well-typed.

Why Dependent Types Matter – p.9/32

Verify

How can we use on lists of unknown length
user input,. . . ?

let

Why Dependent Types Matter – p.10/32

Verify

How can we use � � �

on lists of unknown length
user input,. . . ?

let

Why Dependent Types Matter – p.10/32

Verify

How can we use � � �

on lists of unknown length
user input,. . . ?

let

� �
� � �

� �

� � �� � � � � � �
� � �
�

�� � � � �

Why Dependent Types Matter – p.10/32

Verify

How can we use � � �

on lists of unknown length
user input,. . . ?

let

� �
� � �

� �

� � �� � � � � � �
� � �
�

�� � � � �

� � �� � � � � � �

Why Dependent Types Matter – p.10/32

Verify

How can we use � � �

on lists of unknown length
user input,. . . ?

let

� �
� � �

� �

� � �� � � � � � �
� � �
�

�� � � � �

� � �� � � � � � �

� � �� � � �	 � � � � �

Why Dependent Types Matter – p.10/32

Verify

How can we use � � �

on lists of unknown length
user input,. . . ?

let

� �
� � �

� �

� � �� � � � � � �
� � �
�

�� � � � �

� � �� � � � � � � � � �� � �

� � �� � � �	 � � � � �

Why Dependent Types Matter – p.10/32

Verify

How can we use � � �

on lists of unknown length
user input,. . . ?

let

� �
� � �

� �

� � �� � � � � � �
� � �
�

�� � � � �

� � �� � � � � � � � � �� � �

� � �� � � �	 � � � � �

� � �� � � �	 � � �	 � � � �

Why Dependent Types Matter – p.10/32

Verify

How can we use � � �

on lists of unknown length
user input,. . . ?

let

� �
� � �

� �

� � �� � � � � � �
� � �
�

�� � � � �

� � �� � � � � � � � � �� � �

� � �� � � �	 � � � � � �	 � � �

� � �� � � �	 � � �	 � � � �

Why Dependent Types Matter – p.10/32

Verify

How can we use � � �

on lists of unknown length
user input,. . . ?

let

� �
� � �

� �

� � �� � � � � � �
� � �
�

�� � � � �

� � �� � � � � � � � � �� � �

� � �� � � �	 � � � � � �	 � � �

� � �� � � �	 � � �	 � � �

� � �� � � � � � �

Why Dependent Types Matter – p.10/32

Verify

How can we use � � �

on lists of unknown length
user input,. . . ?

let

� �
� � �

� �

� � �� � � � � � �
� � �
�

�� � � � �

� � �� � � � � � � � � �� � �

� � �� � � �	 � � � � � �	 � � �

� � �� � � �	 � � �	 � � �

� � �� � � � �

�

� � � �� � � � �

� � �	 � � � �

Why Dependent Types Matter – p.10/32

Verify

How can we use � � �

on lists of unknown length
user input,. . . ?

let

� �
� � �

� �

� � �� � � � � � �
� � �
�

�� � � � �

� � �� � � � � � � � � �� � �

� � �� � � �	 � � � � � �	 � � �

� � �� � � �	 � � �	 � � �

� � �� � � � �

�

� � � �� � � � � � � �� � �

� � �	 � � � �

Why Dependent Types Matter – p.10/32

Verify

How can we use � � �

on lists of unknown length
user input,. . . ?

let

� �
� � �

� �

� � �� � � � � � �
� � �
�

�� � � � �

� � �� � � � � � � � � �� � �

� � �� � � �	 � � � � � �	 � � �

� � �� � � �	 � � �	 � � �

� � �� � � � �

�

� � � �� � � � � � � �� � �

� � �	 � � � � �	 � �	 � � �

Why Dependent Types Matter – p.10/32

Going further

The type of is not informative enough for some of
its potential applications.

How is related to ?

When does return ?

Why Dependent Types Matter – p.11/32

Going further

The type of � � �� � � is not informative enough for some of
its potential applications.

