Functional Quantum Programming

Thorsten Altenkirch University of Nottingham based on joint work with Jonathan Grattage and discussions with V.P. Belavkin

Simulation of quantum systems is expensive:
 PSPACE complexity for polynomial circuits.

- Simulation of quantum systems is expensive:
 PSPACE complexity for polynomial circuits.
- Feynman: Can we exploit this fact to perform computations more efficiently?

- Simulation of quantum systems is expensive: PSPACE complexity for polynomial circuits.
- Feynman: Can we exploit this fact to perform computations more efficiently?
- Shor: Factorisation in quantum polynomial time.

- Simulation of quantum systems is expensive:
 PSPACE complexity for polynomial circuits.
- Feynman: Can we exploit this fact to perform computations more efficiently?
- Shor: Factorisation in quantum polynomial time.
- Grover: Blind search in $O(n/\sqrt{2})$

- Simulation of quantum systems is expensive: PSPACE complexity for polynomial circuits.
- Feynman: Can we exploit this fact to perform computations more efficiently?
- Shor: Factorisation in quantum polynomial time.
- Grover: Blind search in $O(n/\sqrt{2})$
- Can we build a quantum computer?

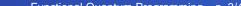
- Simulation of quantum systems is expensive: PSPACE complexity for polynomial circuits.
- Feynman: Can we exploit this fact to perform computations more efficiently?
- Shor: Factorisation in quantum polynomial time.
- Grover: Blind search in $O(n/\sqrt{2})$
- Can we build a quantum computer?

yes We can run quantum algorithms.

- Simulation of quantum systems is expensive: PSPACE complexity for polynomial circuits.
- Feynman: Can we exploit this fact to perform computations more efficiently?
- Shor: Factorisation in quantum polynomial time.
- Grover: Blind search in $O(n/\sqrt{2})$
- Can we build a quantum computer?
 yes We can run quantum algorithms.
 no Nature is classical after all!

- Simulation of quantum systems is expensive: PSPACE complexity for polynomial circuits.
- Feynman: Can we exploit this fact to perform computations more efficiently?
- Shor: Factorisation in quantum polynomial time.
- Grover: Blind search in $O(n/\sqrt{2})$
- Can we build a quantum computer?
 yes We can run quantum algorithms.
 no Nature is classical after all!

Assumption: Nature is fair...



 Quantum algorithms are usually presented using the circuit model.

- Quantum algorithms are usually presented using the circuit model.
- Nielsen and Chuang, p.7, Coming up with good quantum algorithms is hard.

- Quantum algorithms are usually presented using the circuit model.
- Nielsen and Chuang, p.7, Coming up with good quantum algorithms is hard.
- Richard Josza, QPL 2004: We need to develop quantum thinking!

 QML: a functional language for quantum computations on finite types.

- QML: a functional language for quantum computations on finite types.
- Quantum control and quantum data.

- QML: a functional language for quantum computations on finite types.
- Quantum control and quantum data.
- Design guided by denotational semantics

- QML: a functional language for quantum computations on finite types.
- Quantum control and quantum data.
- Design guided by denotational semantics
- Analogy with classical computation
 FCC Finite classical computations
 FQC Finite quantum computations

- QML: a functional language for quantum computations on finite types.
- Quantum control and quantum data.
- Design guided by denotational semantics
- Analogy with classical computation
 FCC Finite classical computations
 FQC Finite quantum computations
- Important issue: control of decoherence

- QML: a functional language for quantum computations on finite types.
- Quantum control and quantum data.
- Design guided by denotational semantics
- Analogy with classical computation
 FCC Finite classical computations
 FQC Finite quantum computations
- Important issue: control of decoherence
- Draft paper available (Google:Thorsten,functional,quantum)

- QML: a functional language for quantum computations on finite types.
- Quantum control and quantum data.
- Design guided by denotational semantics
- Analogy with classical computation
 FCC Finite classical computations
 FQC Finite quantum computations
- Important issue: control of decoherence
- Draft paper available (Google:Thorsten,functional,quantum)
- Compiler under construction (Jonathan)

Example: Hadamard operation

Example: Hadamard operation

Matrix

$$\mathbf{H} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix}$$

Example: Hadamard operation

Matrix

$$\mathbf{H} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix}$$

QML

Related Work

- P. Zuliani, 2001, *Quantum Programming*
- S. Abramsky and B. Coecke, 2004, A Categorical Semantics of Quantum Protocols
- S-C. Mu and R. S. Bird, 2001, *Quantum functional programming*
- A. Sabry, 2003, Modeling quantum computing in Haskell
- J. Karczmarczuk, 2003, Structure and interpretation of quantum mechanics: a functional framework
- P. Selinger, 2002, Towards a Quantum Programming Language
- A. van Tonder, 2003, A Lambda Calculus for Quantum Computation

 Start with classical computations on finite types.

- Start with classical computations on finite types.
- Quantum mechanics is time-reversible...

