Towards Type Theory with Continuity

Thorsten Altenkirch
School of Computer Science
University of Nottingham

March 17, 2008

- Extensional Type Theory with W and Quotient types
- In category speak: LCC pretopos with W predicative topos
- Prop = sets with at most one inhabitant.
- Define $\exists a$: $A . P a=[\Sigma a: A . P a]$ (bracket types).

$$
\frac{A \text { : Set }}{[A]: \text { Prop }} \quad[A]=A /(\lambda x, y . \text { true })
$$

- Logic, Set Theory and Programming Language
- As a Programming Language: purely functional, total !
- How to capture real world programming, i.e. computational effects?

Effects as Monads

Functional Programming

Effects = Monads (Moggi, Wadler)

Monad

$M:$ Set \rightarrow Set

$$
\frac{a: A}{\eta a: M A} \quad \frac{m: M A f: A \rightarrow M B}{a \gg=f: M B}
$$

+ equations ($A \rightarrow M B$ is a category)

Examples of computational effects

Monads

Error $M_{E} X=1+X$
State $M_{S} X=S \rightarrow S \times X$
Cont. $M_{C} X=(X \rightarrow R) \rightarrow R$

Kleisli category

$A \rightarrow M B=$ effectful computations.

Partiality as an effect

Delay M_{D}
Partial $M_{P} X=\left(M_{D} X\right) / \sim$

Idea
Partial functions from A to $B=A \rightarrow M_{P} B$.
Based on published work by Venanzio Capretta and unpublished work with Tarmo Uuustalu and Venanzio.

Delay

$$
\operatorname{codata} \frac{A: \text { Set }}{M_{D} A: \text { Set }} \text { where } \frac{a: A}{\mathrm{Na:M} M_{D} A} \frac{d: M_{D} A}{\mathrm{~L} d: M_{D} A}
$$

Divergent computation

$$
\begin{aligned}
\perp & =M_{D} A \\
\perp & =\mathrm{L} \perp
\end{aligned}
$$

Monad structure

$$
\begin{aligned}
\eta_{D} a & =\mathrm{Na} \\
\mathrm{~N} a \gg=f & =f a \\
\mathrm{~L} d \gg=f & =\mathrm{L}(d \gg=f)
\end{aligned}
$$

Termination

$$
\text { data } \frac{d: M_{D} A \text { a: } A}{d \downarrow a: \operatorname{Prop}} \text { where } \overline{\mathrm{N} a \downarrow a} \frac{d \downarrow a}{\mathrm{~L} d \downarrow a}
$$

Termination order

$$
\begin{aligned}
& d \sqsubseteq d^{\prime}=\Pi a: A . d \downarrow a \rightarrow d^{\prime} \downarrow a \\
& d \sim d^{\prime}=d \sqsubseteq d^{\prime} \wedge d^{\prime} \sqsubseteq d
\end{aligned}
$$

Partiality

- $M_{P} X=\left(M_{D} X\right) / \sim$
- Classically: $M_{P} X=X+\{\perp\}$
- Inherits monad structure ($\gg={ }_{D}$ stable under \sim).
- Lift order: $\sqsubseteq: M_{D} A \rightarrow M_{D} A \rightarrow$ Prop

How to construct?

$$
\frac{f:\left(A \rightarrow M_{P} B\right) \rightarrow A \rightarrow M_{P} B}{\operatorname{fix} f: A \rightarrow M_{P} B}
$$

$$
\text { fix } f=\bigsqcup\left(\lambda n \cdot f^{n} \perp\right)
$$

ω-CPO structure

directed completeness

$$
\text { Chain }=\left\{\vec{d}: \mathbb{N} \rightarrow M_{D} A \mid \Pi n: \mathbb{N} . \vec{d} n \sqsubseteq \vec{d}(n+1)\right\}
$$

$$
\frac{\vec{d}: \text { Chain }}{\left\lfloor\vec{d}: M_{D} A\right.} \quad \bigsqcup \vec{d}=\vec{d} 0 \sqcup \mathrm{~L} \bigsqcup \vec{d} \circ(+1)
$$

race

$$
\begin{aligned}
\mathrm{N} a \sqcup d^{\prime} & =\mathrm{N} a \\
\mathrm{~L} d \sqcup \mathrm{~N} b & =b \\
\mathrm{~L} d \sqcup \mathrm{~L} d^{\prime} & =\mathrm{L}\left(d \sqcup d^{\prime}\right)
\end{aligned}
$$

Continuity?