How is related to ?

When does return ?

Why Dependent Types Matter – p.11/32

Going further

The type of � � �� � � is not informative enough for some of
its potential applications.

How is

� �	 � � � � � �� � � � �

related to

�

?

When does return ?

Why Dependent Types Matter – p.11/32

Going further

The type of � � �� � � is not informative enough for some of
its potential applications.

How is

� �	 � � � � � �� � � � �

related to

�

?

When does � � �� � � return � � � �� � �?

Why Dependent Types Matter – p.11/32

� �� � ��� improved.

let

� � � �� �

�� � � ��� �

�� � � � � �

�� � � � � � � � � � �� � �

data where

let

Why Dependent Types Matter – p.12/32

� �� � ��� improved.

let

� � � �� �

�� � � ��� �

�� � � � � �

�� � � � � � � � � � �� � �
data

� � � � ��� �

where� �� � � � � � �

� � � �� �

� �� � � � � � � �� � � � � �� � �

� � � � ��� �

� � � � ��� � � � � �� � � � � � � � �

let

Why Dependent Types Matter – p.12/32

� �� � ��� improved.

let

� � � �� �

�� � � ��� �

�� � � � � �

�� � � � � � � � � � �� � �
data

� � � � ��� �

where� �� � � � � � �

� � � �� �

� �� � � � � � � �� � � � � �� � �

� � � � ��� �

� � � � ��� � � � � �� � � � � � � � �

let

� � � � ��� �

�� � � �
� � � � � �� � � � �

Why Dependent Types Matter – p.12/32

� �� � ��� improved.

let

� � � �� �

�� � � ��� �

�� � � � � �

�� � � � � � � � � � �� � �
data

� � � � ��� �

where� �� � � � � � �

� � � �� �

� �� � � � � � � �� � � � � �� � �

� � � � ��� �

� � � � ��� � � � � �� � � � � � � � �

let

� � � � ��� �

�� � � �
� � � � � �� � � � �

�� � � �
� � � � � �

Why Dependent Types Matter – p.12/32

� �� � ��� improved.

let

� � � �� �

�� � � ��� �

�� � � � � �

�� � � � � � � � � � �� � �
data

� � � � ��� �

where� �� � � � � � �

� � � �� �

� �� � � � � � � �� � � � � �� � �

� � � � ��� �

� � � � ��� � � � � �� � � � � � � � �

let

� � � � ��� �

�� � � �
� � � � � �� � � � �

�� � � �
� � � � � �

�� � � �
�

� � � � � � � �

Why Dependent Types Matter – p.12/32

� �� � ��� improved.

let

� � � �� �

�� � � ��� �

�� � � � � �

�� � � � � � � � � � �� � �
data

� � � � ��� �

where� �� � � � � � �

� � � �� �

� �� � � � � � � �� � � � � �� � �

� � � � ��� �

� � � � ��� � � � � �� � � � � � � � �

let

� � � � ��� �

�� � � �
� � � � � �� � � � �

�� � � �
� � � � � � � � � ��� � �

�� � � �
�

� � � � � � � �

Why Dependent Types Matter – p.12/32

� �� � ��� improved.

let

� � � �� �

�� � � ��� �

�� � � � � �

�� � � � � � � � � � �� � �
data

� � � � ��� �

where� �� � � � � � �

� � � �� �

� �� � � � � � � �� � � � � �� � �

� � � � ��� �

� � � � ��� � � � � �� � � � � � � � �

let

� � � � ��� �

�� � � �
� � � � � �� � � � �

�� � � �
� � � � � � � � � ��� � �

�� � � �
�

� � � � � � � �

�� � � �
�

� � � � � � � � � � �

Why Dependent Types Matter – p.12/32

� �� � ��� improved.

