Termination Checking in the Presence of Nested Inductive and Coinductive Types

Thorsten Altenkirch
(joint work with Nils Anders Danielsson)

School of Computer Science
University of Nottingham
July 16, 2010

Context

- Dependently typed programming, e.g. Agda, Epigram, Coq, ...
- Totality?
- Soundness as a logic
- Efficient code (don't run proofs)
- Two approaches:
(1) Reduce to a total core language Epigram?, Coq?
(2) Use a partial language and a termination checker Agda, Coq?

This talk

- Adding coinductive types to Agda
- Mixed inductive-coinductive definitions
- Simple but powerful extension of the termination checker (due to Andreas Abel).
- Easy to define inductive types nested inside coinductive types ($\nu \mu$).
- Impossible to define coinductive types nested inside inductive types ($\mu \nu$) directly.
- Is this a (serious) issue?
- If so, how can we fix it?

Foetus

- Andreas Abel's master thesis
- Closely related to size change termination (N. Jones et al)

mutual

$$
\begin{aligned}
& f: \mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{N} \\
& f m \text { zero }=m \\
& f m(\text { suc } n)=f m n+g m \\
& g: \mathbb{N} \rightarrow \mathbb{N} \\
& g \text { zero }=\text { zero } \\
& g(\text { suc } n)=f n n
\end{aligned}
$$

$$
f \rightarrow f: \quad\left(\begin{array}{ll}
= & < \\
? & <
\end{array}\right) \quad f \rightarrow g: \quad\binom{=}{?} \quad g \rightarrow f: \quad(\ll)
$$

Coinductive Definitions in Agda

Streams:
data Stream (A : Set) : Set where
_ $\because: \quad$ _ $A \rightarrow \infty($ Stream $A) \rightarrow$ Stream A

Categorically: Stream $A=\nu X . A \times X$ Force and Delay:

$$
\begin{aligned}
& b:\{A: \operatorname{Set}\} \rightarrow \infty A \rightarrow A \\
& \not Z_{-}:\{A: \operatorname{Set}\} \rightarrow A \rightarrow \infty A
\end{aligned}
$$

Corecursive programs

```
from:\mathbb{N}->\mathrm{ Stream }\mathbb{N}
from n = n:: \sharpfrom (suc n)
mapStream: }\forall{AB}->(A->B)->\mathrm{ Stream A Stream B
mapStream f(a:: as)=f a:: #(mapStream f(bas))
```


Functional representation of streams

Stream' : Set \rightarrow Set
Stream' $A=\mathbb{N} \rightarrow A$

```
from'}:\mathbb{N}->(\mp@subsup{\mathrm{ Stream'}}{}{\prime}\mathbb{N}
from' n 0=n
from' }n(\mathrm{ suc m) = from' (suc n) m
```

```
mapStream \({ }^{\prime}:\{A B: \operatorname{Set}\} \rightarrow(A \rightarrow B) \rightarrow\left(\right.\) Stream \(\left.^{\prime} A\right) \rightarrow\left(\right.\) Stream \(\left.^{\prime} B\right)\)
mapStream \(^{\prime} f\) as \(0=f\) (as 0)
mapStream' \(f\) as (suc \(n\) ) \(=\) mapStream' \(f(\lambda i \rightarrow\) as (suc \(i)) n\)
```

Using subsets (Σ) such a representation (as an ω-limit) exists for all coinductive types.

Extending the termination checker

The translation suggests:

- Coinductive types introduce an additional (invisible) argument.
- Any use of \sharp reduces this argument.
- b does not preserve the structural order.
from : $\mathbb{N} \rightarrow$ Stream \mathbb{N}
from $n=n:: \sharp$ from (suc n)
from \rightarrow from : $\quad(<\quad$?)
mapStream : $\forall\{A B\} \rightarrow(A \rightarrow B) \rightarrow$ Stream $A \rightarrow$ Stream B mapStream $f(a::$ as $)=f$ a :: $\sharp($ mapStream $f(b a s))$
mapStream \rightarrow mapStream : $\quad(<=$?)