- \bigsqcup works on M_{P} (but not \sqcup).
- ω-CPO structure lifts pointwise to $A \rightarrow M_{P} B$.
- We need that $f:\left(A \rightarrow M_{P} B\right) \rightarrow A \rightarrow M_{P} B$ is ω-continuous, i.e.

$$
f(\bigsqcup \vec{d})=\bigsqcup \lambda i . f(\vec{d} i)
$$

- We have to prove ω-continuity again and again.
- We cannot define a non-continuous f !

Type Theory with Continuity ?

- How to add continuity to Type Theory?
- Consistent with extensionality.
- Computational (BHK).
- Explained by translation?

1st order continuity

- Consider $(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}$
- What are the possible computations of this type?

Eating games (Hancock et al)

$$
\text { data } G: \text { Set where } \frac{n: \mathbb{N}}{\mathrm{Rn}: G} \quad \frac{g: \mathbb{N} \rightarrow G}{\mathrm{G} g: G}
$$

$$
\begin{array}{cl}
g: G & \llbracket \mathrm{R} n \rrbracket h=n \\
\llbracket G \rrbracket:(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N} & \llbracket \mathbb{G} g \rrbracket h=\llbracket g(h 0) \rrbracket h \circ(+1) \\
\frac{f:(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}}{q f: G} & \begin{array}{ll}
\llbracket q \rrbracket \rrbracket=f \\
q \llbracket g \rrbracket=g
\end{array}
\end{array}
$$

Too intensional!

Extensional games

$$
\begin{gathered}
g \sim g^{\prime}=\left(\llbracket g \rrbracket=\llbracket g^{\prime} \rrbracket\right) \\
\frac{f:(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}}{q f: G / \sim} \quad \begin{array}{l}
\llbracket q f \rrbracket=f \\
q \llbracket g \rrbracket=g
\end{array}
\end{gathered}
$$

Local continuity

$$
\frac{f:(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N} \quad h: \mathbb{N} \rightarrow \mathbb{N}}{\operatorname{lc} f h: \exists n: \mathbb{N} . \Pi h^{\prime}: \mathbb{N} \rightarrow \mathbb{N} .\left(\Pi i<n . h n=h^{\prime} n\right) \rightarrow f h=f h^{\prime}}
$$

Derive Ic using Ic':

$$
\frac{g: G \quad h: \mathbb{N} \rightarrow \mathbb{N}}{\operatorname{lc}^{\prime} g h: \Sigma n: \mathbb{N} . \Pi h^{\prime}: \mathbb{N} \rightarrow \mathbb{N} .\left(\Pi i<n . h n=h^{\prime} n\right) \rightarrow f h=f h^{\prime}}
$$

What are games for:

$$
((\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}) \rightarrow \mathbb{N} ?
$$

$$
\begin{aligned}
& ((\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}) \rightarrow \mathbb{N} \\
& \quad \simeq G / \sim \rightarrow \mathbb{N} \\
& \quad \simeq\left\{f: G \rightarrow \mathbb{N} \mid \Pi g, g^{\prime}: G . g \sim g^{\prime} \rightarrow f g=f g^{\prime}\right\}
\end{aligned}
$$

We need games for:

$$
G \rightarrow \mathbb{N}
$$

S : Set
$Q: S \rightarrow$ Set
R : Set

$$
n: \Pi s: S, q: Q s . R \rightarrow S
$$

Synek-Petersson trees: $T: S \rightarrow$ Set

$$
\text { data } S: \text { Set where } \frac{n: \mathbb{N}}{\mathrm{Rn}: S} \frac{\vec{s}: S^{*}}{\mathrm{~N} \vec{s}: S}
$$

data $\frac{s: S}{Q s: \text { Set }}$ where $\overline{\mathrm{H}: Q(\mathrm{~N} \vec{s})} \frac{q: Q \vec{s}_{i}}{\mathrm{Diq:Q(N} \mathrm{\vec{s})}}$
data $\overline{R: \text { Set }}$ where $\frac{n: \mathbb{N}}{\mathrm{R} n: R} \overline{\mathrm{~N}: R}$

Interpreting T

$$
\begin{gathered}
\frac{t: T s}{\llbracket t \rrbracket:\{g: G \mid s<g\} \rightarrow \mathbb{N}} \\
t \sim t^{\prime}=\left(\llbracket t \rrbracket=\llbracket t^{\prime} \rrbracket\right) \\
\frac{f:\{g: G \mid s<g\} \rightarrow \mathbb{N}}{q f:(T s) / \sim}
\end{gathered}
$$

We can use T to give an interpretation of a 3rd order type by 1 st order games.

- Can we interpret all arithmetic types by 1 st order games? (using Synek-Petersson trees).
- Such a construction should give rise to a translation justifying continuity in Type Theory.
- Has this been done in intuitionistic logic?
- Applications to the elimination of extensionality in Observational Type Theory.