let

� � � �� �

�� � � ��� �

�� � � � � �

�� � � � � � � � � � �� � �
data

� � � � ��� �

where� �� � � � � � �

� � � �� �

� �� � � � � � � �� � � � � �� � �

� � � � ��� �

� � � � ��� � � � � �� � � � � � � � �

let

� � � � ��� �

�� � � �
� � � � � �� � � � �

�� � � �
� � � � � � � � � ��� � �

�� � � �
�

� � � � � � � � �� � � � � �

�� � � �
�

� � � � � � � � � � �

Why Dependent Types Matter – p.12/32

� �� � ��� improved.

let

� � � �� �

�� � � ��� �

�� � � � � �

�� � � � � � � � � � �� � �
data

� � � � ��� �

where� �� � � � � � �

� � � �� �

� �� � � � � � � �� � � � � �� � �

� � � � ��� �

� � � � ��� � � � � �� � � � � � � � �

let

� � � � ��� �

�� � � �
� � � � � �� � � � �

�� � � �
� � � � � � � � � ��� � �

�� � � �
�

� � � � � � � � �� � � � � �

�� � � �
�

� � � � � � � � � �� � � �
� � � � � �

Why Dependent Types Matter – p.12/32

� �� � ��� improved.

let

� � � �� �

�� � � ��� �

�� � � � � �

�� � � � � � � � � � �� � �
data

� � � � ��� �

where� �� � � � � � �

� � � �� �

� �� � � � � � � �� � � � � �� � �

� � � � ��� �

� � � � ��� � � � � �� � � � � � � � �

let

� � � � ��� �

�� � � �
� � � � � �� � � � �

�� � � �
� � � � � � � � � ��� � �

�� � � �
�

� � � � � � � � �� � � � � �

�� � � �
�

� � � � � � � � � �� � � �
� � �

�� � � �
�

� � � � � � � � � � � � � � � � � ��� � � � � �

�� � � �
�

� � � � � �� � � � � �� � � � � � � �

Why Dependent Types Matter – p.12/32

� �� � ��� improved.

let

� � � �� �

�� � � ��� �

�� � � � � �

�� � � � � � � � � � �� � �
data

� � � � ��� �

where� �� � � � � � �

� � � �� �

� �� � � � � � � �� � � � � �� � �

� � � � ��� �

� � � � ��� � � � � �� � � � � � � � �

let

� � � � ��� �

�� � � �
� � � � � �� � � � �

�� � � �
� � � � � � � � � ��� � �

�� � � �
�

� � � � � � � � �� � � � � �

�� � � �
�

� � � � � � � � � �� � � �
� � �

�� � � �
�

� � � � � � � � � � � � � � � � � ��� � � � � � � � � ��� � � � � �

�� � � �
�

� � � � � �� � � � � �� � � � � � � �

Why Dependent Types Matter – p.12/32

� �� � ��� improved.

let

� � � �� �

�� � � ��� �

�� � � � � �

�� � � � � � � � � � �� � �
data

� � � � ��� �

where� �� � � � � � �

� � � �� �

� �� � � � � � � �� � � � � �� � �

� � � � ��� �

� � � � ��� � � � � �� � � � � � � � �

let

� � � � ��� �

�� � � �
� � � � � �� � � � �

�� � � �
� � � � � � � � � ��� � �

�� � � �
�

� � � � � � � � �� � � � � �

�� � � �
�

� � � � � � � � � �� � � �
� � �

�� � � �
�

� � � � � � � � � � � � � � � � � ��� � � � � � � � � ��� � � � � �

�� � � �
�

� � � � � �� � � � � �� � � � � � � � �� � � � � � � � � � � �

Why Dependent Types Matter – p.12/32

Definitional equality

The typing of depends on the equations:

This equations need to be true definitionally.

If we need we have to use propositional
equality.

Why Dependent Types Matter – p.13/32

Definitional equality

The typing of � � �� � � depends on the equations:

� � � � �

�	 � � � � � 	 � � � � �

This equations need to be true definitionally.

If we need we have to use propositional
equality.

Why Dependent Types Matter – p.13/32

Definitional equality

The typing of � � �� � � depends on the equations:

� � � � �

�	 � � � � � 	 � � � � �

This equations need to be true definitionally.

