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Birth of Modern Mathematics

Isaac Newton (1642 - 1727)

1687: Philosophiae Naturalis Principia Mathematica
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19/20th century: Foundations?

Frege (1848-1925) Russell (1872-1970)
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≈ 1925: ZF set theory

Zermelo (1871-1953) Fraenkel (1891-1965)

End of story ?
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A ∧ (B ∨ C) → (A ∧ B) ∨ (A ∧ C), classically

A B C l = A ∧ (B ∨ C) r = A ∧ B ∨ A ∧ C l → r
F F F F F T
F F T F F T
F T F F F T
F T T F F T
T F F F F T
T F T T T T
T T F T T T
T T T T T T

The same truth table shows that
A ∧ (B ∨ C) ⇐⇒ (A ∧ B) ∨ (A ∧ C)

Thorsten Altenkirch OASIS 08



Introduction
From BHK to Martin-Löf

Classical logic and the axiom of choice
Partial functions and continuity

Discussion

BHK: Programs are evidence

Brouwer Heyting Kolmogorov
(1881-1966) (1898-1980) (1903-1987)
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BHK in Haskell

Evidence for A ∧ B is given by pairs:
type A ∧ B = (A, B)

Evidence for A ∨ B is tagged evidence for A or B.
data A ∨ B = Inl A | Inr B

Evidence for A → B is a program
computing evidence for B from evidence for A.
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A ∧ (B ∨ C) → (A ∧ B) ∨ (A ∧ C), constructively

f ∈ A ∧ (B ∨ C) → (A ∧ B) ∨ (A ∧ C)

f (a, Inl b) = Inl (a, b)
f (a, Inr c) = Inr (a, c)

The program is invertible, because the right hand sides are
patterns.
This shows that the propositions are not only logically
equivalent but isomorphic.
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Predicate logic

Evidence for ∀x ∈ S.P x is a function f
which assigns to each s ∈ S evidence for P s.
Evidence for ∃x ∈ S.P x is a pair (s, p)
where s ∈ S and p ∈ P s.
We need dependent types!
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Propositions = Types

Curry (1900-1982) Howard (1926-) Martin-Löf (1942-)

Implementations of Type Theory
NUPRL, Coq, Agda, Epigram . . .
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(∃x ∈ S.P x ∨Q x) → (∃x ∈ S.P x) ∨ (∃x ∈ S.Q x)

f ∈ (∃x ∈ S.((P x) ∨ (Q x))) → (∃x ∈ S.P x) ∨ (∃x ∈ S.Q x)

f (s, Inl p) = Inl (s, p)
f (s, Inr q) = Inr (s, q)

Finite explanation
Logical equivalence, also isomorphism.
Try to do the same for
(∀x ∈ S.P x ∧Q x) → (∀x : S.P x) ∧ (∀x ∈ S.Q x).
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A ∨ ¬A

We cannot prove A ∨ ¬A, where ¬A = A → ∅,
for an undecided proposition A.
∀n ∈ N.Prime n ∨ ¬Prime n
is provable, i.e. Prime is decidable.
Indeed, the proof is the program which decides Prime.
∀n ∈ N.Halt n ∨ ¬Halt n
is not provable, because Halt is undecidable.
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Decidability of equality of natural numbers

eq ∈ ∀m, n ∈ N.(m = n) ∨ (m 6= n)

eq 0 0 = Inl Refl
eq 0 (n + 1) = Inr (λp → case p)
eq (m + 1) 0 = Inr (λp → case p)
eq (m + 1) (n + 1) = case eq m n of

Inl Refl → Inl Refl
Inr h → Inr (λq → h Refl)

Idealized Agda/Epigram.
Equality is given by

data = ∈ N → N → Type
where Refl ∈ ∀n∈Nn = n

Compare this to
eq ∈ N → N → Bool
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The classical Babelfish

Classical reasoner says: Babelfish translates to:
A ∨ B ¬(¬A ∧ ¬B)

∃x : S.Px ¬∀x : S.¬Px

Negative translation
A ∨ ¬A is translated to ¬(¬A ∧ ¬¬A)
which is constructively provable.
A classical reasoner is somebody who is unable to say
anything positive.
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The axiom of choice ?

