
The case of the smart case
How to implement conditional convertibility?

Thorsten Altenkirch

School of Computer Science
University of Nottingham

Based on work with Andreas Abel, Thomas Anberre,
Nils Anders Danielsson and Shin-Cheng Mu

Thorsten Altenkirch Shonan 2011

ΠΣ in a nutshell

Partial core language for DTP.
Ingredients:

Type : Type
Finite enumerations, eg Bool = {true, false}.
Π-types
Σ-types
Flexible mutual recursive definitions
Lifted types to control recursive unfolding.
Extended α conversion for recursive definitions.

ΠΣ: Dependent Types Without the Sugar
T.A.,Nils Anders Danielsson, Andres Löh and Nicolas Oury
FLOPS 2010

Thorsten Altenkirch Shonan 2011

How to implement eliminators for datatypes?
For the moment we consider just Bool

Thorsten Altenkirch Shonan 2011

Rule for the simply typed eliminator:

Γ ` t0, t1 : σ
Γ ` u : Bool

Γ ` case u of { true→ t0 | false→ t1 } : σ

Pattern matching is reduced to case.
Local case expressions.

Thorsten Altenkirch Shonan 2011

Dependently typed eliminator with motive

Γ, x : Bool ` σ
Γ ` u : Bool
Γ ` t0 : σ[x := true]
Γ ` t1 : σ[x := false]

Γ ` elimBool
x .σ u of { true→ t0 | false→ t1 } : σ[x := u]

Not syntax directed!
We have to come up with the motive x .σ.
Local case expressions?
Can be (partially) simulated using auxilliary definitions
(with).

Thorsten Altenkirch Shonan 2011

Case in ΠΣ

Γ ` x : Bool
Γ ` t0 : σ[x := true]
Γ,` t1 : σ[x := false]

Γ ` case x of { true→ t0 | false→ t1 } : σ

Syntax directed.
Eliminator can be easily derived.
No need for motives.
Variable restriction leads to failure of subject reduction.
Also no local case analysis.

Thorsten Altenkirch Shonan 2011

Smart Case

Γ ` u : Bool
Γ,u = true ` t0 : σ
Γ,u = false ` t1 : σ

Γ ` case u of { true→ t0 | false→ t1 } : σ

Addresses issue with Subject Reduction
Local case expressions (more general than with)
Need equational assumptions in contexts.
Need to decide convertibility with assumptions.

Thorsten Altenkirch Shonan 2011

Convertibility with assumptions

We allow equational assumptions of the form t = b in the
context.
We add the rule

Γ, t = b ` t = b

and weakening rules.
Here b has to be a constructor (e.g. true, false)
The remaining rules remain unchanged, e.g.

case true of { true→ t0 | false→ t1 } = t0

We do not consider (for the moment):

Γ,u = true ` t0 = v
Γ,u = false ` t1 = v

Γ ` case u of { true→ t0 | false→ t1 } = v

Thorsten Altenkirch Shonan 2011

Inconsistency

Equational assumptions can be inconsistent.
E.g. the context

x : Bool, x = true, x = false

is inconsistent, i.e. every equation is derivable.

t = case true of { true→ t | false→ u }
= case x of { true→ t | false→ u }
= case false of { true→ t | false→ u }
= u

Thorsten Altenkirch Shonan 2011

How to implement conditional β-equality
(for boolean pattern equations)?

Thorsten Altenkirch Shonan 2011

Sketch of the implementation

We define (mutually):
Constraint sets C
Normalisation with constraints C ` t ⇓ v
Convertibility with constraints C ` t ∼ u
Creation of constraint sets Γ ⇓ C
Merging of constraint sets C ++ D ⇓ E

Thorsten Altenkirch Shonan 2011

Constraint sets

A constraint set C is either

INCONSISTENT

or
n0 = b0,n1 = b1, . . . ,nm = bm

where
bi ∈ {true, false}

ni is a neutral term

such that for all i :
C − ni = bi ` ni ⇓ ni

Thorsten Altenkirch Shonan 2011

Reduction We add the rule

n = b ∈ C

C ` n ⇓ b

Convertibility

INCONSISTENT ` t ∼ u

C ` t ⇓ v C ` u ⇓ v

C ` t ∼ u

Creation of constraint sets

Γ ⇓ C C ` t ⇓ n n = b ++ C ⇓ D

Γ, t = b ⇓ D

Thorsten Altenkirch Shonan 2011

Merging Constraint sets

C ++ ε ⇓ C

C ` n ⇓ b C ++ D ⇓ E

C ++ n = b,D ⇓ E

C ` n ⇓ ¬b

C ++ n = b,D ⇓ INCONSISTENT

C ` n ⇓ n C,n = b ++ D ⇓ E

C ++ n = b,D ⇓ E

C ` n ⇓ n′ n′ = b ++ C,D ⇓ E

C ++ n = b,D ⇓ E

Thorsten Altenkirch Shonan 2011

Soundness and completeness

soundness
Γ ⇓ C C ` t ∼ u

Γ ` t = u

completeness
Γ ⇓ C Γ ` t = u

C ` t ∼ u

relies on the key lemma:

n = b ++ C ⇓ D

D ` n ⇓ b

which we have been unable to prove.
termination Have shown termination for a simply typed variant.

Goal: Modular termination.
Thorsten Altenkirch Shonan 2011

Extensions

Arbitrary equations for booleans (congruence closure).
Extensional equality for booleans.
Extend to all first order datatypes
All finite types and Σ-types.
Conditional equality on higher order types seems
undecidable.

Thorsten Altenkirch Shonan 2011

