## Towards a High Level Quantum Programming Language

Thorsten Altenkirch University of Nottingham based on joint work with Jonathan Grattage and discussions with V.P. Belavkin

 Simulation of quantum systems is expensive: PSPACE complexity for polynomial circuits.

- Simulation of quantum systems is expensive: PSPACE complexity for polynomial circuits.
- Feynman: Can we exploit this fact to perform computations more efficiently?

- Simulation of quantum systems is expensive: PSPACE complexity for polynomial circuits.
- Feynman: Can we exploit this fact to perform computations more efficiently?
- Shor: Factorisation in quantum polynomial time.

- Simulation of quantum systems is expensive: PSPACE complexity for polynomial circuits.
- Feynman: Can we exploit this fact to perform computations more efficiently?
- Shor: Factorisation in quantum polynomial time.
- Grover: Blind search in  $O(\sqrt{n})$

- Simulation of quantum systems is expensive: PSPACE complexity for polynomial circuits.
- Feynman: Can we exploit this fact to perform computations more efficiently?
- Shor: Factorisation in quantum polynomial time.
- Grover: Blind search in  $O(\sqrt{n})$
- Can we build a quantum computer?

- Simulation of quantum systems is expensive: PSPACE complexity for polynomial circuits.
- Feynman: Can we exploit this fact to perform computations more efficiently?
- Shor: Factorisation in quantum polynomial time.
- Grover: Blind search in  $O(\sqrt{n})$
- Can we build a quantum computer?

yes We can run quantum algorithms.

- Simulation of quantum systems is expensive: PSPACE complexity for polynomial circuits.
- Feynman: Can we exploit this fact to perform computations more efficiently?
- Shor: Factorisation in quantum polynomial time.
- Grover: Blind search in  $O(\sqrt{n})$
- Can we build a quantum computer?
   yes We can run quantum algorithms.
   no Nature is classical after all!

- Simulation of quantum systems is expensive: PSPACE complexity for polynomial circuits.
- Feynman: Can we exploit this fact to perform computations more efficiently?
- Shor: Factorisation in quantum polynomial time.
- Grover: Blind search in  $O(\sqrt{n})$
- Can we build a quantum computer?
   yes We can run quantum algorithms.
   no Nature is classical after all!

Assumption: Nature is fair...

Towards a High LevelQuantum Programming Language - p.3/3

 Quantum algorithms are usually presented using the circuit model.

- Quantum algorithms are usually presented using the circuit model.
- Nielsen and Chuang, p.7, Coming up with good quantum algorithms is hard.

- Quantum algorithms are usually presented using the circuit model.
- Nielsen and Chuang, p.7, Coming up with good quantum algorithms is hard.
- Richard Josza, QPL 2004: We need to develop quantum thinking!



 QML: a functional language for quantum computations on finite types.

- QML: a functional language for quantum computations on finite types.
- Quantum control and quantum data.

- QML: a functional language for quantum computations on finite types.
- Quantum control and quantum data.
- Design guided by semantics

- QML: a functional language for quantum computations on finite types.
- Quantum control and quantum data.
- Design guided by semantics
- Analogy with classical computation
   FCC Finite classical computations
   FQC Finite quantum computations

- QML: a functional language for quantum computations on finite types.
- Quantum control and quantum data.
- Design guided by semantics
- Analogy with classical computation
   FCC Finite classical computations
   FQC Finite quantum computations
- Important issue: control of decoherence

- QML: a functional language for quantum computations on finite types.
- Quantum control and quantum data.
- Design guided by semantics
- Analogy with classical computation
   FCC Finite classical computations
   FQC Finite quantum computations
- Important issue: control of decoherence
- Draft paper available (Google:Thorsten,functional,quantum)

- QML: a functional language for quantum computations on finite types.
- Quantum control and quantum data.
- Design guided by semantics
- Analogy with classical computation
   FCC Finite classical computations
   FQC Finite quantum computations
- Important issue: control of decoherence
- Draft paper available (Google:Thorsten,functional,quantum)
- Compiler under construction (Jonathan) aHigh LevelQuantum Programming Language p.4/3