- Start with classical computations on finite types.
- Quantum mechanics is time-reversible...
- ...hence quantum computation is based on reversible operations.

- Start with classical computations on finite types.
- Quantum mechanics is time-reversible...
- ...hence quantum computation is based on reversible operations.
- However: Newtonian mechanics, Maxwellian electrodynamics is also time-reversible...

- Start with classical computations on finite types.
- Quantum mechanics is time-reversible...
- In the second second
- However: Newtonian mechanics, Maxwellian electrodynamics is also time-reversible...
- ...hence classical computation should be based on reversible operations.

Given finite sets A (input) and B (output):

$$\begin{array}{cccc}
-A & B \\
\phi & \\
h & H & G \\
\end{array}$$

Given finite sets A (input) and B (output):

$$\begin{array}{cccc}
-A & B \\
\phi \\
h & H & G \\
\end{array}$$

• a fi nite set of initial heaps H,

Given finite sets A (input) and B (output):

$$\begin{array}{cccc}
-A & B \\
\phi \\
h & H & G \\
\end{array}$$

a fi nite set of initial heaps H,
an initial heap h ∈ H,

Classical computations (FCC)

Given finite sets A (input) and B (output):

- a fi nite set of initial heaps H,
- an initial heap $h \in H$,
- \bullet a finite set of garbage states G,

Classical computations (FCC)

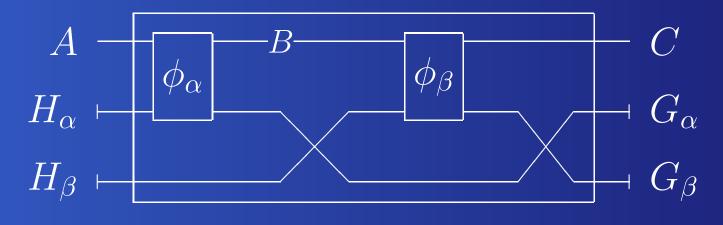
Given finite sets A (input) and B (output):

$$\begin{array}{cccc}
-A & B \\
\phi & \\
h & H & G \\
\end{array}$$

- a fi nite set of initial heaps H,
- an initial heap $h \in H$,
- \bullet a finite set of garbage states G,
- a bijection $\phi \in A \times H \simeq B \times G$,

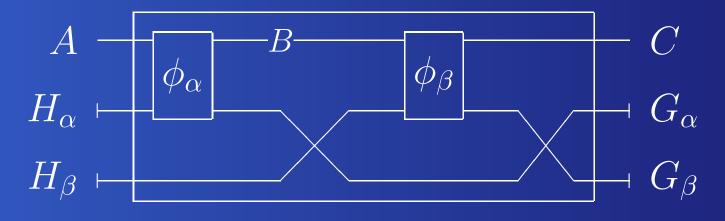
Composing classical computations

Composing classical computations



 $\phi_{\beta \circ \alpha}$

Composing classical computations

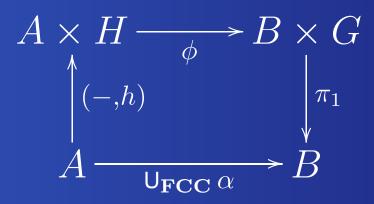


 $\phi_{\beta \circ lpha}$

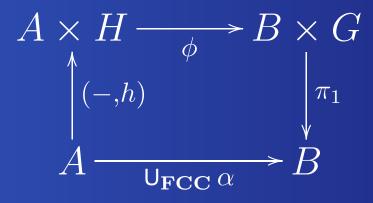
Exercise: Define I.

Europhic and Outputture Dragramming - p 40/4

Extensional equality Every computation α gives rise to a function $U_{FCC} \alpha \in A \rightarrow B$

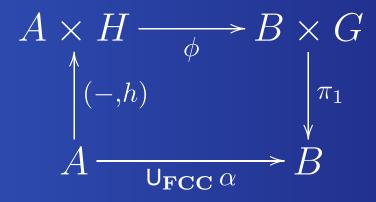


Extensional equality Every computation α gives rise to a function $U_{FCC} \alpha \in A \rightarrow B$



 $\alpha =_{\mathsf{ext}} \beta, \text{if } \mathsf{U}_{\mathbf{FCC}} \alpha = \mathsf{U}_{\mathbf{FCC}} \beta$

Extensional equality Every computation α gives rise to a function $U_{FCC} \alpha \in A \rightarrow B$



 $\alpha =_{\mathsf{ext}} \beta, \text{if } \mathsf{U}_{\mathbf{FCC}} \alpha = \mathsf{U}_{\mathbf{FCC}} \beta$

Objects finite sets FCC: **Morphisms** computations $/ =_{ext}$.

