Functional Quantum Programming

Thorsten Altenkirch

School of Computer Science and IT University of Nottingham

April 26, 2007

People at Nottingham

Jonathan Grattage

recently successfully defended his PhD on QML A Quantum Programming Language

Alex Green

works on quantum programming in a functional setting.

Slava Belavkin

Prof in Mathematical Physics, Quantum Information Theory

Where do we come from

- Functional Programming
 e.g. functional treatment of concurrency
- Type Theory e.g. Epigram: program+specify+prove
- Category Theory e.g. Containers for generic programming
- Quantum Programming e.g. QML, QIO monad

What is functional programming? And why?

- Based on function abstraction and application (λ calculus).
- Ease of building abstractions, reasoning about programs
- Programming ~ constructive mathematics.
- Popular functional language: Haskell

Functional Quantum Programming?

- QML a quantum programming language
 - Design ideas
 - Operational and denotational semantics
 - An algebra of quantum programs
- The QIO monad in Haskell
- Questions for QICS

- Starting point: Selinger's QPL or Simon Perdrix's quantum programming language.
- Simple language with a nice mathematical semantics (Superoperators)
- Unitary operators are represented as combinatorical expressions built up from some primitives, e.g. Hadmard, CNOT, etc
- Slogan: Quantum data classical control.
- Quantum variables can only be used in a linear fashion (no contraction).

- Contraction by sharing
- Explicit weakening by measurement
- Reversible if^o and irreversible if
- Quantum data and control.
- No while loops.

Contraction by sharing

$$\delta \in \mathbf{Q}_2 \multimap \mathbf{Q}_2 \otimes \mathbf{Q}_2$$

 $\delta \mathbf{x} = (\mathbf{x}, \mathbf{x})$

 δ (false +_Q true) \neq (false +_Q true, false +_Q true) δ (false +_Q true) \equiv (false, false) +_Q (true, true)

Explicit weakening by measurement

$$\pi_1 \in Q_2 \otimes Q_2 \multimap Q_2$$
$$\pi_1 (x, y) = x \uparrow \{y\}$$

$$\pi_1 (\delta x) \equiv x?$$

$$\pi_1 (\delta (false +_Q true)) \equiv false +_P true$$

Reversible if° and irreversible if

$$\neg \in Q_2 \multimap Q_2$$

$$\neg x = \mathbf{i} \mathbf{f}^\circ x \mathbf{ then } false \mathbf{ else } true$$

$$\neg (\neg x) \equiv x$$

$$\neg^c \in Q_2 \multimap Q_2$$

$$\neg^c x = \mathbf{i} \mathbf{f} x \mathbf{ then } false \mathbf{ else } true$$

$$\neg^c (\neg^c (false +_Q true)) \equiv false +_P true$$

Why do we need if?

$$\begin{array}{l} \textit{cswap} \in \textit{Q}_2 \multimap \textit{Q}_2 \otimes \textit{Q}_2 \multimap \textit{Q}_2 \otimes \textit{Q}_2 \\ \textit{cswap } x \ (y,z) = \textit{if}^\circ x \textit{ then } (z,y) \textit{ else } (y,z) \end{array}$$

is **not well-typed**, because we cannot show $(z, y) \perp (y, z)$.

$$\mathit{cswap'} \in \mathit{Q}_2 \multimap \mathit{Q}_2 \otimes \mathit{Q}_2 \multimap \mathit{Q}_2 \otimes \mathit{Q}_2$$

cswap'
$$x(y,z) =$$
if x then (z,y) else (y,z)

is well-typed, since if does not require orthogonality.

QML's type system

We introduce the following judgements:

Programs

 $\Gamma \vdash t : \sigma$

Pure programs

 $\Gamma \vdash^{\circ} t : \sigma$

programs without weakening and if.

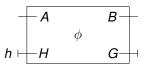
Orthogonality

 $t \perp u$

given that $\Gamma \vdash^{\circ} t, u : \sigma$.

QML's operational semantics

Given (non-empty) finite sets A (input) and B (output), we define FQC(A, B) as:



- a finite set *H*, the base of the space of initial heaps,
- a heap initialisation vector $\vec{h} \in \mathbb{C}^{H}$,
- a finite set *G*, the base of the space of garbage states,
- a unitary operator $\phi \in A \otimes H \multimap_{\text{unitary}} B \otimes G$.

QML's operational semantics

We write:

FQC(A, B) quantum circuits with heap and garbage.

 $FQC^{\circ}(A, B)$ quantum circuits with heap but no garbage.