If we need we have to use propositional
equality.

Why Dependent Types Matter – p.13/32

Definitional equality

The typing of � � �� � � depends on the equations:

� � � � �

�	 � � � � � 	 � � � � �

This equations need to be true definitionally.

If we need � � � � � we have to use propositional
equality.

Why Dependent Types Matter – p.13/32

Propositional equality

data where

let

let

Why Dependent Types Matter – p.14/32

Propositional equality

data

� �� � �
� � �

where� � � ��

� � �

� �
� � � � � �

let

let

Why Dependent Types Matter – p.14/32

Propositional equality

data

� �� � �
� � �

where� � � ��

� � �

� �
� � � � � �

let

� � �
� �

�
� ��� � � � � � � �

�
� �

� � � � �
� �

�
� �

�
�	 � � � � � �

� � �

�
� �

� �

� � � � �
� � � �
�

let

Why Dependent Types Matter – p.14/32

Propositional equality

data

� �� � �
� � �

where� � � ��

� � �

� �
� � � � � �

let

� � �
� �

�
� ��� � � � � � � �

�
� �

� � � � �
� �

�
� �

�
�	 � � � � � �

� � �

�
� �

� �

� � � � �
� � � �
�

let

� � � � � � � � �� � � � �

	 �
�	 � � � � � � �

	 �
�	 � � � �

� � � � � � �

Why Dependent Types Matter – p.14/32

Problems with �

Programs cluttered with coercions.

Programming requires theorem proving.

Equality on functions is not extensional, i.e.

let

cannot be derived.

Why Dependent Types Matter – p.15/32

Problems with �

Programs cluttered with coercions.

Programming requires theorem proving.

Equality on functions is not extensional, i.e.

let

cannot be derived.

Why Dependent Types Matter – p.15/32

Problems with �

Programs cluttered with coercions.

Programming requires theorem proving.

Equality on functions is not extensional, i.e.

let

cannot be derived.

Why Dependent Types Matter – p.15/32

Problems with �

Programs cluttered with coercions.

Programming requires theorem proving.

Equality on functions is not extensional, i.e.

let

�
� � � � � � � � � � � �
�

� � � � �

�� � � � �
� �

cannot be derived.

Why Dependent Types Matter – p.15/32

Solutions ?

In many cases the need for propositional equality can
be avoided.

DML shows that many equalities needed in
programming can be proven automatically.
Proposal: Integrate an extensible constraint prover into
the elaboration process.

The problem with extensional equality can be overcome
using a different approach to equality.

Why Dependent Types Matter – p.16/32

Solutions ?

In many cases the need for propositional equality can
be avoided.

DML shows that many equalities needed in
programming can be proven automatically.
Proposal: Integrate an extensible constraint prover into
the elaboration process.

The problem with extensional equality can be overcome
using a different approach to equality.

Why Dependent Types Matter – p.16/32

Solutions ?

In many cases the need for propositional equality can
be avoided.

DML shows that many equalities needed in
programming can be proven automatically.
Proposal: Integrate an extensible constraint prover into
the elaboration process.

The problem with extensional equality can be overcome
using a different approach to equality.

Why Dependent Types Matter – p.16/32

Solutions ?

In many cases the need for propositional equality can
be avoided.

DML shows that many equalities needed in
programming can be proven automatically.
Proposal: Integrate an extensible constraint prover into
the elaboration process.

The problem with extensional equality can be overcome
using a different approach to equality.

Why Dependent Types Matter – p.16/32

Eval

Implement an evaluator for
a simply typed object language.

We use type-checking to avoid run-time errors.

First we implement a simply typed version.

Then a dependently typed version,
exploiting the verify pattern.

Why Dependent Types Matter – p.17/32

Eval

Implement an evaluator for
a simply typed object language.

We use type-checking to avoid run-time errors.

First we implement a simply typed version.

Then a dependently typed version,
exploiting the verify pattern.