$U_{FCC} I = I$ $U_{FCC} (\beta \circ \alpha) = (U_{FCC} \beta) \circ (U_{FCC} \alpha)$

$|\mathbf{U}_{ ext{FCC}}|$

$U_{FCC} I = I$ $U_{FCC} (\beta \circ \alpha) = (U_{FCC} \beta) \circ (U_{FCC} \alpha)$

 ${\ensuremath{\,{\scriptstyle \bullet}}}$ ${\ensuremath{\mathsf{U}_{FCC}}}$ is a functor ${\ensuremath{\mathsf{U}_{FCC}}}:FCC \to FinSet.$

$\mathsf{U}_{\mathrm{FCC}}$

 $U_{FCC} I = I$ $U_{FCC} (\beta \circ \alpha) = (U_{FCC} \beta) \circ (U_{FCC} \alpha)$

• U_{FCC} is a functor $U_{FCC} : FCC \rightarrow FinSet$. • U_{FCC} is faithful (trivially).

$U_{\rm FCC}$

 $U_{FCC} I = I$ $U_{FCC} (\beta \circ \alpha) = (U_{FCC} \beta) \circ (U_{FCC} \alpha)$

• U_{FCC} is a functor $U_{FCC} : FCC \rightarrow FinSet$.

- U_{FCC} is faithful (trivially).
- **Exercise:** U_{FCC} is full!

Coming next: Quantum computations

Develop FQC analogously to FCC...

Given a finite set A (the base) $\mathbb{C}A = A \rightarrow \mathbb{C}$ is a **Hilbert space**.

Given a finite set A (the base) $\mathbb{C} A = A \to \mathbb{C}$ is a Hilbert space. Linear operators: $f \in A \to B \to \mathbb{C}$ induces $\hat{f} \in \mathbb{C} A \to \mathbb{C} B$. we write $f \in A \multimap B$

Given a finite set A (the base) $\mathbb{C} A = A \to \mathbb{C}$ is a Hilbert space. Linear operators: $f \in A \to B \to \mathbb{C}$ induces $\hat{f} \in \mathbb{C} A \to \mathbb{C} B$. we write $f \in A \multimap B$ Norm of a vector: $\|v\| = \sum_{a \in A} (va)^* (va) \in \mathbb{R}^+$,

Given a finite set A (the base) $\mathbb{C} A = A \rightarrow \mathbb{C}$ is a Hilbert space. Linear operators: $f \in A \to B \to \mathbb{C}$ induces $\hat{f} \in \mathbb{C} A \to \mathbb{C} B$. we write $f \in A \multimap B$ Norm of a vector: $||v|| = \sum_{a \in A} (va)^* (va) \in \mathbb{R}^+,$ **Unitary operators:** A unitary operator $\phi \in A \multimap_{\text{unitary}} B$ is a linear isomorphism that preserves the norm.

Basics of quantum computation

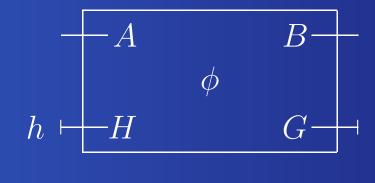
Basics of quantum computation

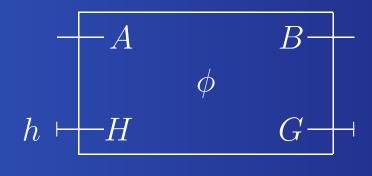
• A pure state over A is a vector $v \in \mathbb{C} A$ with unit norm ||v|| = 1.

Basics of quantum computation

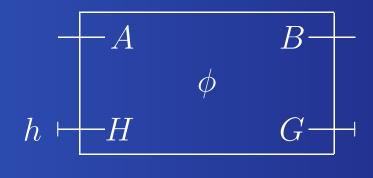
- A pure state over A is a vector $v \in \mathbb{C} A$ with unit norm ||v|| = 1.
- A reversible computation is given by a unitary operator $\phi \in A \circ_{\text{unitary}} B$.

Quantum computations (FQC)





 a finite set H, the base of the space of initial heaps,



- a finite set H, the base of the space of initial heaps,
- a heap initialisation vector $h \in \mathbb{C} H$,

- a finite set H, the base of the space of initial heaps,
- a heap initialisation vector $h \in \mathbb{C} H$,
- a finite set G, the base of the space of garbage states,

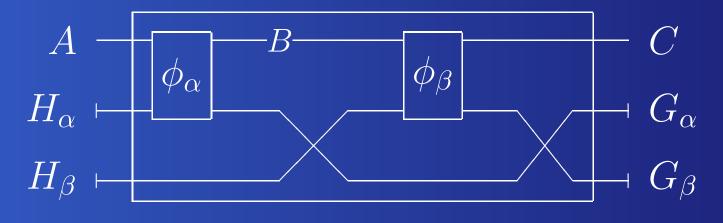
- a finite set H, the base of the space of initial heaps,
- a heap initialisation vector $h \in \mathbb{C} H$,
- a finite set G, the base of the space of garbage states,

• a unitary operator $\phi \in A \otimes H \multimap_{\text{unitary}} B \otimes G$.