## **Example: Hadamard operation**

## **Example: Hadamard operation**

#### **Matrix**

$$\mathbf{H} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix}$$

## **Example: Hadamard operation**

**Matrix** 

$$\mathbf{H} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix}$$

QML

had:  $Q_2 \multimap Q_2$ had  $x = \mathbf{if}^\circ x$ **then** {  $qfalse \mid (-1) qtrue$  } **else** {  $qfalse \mid qtrue$  }

## Overview

- 1. Semantics of finite classical and quantum computation
- 2. QML basics
- 3. Compiling QML
- 4. Conclusions and further work

## 1. Semantics

- 1. Semantics of finite classical and quantum computation
- 2. QML basics
- 3. Compiling QML
- 4. Conclusions and further work

Towards a High LevelQuantum Programming Language - p.8/3

 Start with classical computations on finite types.

- Start with classical computations on finite types.
- Quantum mechanics is time-reversible...

- Start with classical computations on finite types.
- Quantum mechanics is time-reversible...
- ...hence quantum computation is based on reversible operations.

- Start with classical computations on finite types.
- Quantum mechanics is time-reversible...
- ...hence quantum computation is based on reversible operations.
- However: Newtonian mechanics, Maxwellian electrodynamics are also time-reversible...

- Start with classical computations on finite types.
- Quantum mechanics is time-reversible...
- ...hence quantum computation is based on reversible operations.
- However: Newtonian mechanics, Maxwellian electrodynamics are also time-reversible...
- ...hence classical computation should be based on reversible operations.

## **Classical computation (FCC)**

## **Classical computation (FCC)**

Given finite sets A (input) and B (output):

$$\begin{array}{cccc}
-A & B \\
\phi & \\
h & H & G \\
\end{array}$$

## **Classical computation (FCC)**

Given finite sets A (input) and B (output):

$$\begin{array}{cccc}
-A & B \\
\phi & \\
h & H & G \\
\end{array}$$

• a finite set of initial heaps H,

### **Classical computation (FCC)**

Given finite sets A (input) and B (output):

$$\begin{array}{cccc}
-A & B \\
\phi & \\
h & H & G \\
\end{array}$$

- a finite set of initial heaps H,
- an initial heap  $h \in H$ ,

### **Classical computation (FCC)**

Given finite sets A (input) and B (output):

$$\begin{array}{cccc}
-A & B \\
\phi & \\
h & H & G \\
\end{array}$$

- a finite set of initial heaps H,
- an initial heap  $h \in H$ ,
- $\bullet$  a finite set of garbage states G,

### **Classical computation (FCC)**

Given finite sets A (input) and B (output):

$$\begin{array}{cccc}
-A & B \\
\phi & \\
h & H & G \\
\end{array}$$

- a finite set of initial heaps H,
- an initial heap  $h \in H$ ,
- $\bullet$  a finite set of garbage states G,
- a bijection  $\phi \in A \times H \simeq B \times G$ ,

• A classical computation  $\alpha = (A, B, H, h \in H, G, \phi \in A \times H \simeq B \times G)$ induces a function  $\cup \alpha \in A \to B$  by

 $\mathsf{U}\alpha\,a=\pi_1\,\phi\,(h,a)$ 

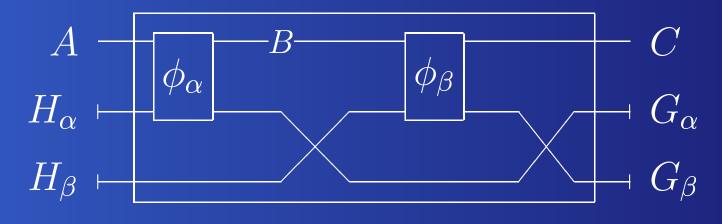
• A classical computation  $\alpha = (A, B, H, h \in H, G, \phi \in A \times H \simeq B \times G)$ induces a function  $\cup \alpha \in A \to B$  by

 $\mathsf{U}\alpha\,a=\pi_1\,\phi\,(h,a)$ 

■ Theorem Any function f ∈ A → B (on finite sets A, B) can be realized by a quantum computation.