 $\frac{\Gamma \vdash t : \sigma}{\llbracket t \rrbracket^{\text{op}} \in \text{FQC}(\llbracket \Gamma \rrbracket, \llbracket \sigma \rrbracket)}$

 $\Gamma \vdash^{\circ} t : \sigma$

 $[\![t]\!]^{\mathrm{op}} \in \mathrm{FQC}^{\circ}([\![\Gamma]\!], [\![\sigma]\!])$

QML's denotational semantics

We write: Super(A, B) Superoperators Isom(A, B) Isometries

 $\frac{\Gamma \vdash t : \sigma}{\llbracket t \rrbracket^{\text{den}} \in \text{Super}(\llbracket \Gamma \rrbracket, \llbracket \sigma \rrbracket)}$ $\frac{\Gamma \vdash^{\circ} t : \sigma}{\llbracket \sigma \rrbracket^{-1} = \sigma}$

$$\llbracket t \rrbracket^{\mathrm{den}} \in \mathrm{Isom}(\llbracket \Gamma \rrbracket, \llbracket \sigma \rrbracket)$$

Relating operational and denotational semantics

We can assign denotations to circuits:

 $c \in FQC^{\circ}(A, B)$

 $D(c) \in Isom(A, B)$

 $c \in FQC(A, B)$

 $D(c) \in \text{Super}(A, B)$

and state soundness of the operational semantics:

$$\mathrm{D}(\llbracket t \rrbracket^{\mathrm{op}}) = \llbracket t \rrbracket^{\mathrm{den}}$$

for $\Gamma \vdash t : \sigma$ ($\Gamma \vdash^{\circ} t : \sigma$).

- Can we extend QML by classical coproducts (corresponding to biproducts)?
- Can we extend QML by quantum views (corresponding to change of base)?
- Can we extend QML by higher order types?

 It may seem that higher order is no problem because in every compact closed category:

 $C(A \otimes B, C) \simeq C(A, B^* \otimes C)$

- But is this the right structure?
- Superoperators are not compact closed (but completely positive maps are).
- The category of relations

$$\operatorname{Rel}(A,B) = A \to \mathcal{P}(B)$$

is compact closed, but

$$\operatorname{Rel}_{<\omega}(A,B) = A \to \mathcal{P}_{<\omega}(B)$$

is not.

Day's construction

• For any category C the category of presheaves PSh(C) is given by:

Objects Contravariant functors from C to Set. Morphisms Natural transformations.

• There is an embedding Y (the Yoneda embedding) from C to PSh(C)

$$\mathbf{Y}(\mathbf{A}) = \mathbf{C}(-, \mathbf{A})$$

• A monoidal structure on C induces a monoidal structure in PSh(C):

$$(F\otimes G)(X)=\int^{A,B}F(A) imes G(B) imes \mathrm{C}(X,A\otimes B)$$

• Y preserves the monoidal structure.

• This structure is always closed:

$$(F \multimap G)(X) = \operatorname{Nat}(Y(X) \otimes F, G)$$

 This is semantically the interpretations of higher order computations as chunks (delayed computations).

An algebra of quantum programs ?

joint work with Amr Sabry and Juliana Vizotto.

- QPL 2005: restricted to the pure fragment (no weakening, no if)
 Denotational semantics: isometries
- Extends the rules for the classical sublanguage (no superpositions, if and if^o behave the same)
 Denotational semantics: sets and (injective) functions
- Sound and complete.
- Completeness also gives rise to a normalisation algorithm (*Normalisation by evaluation*).

Equations for \mathbf{if}°

```
\beta
if \circ false then t else u \equiv u
if \circ true then t else u \equiv t
\eta
if \circ t then true else false \equiv t
Commuting conversion
let p = if \circ t then u_0 else u_1
in e
\equiv if \circ t then (let p = u_0 in e)
else (let p = u_1 in e)
```

Equations for let

$$Val^{C} ::= x \mid () \mid false \mid true \mid (val_{1}, val_{2})$$

$$\beta$$

$$let p = val in u \equiv u [val / p]$$

$$\eta$$

$$let x = t in x \equiv t$$
Commuting conversion

let
$$p = t$$
 in let $q = u$ in e
 \equiv let $q = u$ in let $p = t$ in e

Quantum equations

 (if°) if $(t_0 + t_1)$ then u_0 else u_1 \equiv (if^o t_0 then u_0 else u_1) + (if^o t_1 then u_0 else u_1) if $(\lambda * t)$ then u_0 else u_1 $\equiv \lambda * (if^{\circ} t then u_0 else u_1)$ (superpositions) $t+u \equiv u+t$ $t + \overrightarrow{0} \equiv t$ $t + (u + v) \equiv (t + u) + v$ $\lambda * (t + u) \equiv \lambda * t + \lambda * u$ $\lambda * t + \kappa * t \equiv (\lambda + \kappa) * t$ Ő 0 * tThorsten Altenkirch gics07

- Relation to the linear λ calculus by Paolo and Gilles ?
- Extend the theory to the full language (including measurements). related to Ross's question?
- Higher order?!