Composing quantum computations

Europhic and Outpatture Dragramming - n 10//

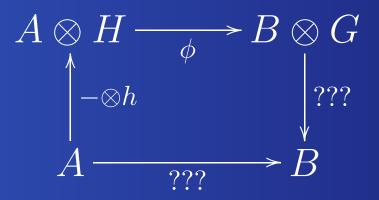
Composing quantum computations



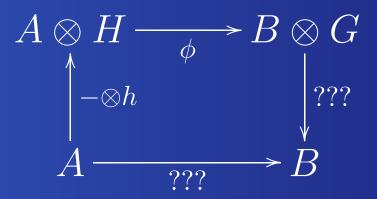
 $\phi_{\beta \circ \alpha}$

... is a bit more subtle.

- ... is a bit more subtle.
- There is no sensible operator replacing π_1 on vector spaces:



- ... is a bit more subtle.
- There is no sensible operator replacing π₁ on vector spaces:



 Indeed: Forgetting part of a pure state results in a mixed state.

Density Operators

A mixed state on A is given by a **density** operator

 $\rho \in A \multimap A$

such that all eigenvalues are positive reals

 $\hat{\rho} v = \lambda v \implies \lambda \in \mathbb{R}^+$

and has a unit trace

 $\Sigma a \in A.v a = 1$

Superoperators

Superoperators

■ A superoperator f ∈ A —o_{super} B is a linear operator on density operators which is completely positive.

Superoperators

 A superoperator f ∈ A →_{super} B is a linear operator on density operators which is completely positive.

• A unitary operator $\phi \in A - \circ_{\text{unitary}} B$ gives rise to a superoperator $\phi^{\dagger} \in A - \circ_{\text{super}} B$.

Superoperators

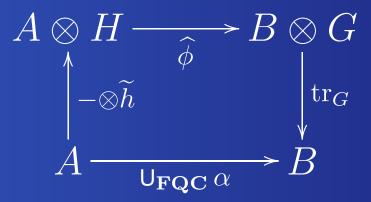
- A superoperator f ∈ A →_{super} B is a linear operator on density operators which is completely positive.
- A unitary operator $\phi \in A \circ_{\text{unitary}} B$ gives rise to a superoperator $\phi^{\dagger} \in A - \circ_{\text{super}} B$.
- Partial trace:

$$\operatorname{tr}_{A,G} \in A \otimes G \multimap_{\operatorname{super}} A$$

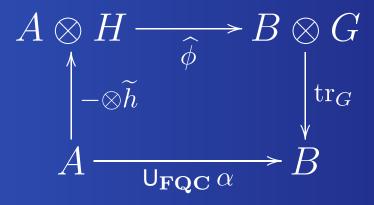
Extensional equality

Euclideal Output m Dragramming - p 20//

Extensional equality Every computation α gives rise to a superoperator U $\alpha \in A - \circ_{super} B$

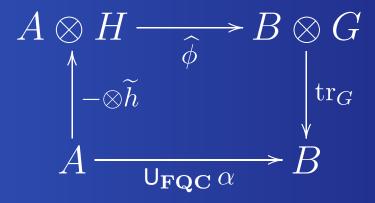


Extensional equality Every computation α gives rise to a superoperator U $\alpha \in A - \circ_{super} B$



 $\alpha =_{\mathsf{ext}} \beta, \text{if } \mathsf{U}_{\mathbf{FQC}} \alpha = \mathsf{U}_{\mathbf{FQC}} \beta$

Extensional equality Every computation α gives rise to a superoperator U $\alpha \in A - \circ_{super} B$



 $\alpha =_{\mathsf{ext}} \beta, \text{if } \mathsf{U}_{\mathbf{FQC}} \alpha = \mathsf{U}_{\mathbf{FQC}} \beta$

Objects finite sets **FCC: Morphisms** computations $/ =_{ext}$.

$U_{\mathbf{FQC}} I = I$ $U_{\mathbf{FQC}} (\beta \circ \alpha) = (U_{\mathbf{FQC}} \beta) \circ (U_{\mathbf{FQC}} \alpha)$

$U_{FQC} I = I$ $U_{FQC} (\beta \circ \alpha) = (U_{FQC} \beta) \circ (U_{FQC} \alpha)$

• U_{FQC} is a functor $U_{FQC} : FQC \rightarrow Super$.

$U_{\mathbf{FQC}} I = I$ $U_{\mathbf{FQC}} (\beta \circ \alpha) = (U_{\mathbf{FQC}} \beta) \circ (U_{\mathbf{FQC}} \alpha)$

- U_{FQC} is a functor $U_{FQC} : FQC \rightarrow Super$.
- U_{FQC} is faithful (trivially).