Why Dependent Types Matter – p.17/32

Eval

Implement an evaluator for
a simply typed object language.

We use type-checking to avoid run-time errors.

First we implement a simply typed version.

Then a dependently typed version,
exploiting the verify pattern.

Why Dependent Types Matter – p.17/32

Eval

Implement an evaluator for
a simply typed object language.

We use type-checking to avoid run-time errors.

First we implement a simply typed version.

Then a dependently typed version,
exploiting the verify pattern.

Why Dependent Types Matter – p.17/32

Eval

Implement an evaluator for
a simply typed object language.

We use type-checking to avoid run-time errors.

First we implement a simply typed version.

Then a dependently typed version,
exploiting the verify pattern.

Why Dependent Types Matter – p.17/32

The object language

data where�
�

� ��

� � �
� �

� � � � � � �
�

�

� � � � � �

�
� � � � � � �

�
�

data where

Why Dependent Types Matter – p.18/32

The object language

data where�
�

� ��

� � �
� �

� � � � � � �
�

�

� � � � � �

�
� � � � � � �

�
�

data where� � ��

� � �
�

�

� � �
� � � � �

�
� � � � � � � � �

� � � � � � � � � � �

�
� � �

� � �

� �
� � � � � � �

Why Dependent Types Matter – p.18/32

Object types

data where� � �� � � � � � � � � � � � � �

let

Why Dependent Types Matter – p.19/32

Object types

data where� � �� � � � � � � � � � � � � �

let

� � � �

� � �� � � � � �
� � �
� � � � � �

Why Dependent Types Matter – p.19/32

Eval — simply typed

let

� � � �

� �� � � ��

Why Dependent Types Matter – p.20/32

Eval — simply typed

let

� � � �

� �� � � ��

� �� � � �� � � � � �

� �� � � � �� �� �� � � � �� �

� �� � � � � � �

� � � � � ��� � � � � � �� ��

� � � � � �� �� � � � �� ��

� �� � � � � �� � � � � �� �

� �� � � � � � �� �

� �� � � � � � �� � � � � � � �

� � � � � � � � �

� � � � � � � � �

Why Dependent Types Matter – p.20/32

Safe eval ?

let

� � � �

	 � � �
� � � �

� � �
�

�
�

�

Why Dependent Types Matter – p.21/32

Safe eval ?

let

� � � �

	 � � �
� � � �

� � �
�

�
�

�

	 � � �
� � �

� � �� � � �

� � �	 � � � � �	 � �
� � �

� � �

�

� � � �� � � � � � � �� � �

Why Dependent Types Matter – p.21/32

Safe eval ?

We know that will never crash . . .

. . . but the compiler doesn’t!

is inefficient:
Values carry tags at runtime

checks the tags

Why Dependent Types Matter – p.22/32

Safe eval ?

We know that	 � � �
�

will never crash . . .

. . . but the compiler doesn’t!

is inefficient:
Values carry tags at runtime

checks the tags

Why Dependent Types Matter – p.22/32

Safe eval ?

We know that	 � � �
�

will never crash . . .

. . . but the compiler doesn’t!

is inefficient:
Values carry tags at runtime

checks the tags

Why Dependent Types Matter – p.22/32

Safe eval ?

We know that	 � � �
�

will never crash . . .

. . . but the compiler doesn’t!

	 � � �
�

is inefficient:
Values carry tags at runtime

checks the tags

Why Dependent Types Matter – p.22/32

Safe eval ?

We know that	 � � �
�

will never crash . . .

. . . but the compiler doesn’t!