Motivation

- Explain quantum programming to (functional) programmers.
- Sell functional programming to people in quantum computing..
- Provide an intermediate language for the implementation of high level quantum languages (like QML).
- Framework to discover and implement patterns for quantum programming.

- Pure functional programming language.
- Close to constructive Mathematics (terminating fragment).
- go further: Type Theory (Epigram).
- Effects (e.g. Input/Output, State, Concurrency, ...) are encapsulated in the IO monad.
- Proposal: Use *Functional specifications of IO* to reason about programs with IO.

Monads in Haskell

class Monad m where $(\gg) \in m \ a \to (a \to m \ b) \to m \ b$ return $\in a \to m \ a$

Equations:

$$return a \gg f = f a$$

$$c \gg return = c$$

$$(c \gg f) \gg g = c \gg \lambda a \rightarrow f a \gg g$$

Computations are represented by morphisms in the Kleisli category

 $a \rightarrow W_{1 \circ i \circ 1}; b = a \rightarrow m b$ Thorsten Altenkirch gics07

instance Monad IO

```
getChar \in IO \ Char

putChar \in Char \rightarrow IO \ ()

echo \in IO \ ()

echo = getChar \gg \lambda c \rightarrow putChar \ c \gg \lambda x \rightarrow echo

echo = do \ c \leftarrow getChar

putChar \ c

acho
```


type *Qbit* type *QIO* a type *U*

instance Monoid U

 $\begin{array}{l} \textit{unot} \in \textit{Qbit} \rightarrow \textit{U} \\ \textit{uhad} \in \textit{Qbit} \rightarrow \textit{U} \\ \textit{uphase} \in \textit{Qbit} \rightarrow \mathbb{R} \rightarrow \textit{U} \\ \textit{swap} \in \textit{Qbit} \rightarrow \textit{Qbit} \rightarrow \textit{U} \\ \textit{cond} \in \textit{Qbit} \rightarrow (\textit{Bool} \rightarrow \textit{U}) \rightarrow \textit{U} \end{array}$

cond x ($\lambda b \rightarrow \text{if } b$ then unot x else mempty) leads to a runtime error!

run or sim

 run embeds QIO into IO using a random number generator:

 $\mathit{run} \in \mathit{QIO} a \rightarrow \mathit{IO} a$

- or a real quantum computer...
- sim calculates the probability distribution of possible answers:

 $\textit{sim} \in \textit{QIO} a \rightarrow \textit{Prob} a$

where

```
data Prob a = Prob (Vec \mathbb{R} a)
```

Example: a random bit

 $gran \in QIO Qbit$ $qran = \mathbf{do} \ qb \leftarrow mkQbit \ True$ applyU (uhad qb) return ab test gran \in QIO Bool test gran = **do** $qb \leftarrow gran$ meas ab * Qio > run test gran False * Qio > run test gran True * Qio > sim test gran [(True 0.5) (False 0.5)]

Thorsten Altenkirch

qics07

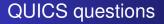
```
QML design ideas
QML semantics
Higher order?
An algebra of quantum programs
The quantum IO monad
The End
```

The Bell state

```
share \in Qbit \rightarrow QIO Qbit
share qa = do qb \leftarrow mkQbit False
applyU (cond qa\lambda a \rightarrow if a
then unot qb
else mempty)
```

return qb

 $\begin{array}{l} \textit{bell} \in \textit{QIO} (\textit{Qbit},\textit{Qbit}) \\ \textit{bell} = \textit{do} ~\textit{qa} \leftarrow \textit{qran} \\ \textit{qb} \leftarrow \textit{share qa} \\ \textit{return} (\textit{qa},\textit{qb}) \end{array}$



- Measurement Calculus \rightarrow QIO, or vice versa.
- Formal reasoning about QIO (factor through superoperators).

- Interesting interactions between functional and quantum prgramming
- Design programming language as a vehicle to express high level patterns of quantum programming.
- Denotational semantics reflect our understanding of quantum programming.