$U_{\mathbf{FQC}} I = I$ $U_{\mathbf{FQC}} (\beta \circ \alpha) = (U_{\mathbf{FQC}} \beta) \circ (U_{\mathbf{FQC}} \alpha)$

- ${\scriptstyle { \bullet } }$ ${\sf U}_{FQC}$ is a functor ${\sf U}_{FQC}:FQC \rightarrow Super.$
- U_{FQC} is faithful (trivially).
- \blacksquare U_{FQC} is full!

classical	quantum

classical	quantum
finite sets	

classical	quantum
finite sets	finite dimensional Hilbert spaces

quantum
finite dimensional Hilbert spaces

classical	quantum
finite sets	finite dimensional Hilbert spaces
bijections	unitary operators

paces
p

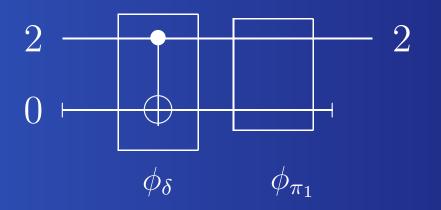
classical	quantum
finite sets	finite dimensional Hilbert spaces
bijections	unitary operators
cartesian product (\times)	tensor product (\otimes)

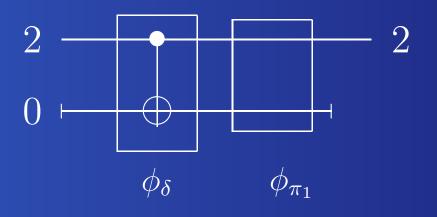
classical	quantum
finite sets	finite dimensional Hilbert spaces
bijections	unitary operators
cartesian product (\times)	tensor product (\otimes)
functions	

quantum
nite dimensional Hilbert spaces
unitary operators
tensor product (\otimes)
superoperators

classical	quantum
finite sets	finite dimensional Hilbert spaces
bijections	unitary operators
cartesian product (\times)	tensor product (\otimes)
functions	superoperators
projections	

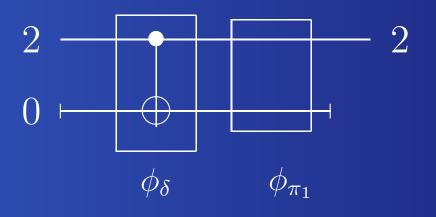
classical	quantum
finite sets	finite dimensional Hilbert spaces
bijections	unitary operators
cartesian product (\times)	tensor product (\otimes)
functions	superoperators
projections	partial trace





Classically

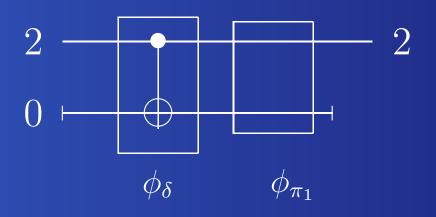
 $\pi_1 \circ \delta = \mathbf{I}$



Classically

 $\pi_1 \circ \delta = \mathbf{I}$

Quantum

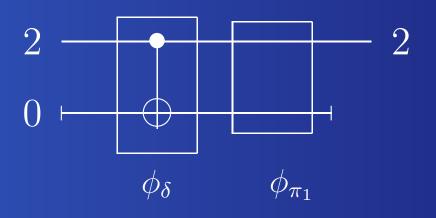


Classically

 $\pi_1 \circ \delta = \mathbf{I}$

Quantum

input: $\left\{ \frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |0\rangle \right\}$



Classically

 $\pi_1 \circ \delta = \mathbf{I}$

Quantum

input: $\left\{ \frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |0\rangle \right\}$ output: $\frac{1}{2} \{ |0\rangle \} + \frac{1}{2} \{ |1\rangle \}$

• $\frac{\Gamma \vdash t : \sigma}{\llbracket t \rrbracket \in \mathbf{FQC} \llbracket \Gamma \rrbracket \llbracket \tau \rrbracket}$

$\begin{array}{c} \Gamma \vdash t : \sigma \\ \hline \llbracket t \rrbracket \in \mathbf{FQC} \llbracket \Gamma \rrbracket \llbracket \tau \rrbracket \end{array}$

 QML is based on strict linear logic no weakening but contraction.

$\begin{array}{c} \Gamma \vdash t : \sigma \\ \hline \llbracket t \rrbracket \in \mathbf{FQC} \llbracket \Gamma \rrbracket \llbracket \tau \rrbracket \end{array}$

- QML is based on strict linear logic no weakening but contraction.
- QML types: $1, \sigma \otimes \tau, \sigma \oplus \tau$

Interpretation of types

Interpretation of types

|1| = 0 $|\sigma \sqcup \tau| = \max \{|\sigma|, |\tau|\}$ $|\sigma \oplus \tau| = |\sigma \sqcup \tau| + 1$ $|\sigma \otimes \tau| = |\sigma| + |\tau|$

Interpretation of types

|1| = 0 $|\sigma \sqcup \tau| = \max \{|\sigma|, |\tau|\}$ $|\sigma \oplus \tau| = |\sigma \sqcup \tau| + 1$ $|\sigma \otimes \tau| = |\sigma| + |\tau|$