	 � � �
�

is inefficient:
Values carry tags at runtime

� � �
�

checks the tags

Why Dependent Types Matter – p.22/32

Object language using dependent types

data where

data where

Why Dependent Types Matter – p.23/32

Object language using dependent types

data

	 � � �

where� �� 	 � �

� � ��� �

�� � � � � � �� � � �

� � � � �

� � � � � � � �� � � �

data where

Why Dependent Types Matter – p.23/32

Object language using dependent types

data

	 � � �

where� �� 	 � �

� � ��� �

�� � � � � � �� � � �

� � � � �

� � � � � � � �� � � �

data

	 � �

where� � � 	 � �

Why Dependent Types Matter – p.23/32

Object language using dependent types

data

	 � � �

where� �� 	 � �

� � ��� �

�� � � � � � �� � � �

� � � � �

� � � � � � � �� � � �

data

	 � �

where� � � 	 � �

� � � �� 	

� �� � � � � � 	
� � � � � � � � �� � �� � � � � 	

� � �� �� �� � � � � 	

� � � � � � � � � � �

� � � �� � � � � � � � �

Why Dependent Types Matter – p.23/32

Eval — dependently

let

� � � � � 	

� �� � � �� 	

Why Dependent Types Matter – p.24/32

Eval — dependently

let

� � � � � 	

� �� � � �� 	

� �� � � �� � � � � �

� �� � � � �� �� �� � � � �� �

� � � � � ��� � � � � � �� ��

� � � � � �� �� � � � �� ��

� �� � � � � �� � � � � �� �

� �� � � � � � �� �

� �� � � � � � �� � � � � � � �

Why Dependent Types Matter – p.24/32

Safe eval !

let

data where

let

let

Why Dependent Types Matter – p.25/32

Safe eval !

let

� � � � � 	

� ��� ��� � � � �

� � �

data where

let

let

Why Dependent Types Matter – p.25/32

Safe eval !

let

� � � � � 	

� ��� ��� � � � �

� � �

data

� � � �

where�� � � �
�� � � �

� � � �� � �� � � �
��

� � � � � 	

� �� � �� � � �
�

� � � � ��� � �

let

� � � �

�� � � �
�� � �� � � �
��

� � �

let
� � � �

�� �� � � ��� �
� � � �

� � ���

�� 	 �

�� �� � � �� � � �
��

� � � � � � � � � � � � � � �� � �

� � � � �� � � � � � � �� �

Why Dependent Types Matter – p.25/32

Safe eval !

The compiler knows that will never crash.

We can generate a certificate (proof carrying code).

is efficient:
No tags at runtime.
No checking.

Why Dependent Types Matter – p.26/32

Safe eval !

The compiler knows that	 � � �
�

will never crash.

We can generate a certificate (proof carrying code).

is efficient:
No tags at runtime.
No checking.

Why Dependent Types Matter – p.26/32

Safe eval !

The compiler knows that	 � � �
�

will never crash.

We can generate a certificate (proof carrying code).

is efficient:
No tags at runtime.
No checking.

Why Dependent Types Matter – p.26/32

Safe eval !

The compiler knows that	 � � �
�

will never crash.

We can generate a certificate (proof carrying code).

	 � � �
�

is efficient:

No tags at runtime.
No checking.

Why Dependent Types Matter – p.26/32

Safe eval !

The compiler knows that	 � � �
�

will never crash.

We can generate a certificate (proof carrying code).

	 � � �
�

is efficient:
No tags at runtime.

No checking.

Why Dependent Types Matter – p.26/32

Safe eval !

The compiler knows that	 � � �
�

will never crash.

We can generate a certificate (proof carrying code).

	 � � �
�

is efficient:
No tags at runtime.
No checking.

Why Dependent Types Matter – p.26/32

Generic equality

Implement a generic equality function for non nested,
concrete data types

Usually requires a language extension (Generic
Haskell)

Topic developed further in our (Conor and me) paper:
Generic programming within dependently typed
programming
Working Conference on Generic Programming 2002

Why Dependent Types Matter – p.27/32

Generic equality

Implement a generic equality function for non nested,
concrete data types

Usually requires a language extension (Generic
Haskell)

Topic developed further in our (Conor and me) paper:
Generic programming within dependently typed
programming
Working Conference on Generic Programming 2002

