Homotopy Type Theory

in 10 minutes

Thorsten Altenkirch Functional Programming Lab

A new connection between ...

Who ?

Vladimir Voevodsky (Field medallist)

at the IAS in Princeton

Homotopy Theory ?

Related to topology (elastic geometry)
Classifying geometric objects (spaces) by the groups of paths on them.

What is the difference between

?

On the sphere

there is only one path from a point to itself

 $\pi_1(S^2) = 0$

Friday, 28 September 12

but on the torus

there are lots of different paths $\pi_1(T) = {\bf Z}^2$

But: What is the difference between

Friday, 28 September 12

Higher homotopies

(paths between paths)

For the plane

there is only I path between any 2 paths

 $\pi_2(\mathbf{R}^2) = 0$

But for the sphere

there are may paths between paths

 $\pi_2(\mathbf{S}^2) = \mathbf{Z}$

Friday, 28 September 12

Two geometric objects (spaces) are (homotopically) equivalent iff all their homotopies agree...

Type Theory ?

program	type
proof	proposition

Curry - Howard - Equivalence

$A \wedge B \to B \wedge A$ $(a, b) \mapsto (b, a)$

Try Agda !

Equality types

Given a, b : A

a = b

is the type of proofs that a equals b

Higher Equality types

Given $\alpha, \beta: a = b$

$\alpha = \beta$

is the type of proofs that two proofs are equal!

How many equality proofs are there ?

There is only one proof that 3 = 3

refl: 3 = 3

and no proof that

0 = 3

At most one ?

Equality of data structures ?

$A \times B \times A = A \times A \times B$

The connection

- If we want to treat equivalence of datastructures
- e.g. unary numbers = binary numbers
- as equality
- we end up with a theory
- where datatypes behave like spaces
- and equality of datatypes
- is homotopy equaivalence !

Open problems

- Many !
- One of them:
- How to compute in homotopy type theory?

Plan for next Spring