 $\llbracket \sigma \rrbracket = 2^{|\sigma|}$

$\begin{array}{lll} \Gamma, x : \sigma \otimes \Delta, x : \sigma &= (\Gamma \otimes \Delta), x : \sigma \\ \Gamma, x : \sigma \otimes \Delta &= (\Gamma \otimes \Delta), x : \sigma & \text{if } x \notin \operatorname{dom} \Delta \\ \bullet \otimes \Delta &= \Delta \end{array}$

$\begin{array}{lll} \Gamma, x : \sigma \otimes \Delta, x : \sigma &= (\Gamma \otimes \Delta), x : \sigma \\ \Gamma, x : \sigma \otimes \Delta &= (\Gamma \otimes \Delta), x : \sigma & \text{if } x \notin \operatorname{dom} \Delta \\ \bullet \otimes \Delta &= \Delta \end{array}$

$$\begin{array}{c} \Gamma \otimes \Delta & & & \\ & H_{\Gamma,\Delta} & & & & \\ \end{array} \begin{array}{c} \phi_{C_{\Gamma,\Delta}} & & & \\ & \Delta \end{array} \end{array}$$

The let-rule

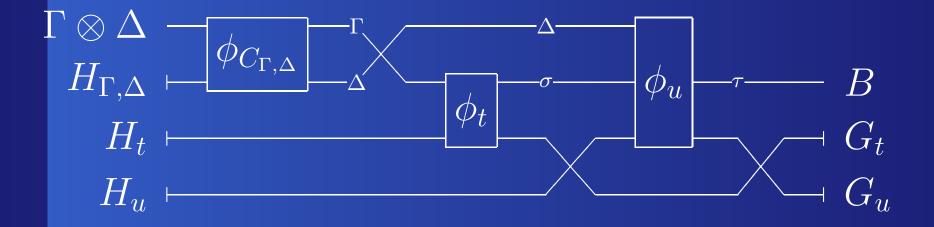
Europtional Quantum Dragramming n. 27//

The let-rule

$$\begin{array}{c} \Gamma \vdash t : \sigma \\ \Delta, \, x : \sigma \vdash u : \tau \\ \hline \Gamma \otimes \Delta \vdash \mathsf{let} \; x = t \; \mathsf{in} \; u : \tau \end{array} \mathsf{let} \end{array}$$

The let-rule

$$\begin{split} \Gamma \vdash t : \sigma \\ \Delta, \, x : \sigma \vdash u : \tau \\ \hline \Gamma \otimes \Delta \vdash \texttt{let} \; x = t \; \texttt{in} \; u : \tau \end{split}$$
 let



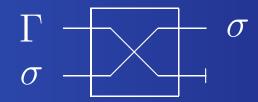
The var-rule

The var-rule

$$\Gamma, x: \sigma \vdash x^{\mathsf{dom}\,\Gamma}: \sigma \quad \text{var}$$

The var-rule

$$\overline{\Gamma, x : \sigma \vdash x^{\mathsf{dom}\,\Gamma} : \sigma} \,^{\mathrm{var}}$$



Example

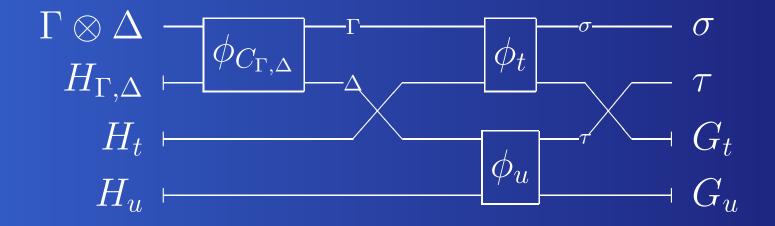
$y: \mathcal{Q}_2 \vdash \texttt{let} \ x = y \ \texttt{in} \ x^{\{\}}: \mathcal{Q}_2$

Example

 $y: \mathcal{Q}_2 \vdash \texttt{let} \ x = y \ \texttt{in} \ x^{\{\}}: \mathcal{Q}_2$ $y: \mathcal{Q}_2 \vdash \texttt{let} \ x = y \ \texttt{in} \ x^{\{y\}}: \mathcal{Q}_2$