Why Dependent Types Matter – p.27/32

Generic equality

Implement a generic equality function for non nested,
concrete data types

Usually requires a language extension (Generic
Haskell)

Topic developed further in our (Conor and me) paper:
Generic programming within dependently typed
programming
Working Conference on Generic Programming 2002

Why Dependent Types Matter – p.27/32

Generic equality

Implement a generic equality function for non nested,
concrete data types

Usually requires a language extension (Generic
Haskell)

Topic developed further in our (Conor and me) paper:
Generic programming within dependently typed
programming
Working Conference on Generic Programming 2002

Why Dependent Types Matter – p.27/32

Codes and data

data where

data where

Why Dependent Types Matter – p.28/32

Codes and data

data where� � � �

data where

Why Dependent Types Matter – p.28/32

Codes and data

data where� � � �

� � � � � � �

	 �� � � �

� � � � 	 � � � �

	 �� � � �

�� � 	� � � �

� � � � � �

data where

Why Dependent Types Matter – p.28/32

Codes and data

data where� � � �

� � � � � � �

	 �� � � �

� � � � 	 � � � �

	 �� � � �

�� � 	� � � �

� � � � � �

data

� � 	 � � �

where��
� 	 � �

Why Dependent Types Matter – p.28/32

Codes and data

data where� � � �

� � � � � � �

	 �� � � �

� � � � 	 � � � �

	 �� � � �

�� � 	� � � �

� � � � � �

data

� � 	 � � �

where��
� 	 � �

� � � � � ��
� � � � �

� � ��
� 	 � � ��
�

�

� � �� � � � ��
�

� � � � � 	 � �

Why Dependent Types Matter – p.28/32

Codes and data

data where� � � �

� � � � � � �

	 �� � � �

� � � � 	 � � � �

	 �� � � �

�� � 	� � � �

� � � � � �

data

� � 	 � � �

where��
� 	 � �

� � � � � ��
� � � � �

� � ��
� 	 � � ��
�

�

� � �� � � � ��
�

� � � � � 	 � �

� � �� 	

��
� � �� � �� � 	� �

� � �� �

�� � � � �� � �� � 	 � �

Why Dependent Types Matter – p.28/32

Codes and data

data where� � � �

� � � � � � �

	 �� � � �

� � � � 	 � � � �

	 �� � � �

�� � 	� � � �

� � � � � �

data

� � 	 � � �

where��
� 	 � �

� � � � � ��
� � � � �

� � ��
� 	 � � ��
�

�

� � �� � � � ��
�

� � � � � 	 � �

� � �� 	

��
� � �� � �� � 	� �

� � �� �

�� � � � �� � �� � 	 � �

� � ��
� �

�� � � ��
� �

Why Dependent Types Matter – p.28/32

Example

let

let

let

let

Why Dependent Types Matter – p.29/32

Example

let

� � � �

�
� � � � � � �

�
� � � � � �
�

� � �

let

let

let

Why Dependent Types Matter – p.29/32

Example

let

� � � �

�
� � � � � � �

�
� � � � � �
�

� � �

let � � � � � � � � � � 	 � � � �� � � � �

let

let

Why Dependent Types Matter – p.29/32

Example

let

� � � �

�
� � � � � � �

�
� � � � � �
�

� � �

let � � � � � � � � � � 	 � � � �� � � � �

let � � � � � �
� � � � � �

� � � � � � �
�

� �� �

let

Why Dependent Types Matter – p.29/32

Example

let

� � � �

�
� � � � � � �

�
� � � � � �
�

� � �

let � � � � � � � � � � 	 � � � �� � � � �

let � � � � � �
� � � � � �

� � � � � � �
�

� �� �

let

� � �
� � � � � �

	 � � � � � �
� � � � � �

	 � � � � � � � � � � � � �

Why Dependent Types Matter – p.29/32

Generic equality

let

Why Dependent Types Matter – p.30/32

Generic equality

let

� � � � �
�

�

� �

�� � � � � � � �

Why Dependent Types Matter – p.30/32

Generic equality

let

� � � � �
�

�

� �

�� � � � � � � �

�� � �� �

� �� � � � � � �

�� �� �� � � �
� � � �� � �

�

�
� � � �

�� � �
� � � � �

�� � �
� �

�� � � �
� �

� � � �
� �

� � � �� � �
�

�� � � �
� �

� � � � � �
� � �

�
�	 �

�� � � � � �
� � � �

� �
� � �

�
�	 �

�� � � � � �
� � � � � �

� � � �� � �
�

�� � � � �
� � � � �

� � � �� � �
�

Why Dependent Types Matter – p.30/32

Advantages of Dependently Typed Programming

Avoidance of run-time errors

More efficient code (elimination of tags)