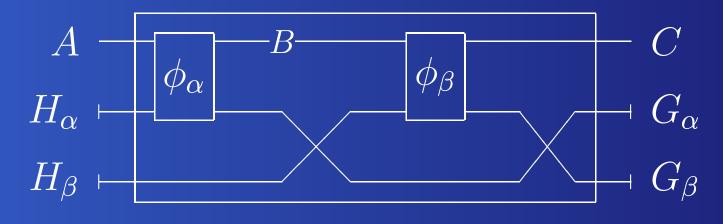
## **Composing classical computations**

## **Composing classical computations**



 $\phi_{\beta \circ lpha}$ 

## **Composing classical computations**



 $\phi_{\beta \circ lpha}$ 

Theorem:

 $\mathbf{U}\left(\beta\circ\alpha\right) = (\mathbf{U}\beta)\circ(\mathbf{U}\alpha)$ 

Towards a High LevelQuantum Programming Language - p.11/3

# **Coming next: Quantum computations**

Develop FQC analogously to FCC...

Given a finite set A (the base)  $\mathbb{C}A = A \rightarrow \mathbb{C}$  is a **Hilbert space**.

Given a finite set A (the base)  $\mathbb{C}A = A \to \mathbb{C}$  is a Hilbert space. Linear operators:  $f \in A \to B \to \mathbb{C}$  induces  $\hat{f} \in \mathbb{C}A \to \mathbb{C}B$ . we write  $f \in A \multimap B$ 

Given a finite set A (the base)  $\mathbb{C}A = A \to \mathbb{C}$  is a Hilbert space. Linear operators:  $f \in A \to B \to \mathbb{C}$  induces  $\hat{f} \in \mathbb{C}A \to \mathbb{C}B$ . we write  $f \in A \multimap B$ Norm of a vector:  $\|v\| = \sum_{a \in A} (va)^* (va) \in \mathbb{R}^+$ ,

Given a finite set A (the base)  $\mathbb{C}A = A \rightarrow \mathbb{C}$  is a Hilbert space. Linear operators:  $f \in A \to B \to \mathbb{C}$  induces  $\hat{f} \in \mathbb{C}A \to \mathbb{C}B$ . we write  $f \in A \multimap B$ Norm of a vector:  $||v|| = \sum_{a \in A} (va)^* (va) \in \mathbb{R}^+,$ **Unitary operators:** A unitary operator  $\phi \in A \multimap_{\text{unitary}} B$  is a linear isomorphism that preserves the norm.

### **Basics of quantum computation**

Towards a High LevelQuantum Programming Language - p.14/3

#### **Basics of quantum computation**

• A pure state over A is a vector  $v \in \mathbb{C}A$  with unit norm ||v|| = 1.

#### **Basics of quantum computation**

- A pure state over A is a vector  $v \in \mathbb{C}A$  with unit norm ||v|| = 1.
- A reversible computation is given by a unitary operator  $\phi \in A \circ_{\text{unitary}} B$ .

## **Quantum computations (FQC)**





 a finite set H, the base of the space of initial heaps,



- a finite set H, the base of the space of initial heaps,
- a heap initialisation vector  $h \in \mathbb{C} H$ ,



- a finite set H, the base of the space of initial heaps,
- a heap initialisation vector  $h \in \mathbb{C}H$ ,
- a finite set G, the base of the space of garbage states,

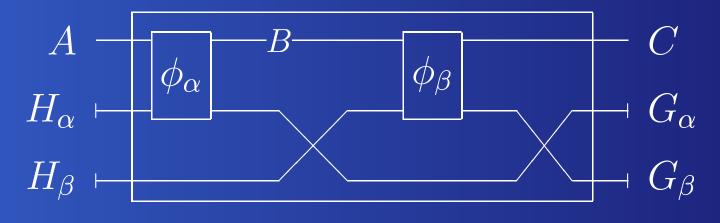


- a finite set H, the base of the space of initial heaps,
- a heap initialisation vector  $h \in \mathbb{C}H$ ,
- a finite set G, the base of the space of garbage states,

• a unitary operator  $\phi \in A \otimes H - \circ_{unitary} B \otimes G$ .