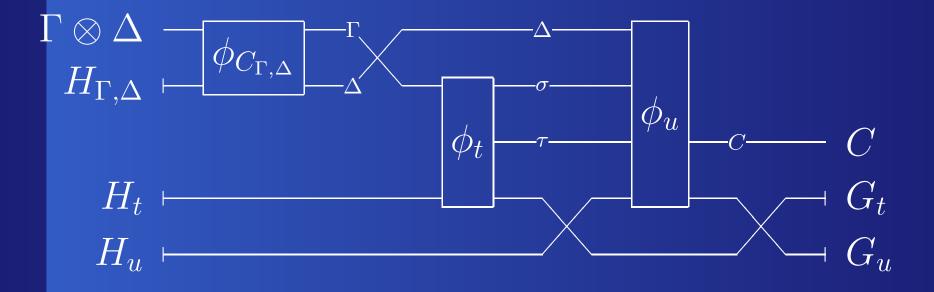
$\frac{\Gamma \vdash t : \sigma \quad \Delta \vdash u : \tau}{\Gamma \otimes \Delta \vdash (t, u) : \sigma \otimes \tau} \otimes \text{intro}$

$$\frac{\Gamma \vdash t : \sigma \quad \Delta \vdash u : \tau}{\Gamma \otimes \Delta \vdash (t, u) : \sigma \otimes \tau} \otimes \text{intro}$$



$$\begin{split} \Gamma \vdash t : \sigma \otimes \tau \\ \Delta, x : \sigma, y : \tau \vdash u : C \\ \overline{\Gamma \otimes \Delta} \vdash \mathsf{let} \ (x, y) = t \ \mathsf{in} \ u : C \end{split} \otimes \mathsf{elim} \end{split}$$

$$\begin{split} \Gamma \vdash t : \sigma \otimes \tau \\ \Delta, x : \sigma, y : \tau \vdash u : C \\ \overline{\Gamma \otimes \Delta} \vdash \texttt{let} \ (x, y) = t \ \texttt{in} \ u : C \end{split} \otimes \texttt{elim} \end{split}$$



Example

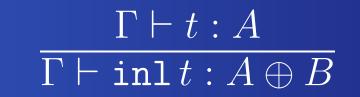
$p: \mathcal{Q}_2 \otimes \mathcal{Q}_2 \vdash \texttt{let} \ (x, y) = p \texttt{in} \ (y^{\{\}}, x^{\{\}}) : \mathcal{Q}_2 \otimes \mathcal{Q}_2$

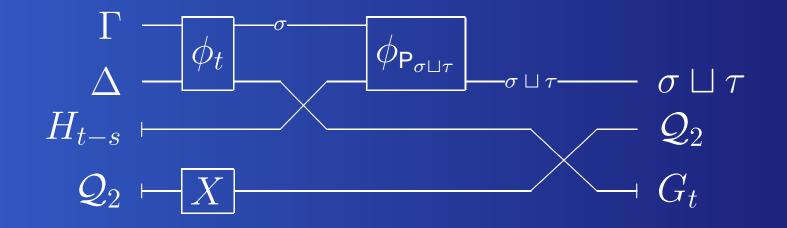
Example

$p:\mathcal{Q}_2\otimes\mathcal{Q}_2\vdash \texttt{let}\ (x,y)=p\,\texttt{in}\ (y^{\{\}},x^{\{\}}):\mathcal{Q}_2\otimes\mathcal{Q}_2$

$p: \mathcal{Q}_2 \otimes \mathcal{Q}_2 \vdash \texttt{let} \ (x, y) = p \texttt{in} \ (y^{\{p\}}, x^{\{p\}}) : \mathcal{Q}_2 \otimes \mathcal{Q}_2$

$\frac{\Gamma \vdash t:A}{\Gamma \vdash \texttt{inl} \ t:A \oplus B}$



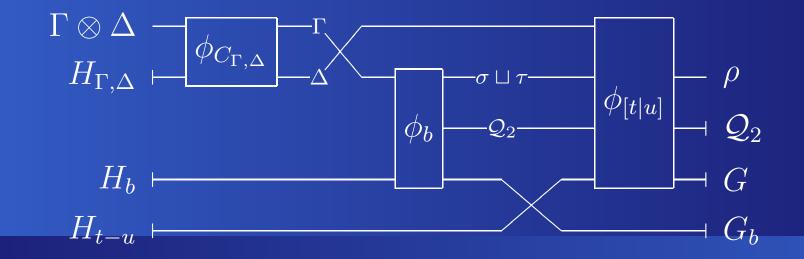


⊕-elim

$$\begin{split} \Gamma \vdash c : \sigma \oplus \tau \\ \Delta, \, x : \sigma \vdash t : \rho \\ \Delta, \, y : \tau \vdash u : \rho \\ \hline \Gamma \otimes \Delta \vdash \text{case } c \text{ of } \{ \text{inl } x \Rightarrow t \, | \, \text{inr } y \Rightarrow u \} : \rho \end{split} + \text{elim} \end{split}$$

⊕-elim

$$\begin{split} \Gamma \vdash c : \sigma \oplus \tau \\ \Delta, \, x : \sigma \vdash t : \rho \\ \Delta, \, y : \tau \vdash u : \rho \\ \hline \Gamma \otimes \Delta \vdash \text{case } c \text{ of } \{ \text{inl } x \Rightarrow t \, | \, \text{inr } y \Rightarrow u \} : \rho \end{split} + \text{elim} \end{split}$$