Extensions of Type System as library

Easier to reason about

Already comes with a verification language
(totality checker)

Safety constraints can be checked statically (safe
mobile code)

Why Dependent Types Matter – p.31/32

Advantages of Dependently Typed Programming

Avoidance of run-time errors

More efficient code (elimination of tags)

Extensions of Type System as library

Easier to reason about

Already comes with a verification language
(totality checker)

Safety constraints can be checked statically (safe
mobile code)

Why Dependent Types Matter – p.31/32

Advantages of Dependently Typed Programming

Avoidance of run-time errors

More efficient code (elimination of tags)

Extensions of Type System as library

Easier to reason about

Already comes with a verification language
(totality checker)

Safety constraints can be checked statically (safe
mobile code)

Why Dependent Types Matter – p.31/32

Advantages of Dependently Typed Programming

Avoidance of run-time errors

More efficient code (elimination of tags)

Extensions of Type System as library

Easier to reason about

Already comes with a verification language
(totality checker)

Safety constraints can be checked statically (safe
mobile code)

Why Dependent Types Matter – p.31/32

Advantages of Dependently Typed Programming

Avoidance of run-time errors

More efficient code (elimination of tags)

Extensions of Type System as library

Easier to reason about

Already comes with a verification language
(totality checker)

Safety constraints can be checked statically (safe
mobile code)

Why Dependent Types Matter – p.31/32

Important issues

Definitional equality should be well behaved

Inductive families have to be supported

Type inference is generalized by elaboration
Extensible elaboration ?

Programs are constructed interactively,
starting with the type as a partial specification

Why Dependent Types Matter – p.32/32

Important issues

Definitional equality should be well behaved

Inductive families have to be supported

Type inference is generalized by elaboration
Extensible elaboration ?

Programs are constructed interactively,
starting with the type as a partial specification

Why Dependent Types Matter – p.32/32

Important issues

Definitional equality should be well behaved

Inductive families have to be supported

Type inference is generalized by elaboration
Extensible elaboration ?

Programs are constructed interactively,
starting with the type as a partial specification

Why Dependent Types Matter – p.32/32

Important issues

Definitional equality should be well behaved

Inductive families have to be supported

Type inference is generalized by elaboration
Extensible elaboration ?

Programs are constructed interactively,
starting with the type as a partial specification

Why Dependent Types Matter – p.32/32

Important issues

Definitional equality should be well behaved

Inductive families have to be supported

Type inference is generalized by elaboration
Extensible elaboration ?

Programs are constructed interactively,
starting with the type as a partial specification

Why Dependent Types Matter – p.32/32

	The established social order
	Ersatz dependent types
	Breaking the old social order
	Overview
	$
th $ --- no dependent types
	$
th $ is not good
	data types
	Better data types, better $
th $
	Verify
	Going further
	$verify $ improved.
	Definitional equality
	Propositional equality
	Problems with $Eq {}{}$
	Solutions ?
	Eval
	The object language
	Object types
	Eval --- simply typed
	Safe eval ?
	Safe eval ?
	Object language using dependent types
	Eval --- dependently
	Safe eval !
	Safe eval !
	Generic equality
	Codes and data
	Example
	Generic equality
	Advantages of Dependently Typed Programming
	Important issues