## **Composing quantum computations**

## **Composing quantum computations**



 $\phi_{\beta \circ lpha}$ 

### Semantics of quantum computations.

### Semantics of quantum computations..

... is a bit more subtle.

#### Semantics of quantum computations..

- ... is a bit more subtle.
- There is no (sensible) operator on vector spaces, replacing  $\pi_1 \in B \times G \rightarrow B$ .

#### Semantics of quantum computations..

- ... is a bit more subtle.
- There is no (sensible) operator on vector spaces, replacing  $\pi_1 \in B \times G \rightarrow B$ .
- Indeed: Forgetting part of a pure state results in a mixed state.



Mixed states are represented by *density matrices*.

- Mixed states are represented by *density matrices*.
- Operations on mixed states (i.e. density matrices) are represented by superoperators.

- Mixed states are represented by *density matrices*.
- Operations on mixed states (i.e. density matrices) are represented by superoperators.
- Every unitary operator  $\phi$  gives rise to a superoperator  $\widehat{\phi}$ .

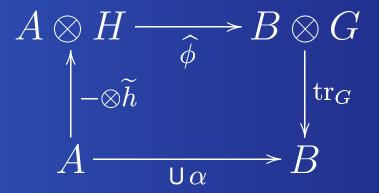
- Mixed states are represented by *density matrices*.
- Operations on mixed states (i.e. density matrices) are represented by superoperators.
- Every unitary operator  $\phi$  gives rise to a superoperator  $\widehat{\phi}$ .
- There is an operator

 $\operatorname{tr}_{B,G} \in B \otimes G \multimap_{\operatorname{super}} B$ 

called partial trace.

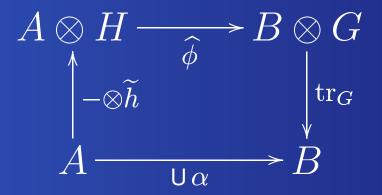
#### **Semantics**

# Every quantum computation $\alpha$ gives rise to a superoperator U $\alpha \in A \multimap_{\text{super}} B$



#### **Semantics**

# Every quantum computation $\alpha$ gives rise to a superoperator U $\alpha \in A - \circ_{super} B$



**Theorem:** Every superoperator  $F \in A \multimap_{super} B$  (on finite Hilbert spaces) comes from a quantum computation.

| classical | quantum |
|-----------|---------|
|           |         |
|           |         |
|           |         |
|           |         |
|           |         |
|           |         |
|           |         |

| classical   | quantum |
|-------------|---------|
| finite sets |         |
|             |         |
|             |         |
|             |         |
|             |         |
|             |         |
|             |         |

| classical   | quantum                           |
|-------------|-----------------------------------|
| finite sets | finite dimensional Hilbert spaces |
|             |                                   |
|             |                                   |
|             |                                   |
|             |                                   |
|             |                                   |
|             |                                   |
|             |                                   |

| classical   | quantum                           |
|-------------|-----------------------------------|
| finite sets | finite dimensional Hilbert spaces |
| bijections  |                                   |
|             |                                   |
|             |                                   |
|             |                                   |
|             |                                   |
|             |                                   |

| classical   | quantum                           |
|-------------|-----------------------------------|
| finite sets | finite dimensional Hilbert spaces |
| bijections  | unitary operators                 |
|             |                                   |
|             |                                   |
|             |                                   |

| classical                      | quantum                           |
|--------------------------------|-----------------------------------|
| finite sets                    | finite dimensional Hilbert spaces |
| bijections                     | unitary operators                 |
| cartesian product ( $\times$ ) |                                   |
|                                |                                   |

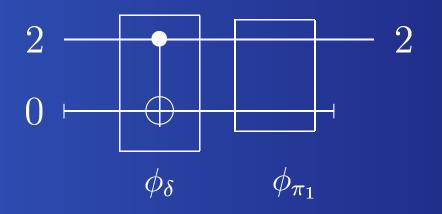
| classical                      | quantum                           |
|--------------------------------|-----------------------------------|
| finite sets                    | finite dimensional Hilbert spaces |
| bijections                     | unitary operators                 |
| cartesian product ( $\times$ ) | tensor product ( $\otimes$ )      |

