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ΠΣ in a nutshell

Partial core language for DTP.
Ingredients:

Type : Type
Finite enumerations, eg Bool = {true, false}.
Π-types
Σ-types
Flexible mutual recursive definitions
Lifted types to control recursive unfolding.
Extended α conversion for recursive definitions.

ΠΣ: Dependent Types Without the Sugar
T.A.,Nils Anders Danielsson, Andres Löh and Nicolas Oury
FLOPS 2010
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How to implement eliminators for datatypes?
For the moment we consider just Bool
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Rule for the simply typed eliminator:

Γ ` t0, t1 : σ
Γ ` u : Bool

Γ ` case u of { true→ t0 | false→ t1 } : σ

Pattern matching is reduced to case.
Local case expressions.
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Dependently typed eliminator with motive

Γ, x : Bool ` σ
Γ ` u : Bool
Γ ` t0 : σ[x := true]
Γ ` t1 : σ[x := false]

Γ ` elimBool
x .σ u of { true→ t0 | false→ t1 } : σ[x := u]

Not syntax directed!
We have to come up with the motive x .σ.
Local case expressions?
Can be (partially) simulated using auxilliary definitions
(with).
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Case in ΠΣ

Γ ` x : Bool
Γ ` t0 : σ[x := true]
Γ,` t1 : σ[x := false]

Γ ` case x of { true→ t0 | false→ t1 } : σ

Syntax directed.
Eliminator can be easily derived.
No need for motives.
Variable restriction leads to failure of subject reduction.
Also no local case analysis.
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Smart Case

Γ ` u : Bool
Γ,u = true ` t0 : σ
Γ,u = false ` t1 : σ

Γ ` case u of { true→ t0 | false→ t1 } : σ

Addresses issue with Subject Reduction
Local case expressions ( more general than with)
Need equational assumptions in contexts.
Need to decide convertibility with assumptions.
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Convertibility with assumptions

We allow equational assumptions of the form t = b in the
context.
We add the rule

Γ, t = b ` t = b

and weakening rules.
Here b has to be a constructor (e.g. true, false)
The remaining rules remain unchanged, e.g.

case true of { true→ t0 | false→ t1 } = t0

We do not consider (for the moment):

Γ,u = true ` t0 = v
Γ,u = false ` t1 = v

Γ ` case u of { true→ t0 | false→ t1 } = v

Thorsten Altenkirch Shonan 2011



Inconsistency

Equational assumptions can be inconsistent.
E.g. the context

x : Bool, x = true, x = false

is inconsistent, i.e. every equation is derivable.

t = case true of { true→ t | false→ u }
= case x of { true→ t | false→ u }
= case false of { true→ t | false→ u }
= u
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How to implement conditional β-equality
(for boolean pattern equations)?
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Sketch of the implementation

We define (mutually):
Constraint sets C
Normalisation with constraints C ` t ⇓ v
Convertibility with constraints C ` t ∼ u
Creation of constraint sets Γ ⇓ C
Merging of constraint sets C ++ D ⇓ E
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Constraint sets

A constraint set C is either

INCONSISTENT

or
n0 = b0,n1 = b1, . . . ,nm = bm

where
bi ∈ {true, false}

ni is a neutral term

such that for all i :
C − ni = bi ` ni ⇓ ni
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Reduction We add the rule

n = b ∈ C

C ` n ⇓ b

Convertibility

INCONSISTENT ` t ∼ u

C ` t ⇓ v C ` u ⇓ v

C ` t ∼ u

Creation of constraint sets

Γ ⇓ C C ` t ⇓ n n = b ++ C ⇓ D

Γ, t = b ⇓ D
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Merging Constraint sets

C ++ ε ⇓ C

C ` n ⇓ b C ++ D ⇓ E

C ++ n = b,D ⇓ E

C ` n ⇓ ¬b

C ++ n = b,D ⇓ INCONSISTENT

C ` n ⇓ n C,n = b ++ D ⇓ E

C ++ n = b,D ⇓ E

C ` n ⇓ n′ n′ = b ++ C,D ⇓ E

C ++ n = b,D ⇓ E
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Soundness and completeness

soundness
Γ ⇓ C C ` t ∼ u

Γ ` t = u

completeness
Γ ⇓ C Γ ` t = u

C ` t ∼ u

relies on the key lemma:

n = b ++ C ⇓ D

D ` n ⇓ b

which we have been unable to prove.
termination Have shown termination for a simply typed variant.

Goal: Modular termination.
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Extensions

Arbitrary equations for booleans (congruence closure).
Extensional equality for booleans.
Extend to all first order datatypes
All finite types and Σ-types.
Conditional equality on higher order types seems
undecidable.
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