Mixed induction/coinduction

Stream Processors:

$$
\begin{aligned}
& \text { data } S P(A B: \text { Set }) \text { : Set where } \\
& \text { get }:(A \rightarrow S P A B) \rightarrow S P A B \\
& \text { put }: B \rightarrow \infty(S P A B) \rightarrow S P A B
\end{aligned}
$$

Categorical interpretation: $\operatorname{SPAB}=\nu X . \mu Y . A \rightarrow Y+B \times X$

In general:
data $D=F(\infty D) D$ corresponds to $D=\nu X . \mu Y . F X Y$.

Semantics of SP

data $S P(A B: S e t)$: Set where

$$
\begin{aligned}
& \text { get }:(A \rightarrow S P A B) \rightarrow S P A B \\
& \text { put }: B \rightarrow \infty(S P A B) \rightarrow S P A B
\end{aligned}
$$

Semantics of stream processors:

$$
\begin{aligned}
& \llbracket-\rrbracket:\{A B: \text { Set }\} \rightarrow \text { SP } A B \rightarrow \text { Stream } A \rightarrow \text { Stream } B \\
& \llbracket \text { get } \rrbracket \rrbracket(a:: \text { as })=\llbracket f a \rrbracket(b a s) \\
& \llbracket \text { put b sp } \rrbracket \text { as }=b:: \sharp \llbracket b s \rrbracket \text { as }
\end{aligned}
$$

Extended Call graph

$$
\llbracket-\rrbracket \rightarrow \llbracket-\rrbracket: \quad\left(\begin{array}{cccc}
= & = & < & ? \\
<= & = & ? & = \\
<= & = & ? & ?
\end{array}\right)
$$

Composition of SPs

Data driven:

$$
\begin{aligned}
& \text { _ >>>? _: } \forall\{A B C\} \rightarrow S P A B \rightarrow S P B C \rightarrow S P A C \\
& \text { get } f \ggg \text { ? tq }=\text { get }(\lambda a \rightarrow f \text { a } \ggg \text { ? tq }) \\
& \text { put a } s p \ggg \text { ? get } f=b s p \ggg \text { ? } f \text { a } \\
& \text { put a sp } \ggg \text { ? put b tq = put b (} \sharp p u t \text { a } s p \ggg \text { ? btq) }
\end{aligned}
$$

Demand Driven

${ }_{-} \ggg_{-}: \forall\{A B C\} \rightarrow S P A B \rightarrow S P B C \rightarrow S P A C$ get $g \ggg$! get $f=$ get $(\lambda a \rightarrow g a \ggg$! get $f)$ put $b s p \ggg$! get $f=b s p \ggg$! $f b$ $s p \ggg$! put c tq $=$ put $c(\sharp(s p \ggg$! btq $))$

- Both are accepted by the extended termination checker.
- Try to implement them using the categorical combinators.

From $\nu \mu$ to $\mu \nu$?

data $Z O$: Set where
$0,: Z O \rightarrow Z O$
$1,: \infty Z O \rightarrow Z O$
$Z O=\nu X . \mu Y .(0: Y)+(1: X)$
$01^{\omega}: Z O$
$01^{\omega}=0,\left(1,\left(\sharp 01^{\omega}\right)\right)$

From $\nu \mu$ to $\mu \nu$?

$$
\begin{aligned}
& Z O^{\prime}=\mu Y . \nu X .(0: Y)+(1: X) \\
&=\mu Y . O X \\
& \text { with } O X=\nu X .0: Y+1: X
\end{aligned}
$$

data $O(X$: Set $)$: Set where

$$
\begin{aligned}
& 0,: X \rightarrow O X \\
& 1,: \infty(O X) \rightarrow O X
\end{aligned}
$$

data $Z O^{\prime}$: Set where
emb: O ZO' \rightarrow ZO' $^{\prime}$
But we can still define:

$$
\begin{aligned}
& 01^{\omega}: Z O^{\prime} \\
& 01^{\omega}=\text { emb }\left(1,\left(\not, 0,01^{\omega}\right)\right)
\end{aligned}
$$

No fold!