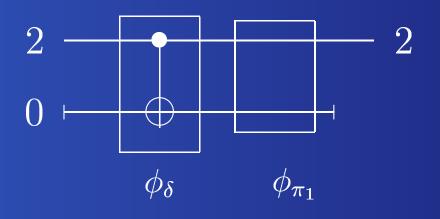
| classical                      | quantum                           |
|--------------------------------|-----------------------------------|
| finite sets                    | finite dimensional Hilbert spaces |
| bijections                     | unitary operators                 |
| cartesian product ( $\times$ ) | tensor product ( $\otimes$ )      |
| functions                      |                                   |

| quantum                           |
|-----------------------------------|
| finite dimensional Hilbert spaces |
| unitary operators                 |
| tensor product ( $\otimes$ )      |
| superoperators                    |
|                                   |

| classical                      | quantum                           |
|--------------------------------|-----------------------------------|
| finite sets                    | finite dimensional Hilbert spaces |
| bijections                     | unitary operators                 |
| cartesian product ( $\times$ ) | tensor product ( $\otimes$ )      |
| functions                      | superoperators                    |
| projections                    |                                   |

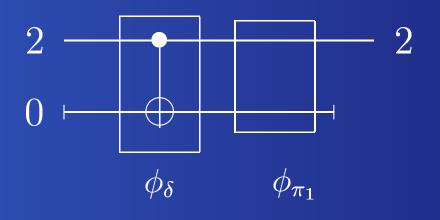
| classical                      | quantum                           |
|--------------------------------|-----------------------------------|
| finite sets                    | finite dimensional Hilbert spaces |
| bijections                     | unitary operators                 |
| cartesian product ( $\times$ ) | tensor product ( $\otimes$ )      |
| functions                      | superoperators                    |
| projections                    | partial trace                     |





Classically

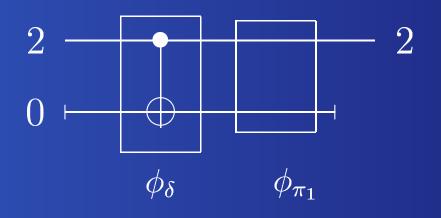
 $\pi_1 \circ \delta = \mathbf{I}$ 



Classically

 $\pi_1 \circ \delta = \mathbf{I}$ 

#### Quantum

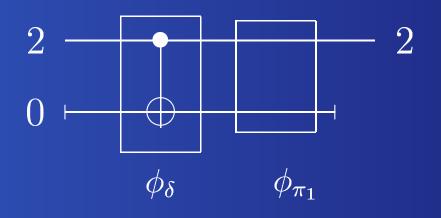


Classically

 $\pi_1 \circ \delta = \mathbf{I}$ 

Quantum

input:  $\{\frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |0\rangle\}$ 



Classically

 $\pi_1 \circ \delta = \mathbf{I}$ 

Quantum

input:  $\left\{ \frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |0\rangle \right\}$ output:  $\frac{1}{2} \{ |0\rangle \} + \frac{1}{2} \{ |1\rangle \}$ 

## 2. QML basics

- 1. Semantics of finite classical and quantum computation
- 2. QML basics
- 3. Compiling QML
- 4. Conclusions and further work





 QML is a first order functional languages, i.e. programs are well-typed expressions.



- QML is a first order functional languages, i.e. programs are well-typed expressions.
- QML types are  $1, \sigma \otimes \tau, \sigma \oplus \tau$

## **QML** basics

- QML is a first order functional languages, i.e. programs are well-typed expressions.
- QML types are  $1, \sigma \otimes \tau, \sigma \oplus \tau$
- Qbits  $Q_2 = 1 \oplus 1$

## **QML** basics

- QML is a first order functional languages, i.e. programs are well-typed expressions.
- QML types are  $1, \sigma \otimes \tau, \sigma \oplus \tau$
- Qbits  $Q_2 = 1 \oplus 1$
- Qbytes  $Q_2^8 = Q_2 \otimes Q_2$ .