Source of non-constructive reasoning ?

g ∈ ∀x ∈ S.∃y ∈ T .R x y
AC

ac g ∈ ∃f ∈ S → T .∀x ∈ S.R x (f x)

Definable in Type Theory:

ac g = (π1 ◦ g, π2 ◦ g)
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The classical axiom of choice

∀x ∈ S.∃y ∈ T .R x y
AC

∃f ∈ S → T .∀x ∈ S.R x (f x)

∀x ∈ S.¬∀y ∈ T .¬R x y
CAC

¬∀f ∈ S → T .¬∀x ∈ S.R x (f x)

Apply negative translation.
Not provable constructively:

R ⊆ N× Bool

R m b = Halts m ⇐⇒ (b = T)

Incompatible with Church’s thesis:
All functions are computable
Diaconescu: A propositional reading of AC is not
acceptable constructively either.

Thorsten Altenkirch OASIS 08



Introduction
From BHK to Martin-Löf

Classical logic and the axiom of choice
Partial functions and continuity

Discussion

Partial Type Theory ?

Partial function: a function which may fail to return a result.
Funtions returning an infinite result (e.g. a stream) are not
partial.
Partial Type Theory is logically inconsistent. ⊥ ∈ ∅.
Do we actually need partial functions?
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A genuinely partial function

data SK = S | K | SK : @ SK
nf ∈ SK → SK
nf S = S
nf K = K
nf (t : @ u) = (nf t)@(nf u)

(@) ∈ SK → SK → SK
K @t = K : @ t
(K : @ t) @u = t
S @t = S : @ t
(S : @ t) @u = (S : @ t) : @ u
((S : @ t) : @ u)@v = (t@v)@(u@v)
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A monad for partiality

Haskell (a pure functional languages)
models effects using a monad (the IO monad).
A monad M ∈ Type → Type is given by

return ∈ A → M A
(>>=) ∈ (M A) → (A → M B) → M B

subject to some equations.
We introduce a monad P for partiality.
(based on joint but yet unpublished work
with Venanzio Capretta and Tarmo Uustalu).
Unlike Haskell where IO is opaque, we define P explicitely.
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The Delay monad

codata D a = Now a | Later (D a)

instance Monad D where
return = Now
Now a >>= k = k a
Later d >>= k = Later (d >>= k)

⊥ ∈ D A
⊥ = Later ⊥
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Recursion with Delay

rec ∈ ((A → D B) → (A → D B)) → A → D B

rec φ a = aux (λ → ⊥)
where aux ∈ (A → D B) → D B

aux k = race (k a) (Later (aux (φ k)))

race ∈ (D A) → (D A) → (D A)

race (Now a) = Now a
race (Later ) (Now a) = Now a
race (Later d) (Later d ′) = Later (race d d ′)
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From Delay to Partial

D is too intensional. . .
We can observe how fast a function terminates.
Hence rec f 6= f (rec f )
We define

P A = D A/ ∼

where d ∼ d ′ = ∀a ∈ A.d ↓ a ⇐⇒ d ′ ↓ a
We have to show that >>= preserves ∼.
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Continuity

P A and hence also A → P B are ω-CPOs.
To show that rec preserves ∼ and that rec f 6= f (rec f ) we
need that f is ω-continuous.
All f we can construct have this property!
Reminiscient of Brouwer’s continuity principle:
All (constructive) functions on R are continuous.
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Type Theory with continuity

Consider (N → N) → N.
Functions in this type can be given by games:

data G = Put N | Get (N → G)

Assign a function to a game:
eval ∈ G → (N → N) → N
eval (Put n) f = n
eval (Get h) f = eval (h (f 0)) (f ◦ (+1))

Identify extensionally equivalent games:
g ∼ g′ ⇐⇒ eval g = eval g′

Continuity = eval has an inverse:
quote ∈ ((N → N) → N) → G/ ∼
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Type Theory with continuity . . .

Can we interpret all types by games? E.g.
((N → N) → N) → N
Can we construct a non-trivial type D such that
D ' D → D ?
Here non-trivial means that there is an injection:
Bool → D.
Not, that there is a surjection:
D → Bool.
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Last slide

Type Theory is at the same time:
A logic
A programming language
A set theory

Overcome the ASCII - greek dichotomy in Computer
Science.
Applications in natural sciences?
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