mutual

$$
\begin{aligned}
& \text { fold : } \forall\{A\} \rightarrow(O A \rightarrow A) \rightarrow Z O^{\prime} \rightarrow A \\
& \text { fold } f(\text { emb } x)=f(\text { mapfold } f x) \\
& \text { mapfold }: \forall\{A\} \rightarrow(O A \rightarrow A) \rightarrow O Z O^{\prime} \rightarrow O A \\
& \text { mapfold } f(0, x)=0,(\text { fold } f x) \\
& \text { mapfold } f(1, x)=1,(\sharp \text { mapfold } f(b x))
\end{aligned}
$$

is not accepted by the termination checker.
The problem is that b doesn't preserve the structural order.
Otherwise we could derive a diverging program:

```
foo: O ZO' }->\mp@subsup{Z又O}{\prime}{\prime
foo (0,x) =x
foo (1,x) = emb (bx)
bar: ZO'
bar = fold foo 01 }\mp@subsup{}{}{\omega
```

- Our attempt to define a $\mu \nu$-type by parametrisation fails.
- We can define infinite elements which shouldn't be there.
- We cannot define fold (or induction) for the μ-type.
- What is going on?

Domain-theoretic explanation?

- ∞A is interpreted as A_{\perp} (lifting).
- Recursive datatypes as solutions to (strictly positive) domain equations.
- The termination checker identifies the total elements in the domain.
- $Z O=\nu X . \mu Y .0: Y+1: X$ is interpreted as rec X.rec $Y .0: Y+1: X_{\perp}$.
- $Z O^{\prime}=\mu Y . \nu X .0: Y+1: X$ is interpreted as rec Y.rec $X .0: Y+1: X_{\perp}$.
- In general we have rec X.rec $Y . T X Y \simeq \operatorname{rec} Y$.rec $X . T X Y$
- Since the domains are isomorphic, they have the same total elements.
- How to define the total elements for a (strictly positive) domain equation in general?

Explanation by translation (simplified)

- We can explain parametrized types by mutual types.
data $O(X$: Set $)$: Set where

$$
\begin{aligned}
& 0,: X \rightarrow O X \\
& 1,: \infty(O X) \rightarrow O X
\end{aligned}
$$

data $Z O^{\prime}$: Set where
emb: $O Z O^{\prime} \rightarrow Z O^{\prime}$
becomes

```
mutual
    data O_ZO'\prime : Set where
    0,:ZO'\prime}->O_Z\mp@subsup{O}{}{\prime\prime
    1,: ( O_ZO')}->\mathrm{ O_ZO'
```

 data \(Z O^{\prime \prime}\) : Set where
 emb : O_ZO \({ }^{\prime \prime} \rightarrow\) ZO \({ }^{\prime \prime}\)
 - It is easy to see that $Z O$ and $Z O^{\prime \prime}$ are isomorphic.

So what?

- We cannot easily define $\mu \nu$ types.
- There are extensionally isomorphic functional encodings.

```
data Tree: Set where
    leaf:Tree
    node : Stream Tree }->\mathrm{ Tree
```

can be encoded as

```
data Tree' : Set where
```

leaf : Tree'
node : $\left(\mathbb{N} \rightarrow\right.$ Tree $\left.{ }^{\prime}\right) \rightarrow$ Tree ${ }^{\prime}$

- This also shows that data types may not preserve extensional isomorphism.
- Maybe Tree should be forbidden by saying that Tree doesn't appear strictly positive in Stream Tree.

Keiko and Tarmo's encoding

- Coq doesn't permit nested datatypes at all. (Not even $\mu \mu$).
- To represent $\nu \mu$ they use left Kan extensions. I.e. $F D$ is replaced by $\Sigma Y .(Y \rightarrow D) \times F Y$.
- Can we use the same trick to encode $\mu \nu$ in Agda?
(Switching off the universe checker).
- data $O(X$: Set $)$: Set where

$$
0,: X \rightarrow O X
$$

$$
1,: \infty(O X) \rightarrow O X
$$

data $Z O$: Set where

$$
\text { emb : } \forall\{X\} \rightarrow(X \rightarrow Z O) \rightarrow O X \rightarrow Z O
$$

- Indeed, fold is definable for this encoding!
- But so is 01ω.
- Indeed, Agda's termination checker is unsound if we allow impredicativity (unlike Coq's).

The last slide

- Nested ν-types are not treated properly by Agda’s termination checker.
- One solution is to outlaw them (we would be still better than Coq).
- One can still use an extensionally isomorphic functional encoding.
- Or can we fix the termination checker?
- One idea is to combine parity games with size change termination.