A QML program is an expression in a context of typed variables, e.g.
 qnot: Q<sub>2</sub> → Q<sub>2</sub>
 qnot x = if° x
 then qfalse
 else qtrue

A QML program is an expression in a context of typed variables, e.g.
 qnot: Q<sub>2</sub> → Q<sub>2</sub>
 qnot x = if° x
 then qfalse
 else qtrue

We can compile QML programs into quantum computations (i.e. quantum circuits).



#### Forgetting variables has to be explicit.

• Forgetting variables has to be explicit. E.g.  $qfst: Q_2 \otimes Q_2 \multimap Q_2$ qfst(x, y) = xis illegal,

Forgetting variables has to be explicit. E.g.  $qfst: Q_2 \otimes Q_2 \multimap Q_2$ qfst(x, y) = xis illegal, but  $qfst: Q_2 \otimes Q_2 \multimap Q_2$  $qfst_{(x, y)} = x^{\uparrow} \{y\}$ is ok.

There are two different if-then-else (or more generally case) constructs.

**QML** basics ... There are two different if-then-else (or more) generally case) constructs.  $id: Q_2 \multimap Q_2$ id  $x = \mathbf{if}^{\circ} x$ then *qtrue* else qfalseis just the identity,

**QML** basics ... There are two different if-then-else (or more generally case) constructs.  $id: Q_2 \multimap Q_2$ id  $x = \mathbf{if}^{\circ} x$ then *qtrue* else qfalseis just the identity, but  $meas: Q_2 \multimap Q_2$ meas  $x = \mathbf{if} x$ then *qtrue* else qfalse introduces a measurement (end hence decoherence). Towards a High LevelQuantum Programming Language - p.26/3

Using if° is only allowed, if the branches are orthogonal, i.e. observable different.

**QML** basics ... Using if° is only allowed, if the branches are orthogonal, i.e. observable different.  $cswap: Q_2 \otimes Q_2 \multimap Q_2 \multimap Q_2 \otimes Q_2$  $cswap(x, y) c = \mathbf{if}^{\circ} c$ then (y, x)else (x, y)is illegal,

**OML** basics ...  $\bullet$  Using if  $\circ$  is only allowed, if the branches are orthogonal, i.e. observable different.  $cswap: Q_2 \otimes Q_2 \multimap Q_2 \multimap Q_2 \otimes Q_2$  $cswap(x, y) c = \mathbf{if}^{\circ} c$ then (y, x)else (x, y)is illegal, but  $cswap: Q_2 \otimes Q_2 \multimap Q_2 \multimap Q_2 \otimes (Q_2 \otimes Q_2)$  $cswap(x,y) c = \mathbf{if}^{\circ} c$ then (qtrue, (y, x))else (qfalse, (x, y))is ok.

## QML basics ...

• We can introduce superpositions, e.g.  $had: Q_2 \multimap Q_2$   $had: x = \mathbf{if}^\circ x$   $\mathbf{then} \{ qfalse \mid (-1) qtrue \}$  $\mathbf{else} \{ qfalse \mid qtrue \}$ 

### QML basics ...

• We can introduce superpositions, e.g.  $had: Q_2 \rightarrow Q_2$   $had: x = \mathbf{if}^\circ x$   $\mathbf{then} \{ qfalse \mid (-1) qtrue \}$   $\mathbf{else} \{ qfalse \mid qtrue \}$ However, the terms in the superposition have to be orthogonal.

# **3. Compiling QML**

- 1. Semantics of finite classical and quantum computation
- 2. QML basics
- 3. Compiling QML
- 4. Conclusions and further work

# Compilation

#### Compilation

Correct QML programs are defined by typing rules, e.g.

$$\begin{split} \Gamma \vdash t : \sigma \otimes \tau \\ \Delta, x : \sigma, y : \tau \vdash u : C \\ \hline \Gamma \otimes \Delta \vdash \texttt{let} \ (x, y) = t \texttt{ in } u : C \end{split} \otimes \texttt{elim} \end{split}$$

#### Compilation

Correct QML programs are defined by typing rules, e.g.