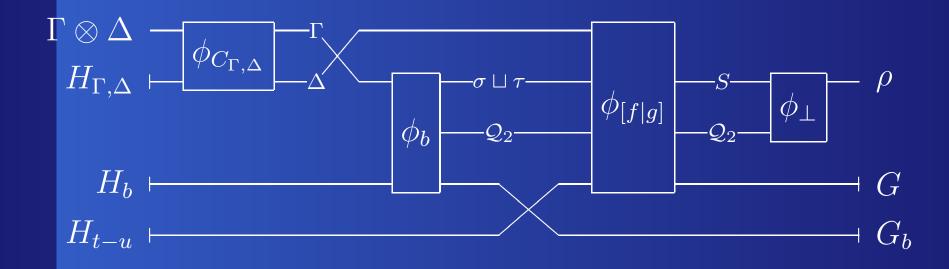
—-elim decoherence-free

-elim decoherence-free

$$\begin{split} \Gamma \vdash c : \sigma \oplus \tau \\ \Delta, \, x : \sigma \vdash t : \rho \\ \Delta, \, y : \tau \vdash u : \rho, \quad t \perp u \\ \hline \Gamma \otimes \Delta \vdash \mathsf{case}^{\circ} \, b \, \mathsf{of} \, \{ \mathsf{inl} \, x \Rightarrow t \, | \, \mathsf{inr} \, y \Rightarrow u \} : \rho \end{split} + \mathrm{elim}^{\circ} \end{split}$$

—-elim decoherence-free

$$\begin{split} \Gamma \vdash c : \sigma \oplus \tau \\ \Delta, \, x : \sigma \vdash t : \rho \\ \Delta, \, y : \tau \vdash u : \rho, \quad t \perp u \\ \hline \Gamma \otimes \Delta \vdash \mathsf{case}^{\circ} \, b \, \mathsf{of} \, \{ \mathsf{inl} \, x \Rightarrow t \, | \, \mathsf{inr} \, y \Rightarrow u \} : \rho \end{split} + \mathrm{elim}^{\circ} \end{split}$$



Orthogonality

$\frac{t \perp u}{\operatorname{inl} t \perp \operatorname{inr} u} \quad \frac{t \perp u}{\operatorname{inl} t \perp \operatorname{inl} u \quad \operatorname{inr} t \perp \operatorname{inr} u}$

$$\frac{t \perp u}{(t,v) \perp (u,w) \quad (v,t) \perp (w,u)}$$

Semantics of \perp

 $\llbracket t \perp u \rrbracket = (S, \phi, f, g)$

- \bullet S fi nite set.
- $\phi \in \mathcal{Q}_2 \otimes S \multimap_{\text{unitary}} \llbracket \sigma \rrbracket$
- $f \in \mathbf{FQC} \llbracket \Gamma \rrbracket S$ $g \in \mathbf{FQC} \llbracket \Gamma \rrbracket S$
- $\llbracket t \rrbracket = \phi \circ (\text{true} \otimes -) \circ f$, $\llbracket u \rrbracket = \phi \circ (\text{false} \otimes -) \circ g$

Superpositions

$$\begin{array}{ll} \Gamma \vdash t, u : \sigma & t \perp u \\ ||\lambda||^2 + ||\lambda'||^2 = 1 & \lambda, \lambda' \neq 0 \end{array}$$

 $\Gamma \vdash \{(\lambda)t \mid (\lambda')u\} : \sigma \\ \equiv \text{if}^{\circ} \{(\lambda)\text{qtrue} \mid (\lambda')\text{qfalse}\} \text{ then } t \text{ else } u$

Example: Deutsch's algorithm

: \mathcal{Q}_2

$$\begin{split} \operatorname{Eq} a: \mathcal{Q}_2, b: \mathcal{Q}_2 = \operatorname{let} (x,y) &= \operatorname{if}^\circ \left\{ \operatorname{qfalse} \mid (-1) \operatorname{qtrue} \right\} \\ & \quad \text{then } \left(\operatorname{qtrue, if } a \\ & \quad \text{then } \left\{ \operatorname{qfalse} \mid (-1) \operatorname{qtrue} \right\} \\ & \quad \text{else } \left\{ \operatorname{qfalse} \mid \operatorname{qtrue} \right\} \right) \\ & \quad \text{else } \left(\operatorname{qfalse}, \operatorname{if } b \\ & \quad \text{then } \left\{ \operatorname{qfalse} \mid (-1) \operatorname{qtrue} \right\} \\ & \quad \text{else } \left\{ \operatorname{qfalse} \mid \operatorname{qtrue} \right\} \right) \\ & \quad \text{in } x \end{split}$$

Eurotional Quantum Dragramming n 40/4

Higher order

Higher order

 High level reasoning principles for QML programs

- Higher order
- High level reasoning principles for QML programs
- Categorical analysis

- Higher order
- High level reasoning principles for QML programs
- Categorical analysis
- Infi nite or indexed?