$$\begin{split} \Gamma \vdash t : \sigma \otimes \tau \\ \Delta, x : \sigma, y : \tau \vdash u : C \\ \overline{\Gamma \otimes \Delta} \vdash \texttt{let} \ (x, y) = t \texttt{ in } u : C \end{split} \otimes \texttt{elim} \end{split}$$

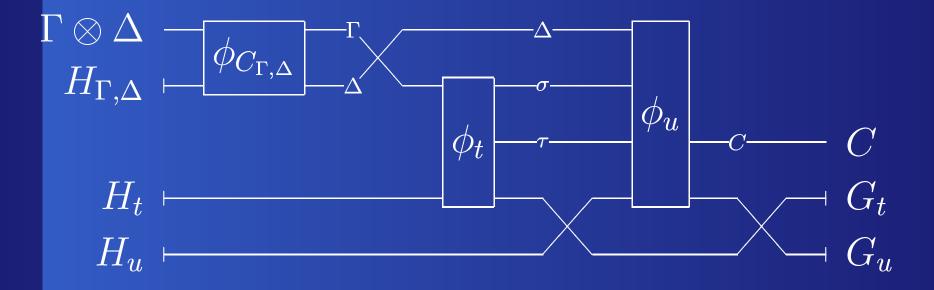
For each rule we can construct a quantum computation, i.e. a circuit.



$$\begin{split} \Gamma \vdash t : \sigma \otimes \tau \\ \Delta, x : \sigma, y : \tau \vdash u : C \\ \overline{\Gamma \otimes \Delta} \vdash \texttt{let} \ (x, y) = t \texttt{ in } u : C \end{split} \otimes \texttt{elim} \end{split}$$



$$\begin{split} \Gamma \vdash t : \sigma \otimes \tau \\ \Delta, x : \sigma, y : \tau \vdash u : C \\ \hline \Gamma \otimes \Delta \vdash \texttt{let} \ (x, y) = t \ \texttt{in} \ u : C \end{split} \otimes \texttt{elim} \end{split}$$



 A compiler is currently being implemented by my student Jonathan Grattage (in Haskell).

- A compiler is currently being implemented by my student Jonathan Grattage (in Haskell).
- The output of the compiler are quantum circuits which can be simulated by a quantum circuit simulator.

- A compiler is currently being implemented by my student Jonathan Grattage (in Haskell).
- The output of the compiler are quantum circuits which can be simulated by a quantum circuit simulator.
- Amr Sabry and Juliana Vizotti (Indiana University) embarked on an independent implementation of QML based on our paper.

- 1. Semantics of finite classical and quantum computation
- 2. QML basics
- 3. Compiling QML
- 4. Conclusions and further work

 Our semantic ideas proved useful when designing a quantum programming language, analogous concepts are modelled by the same syntactic constructs.

- Our semantic ideas proved useful when designing a quantum programming language, analogous concepts are modelled by the same syntactic constructs.
- Our analysis also highlights the differences between classical and quantum programming.

- Our semantic ideas proved useful when designing a quantum programming language, analogous concepts are modelled by the same syntactic constructs.
- Our analysis also highlights the differences between classical and quantum programming.
- Quantum programming introduces the problem of *control of decoherence*, which we address by making forgetting variables explicit and by having different if-then-else constructs.

 We have to analyze more quantum programs to evaluate the practical usefulness of our approach.

- We have to analyze more quantum programs to evaluate the practical usefulness of our approach.
- Are we able to come up with completely new algorithms using QML?

- We have to analyze more quantum programs to evaluate the practical usefulness of our approach.
- Are we able to come up with completely new algorithms using QML?
- How to deal with higher order programs?

- We have to analyze more quantum programs to evaluate the practical usefulness of our approach.
- Are we able to come up with completely new algorithms using QML?
- How to deal with higher order programs?
- How to deal with infinite datatypes?

- We have to analyze more quantum programs to evaluate the practical usefulness of our approach.
- Are we able to come up with completely new algorithms using QML?
- How to deal with higher order programs?
- How to deal with infinite datatypes?
- Investigate the similarities/differences between FCC and FQC from a categorical point of view.



# Thank you for your attention.