A Functional Quantum Programming Language

Thorsten Altenkirch University of Nottingham based on joint work with Jonathan Grattage and discussions with V.P. Belavkin supported by EPSRC grant GR/S30818/01

Alternative title

What you always wanted to know about quantum computation but never dared to ask.

Another alternative title

Quantum programming for the lazy functional programmer

Simulation of quantum systems is expensive:
 Exponential time to simulate polynomial circuits.

- Simulation of quantum systems is expensive:
 Exponential time to simulate polynomial circuits.
- Feynman: Can we exploit this fact to perform computations more efficiently?

- Simulation of quantum systems is expensive: Exponential time to simulate polynomial circuits.
- Feynman: Can we exploit this fact to perform computations more efficiently?
- Shor: Factorisation in quantum polynomial time.

- Simulation of quantum systems is expensive: Exponential time to simulate polynomial circuits.
- Feynman: Can we exploit this fact to perform computations more efficiently?
- Shor: Factorisation in quantum polynomial time.
- Grover: Blind search in $\Theta(\sqrt{n})$

- Simulation of quantum systems is expensive:
 Exponential time to simulate polynomial circuits.
- Feynman: Can we exploit this fact to perform computations more efficiently?
- Shor: Factorisation in quantum polynomial time.
- Grover: Blind search in $\Theta(\sqrt{n})$
- Can we build a quantum computer?

- Simulation of quantum systems is expensive:
 Exponential time to simulate polynomial circuits.
- Feynman: Can we exploit this fact to perform computations more efficiently?
- Shor: Factorisation in quantum polynomial time.
- Grover: Blind search in $\Theta(\sqrt{n})$
- Can we build a quantum computer?

yes We can run quantum algorithms.

- Simulation of quantum systems is expensive:
 Exponential time to simulate polynomial circuits.
- Feynman: Can we exploit this fact to perform computations more efficiently?
- Shor: Factorisation in quantum polynomial time.
- Grover: Blind search in $\Theta(\sqrt{n})$
- Can we build a quantum computer?
 yes We can run quantum algorithms.
 no Nature is classical after all!

- Simulation of quantum systems is expensive:
 Exponential time to simulate polynomial circuits.
- Feynman: Can we exploit this fact to perform computations more efficiently?
- Shor: Factorisation in quantum polynomial time.
- Grover: Blind search in $\Theta(\sqrt{n})$
- Can we build a quantum computer?
 yes We can run quantum algorithms.
 no Nature is classical after all!

Assumption: Nature is fair...

A Functional Quantum Programming Language - p.5/?

 Quantum algorithms are usually presented using the circuit model.

- Quantum algorithms are usually presented using the circuit model.
- Nielsen and Chuang, p.7, Coming up with good quantum algorithms is hard.

- Quantum algorithms are usually presented using the circuit model.
- Nielsen and Chuang, p.7, Coming up with good quantum algorithms is hard.
- Richard Josza, QPL 2004: We need to develop quantum thinking!

QML: a first-order functional language for quantum computations on finite types.

- QML: a first-order functional language for quantum computations on finite types.
- Quantum control and quantum data.

- QML: a first-order functional language for quantum computations on finite types.
- Quantum control and quantum data.
- Design guided by semantics

- QML: a first-order functional language for quantum computations on finite types.
- Quantum control and quantum data.
- Design guided by semantics
- Analogy with classical computation
 FCC Finite classical computations
 FQC Finite quantum computations

- QML: a first-order functional language for quantum computations on finite types.
- Quantum control and quantum data.
- Design guided by semantics
- Analogy with classical computation
 FCC Finite classical computations
 FQC Finite quantum computations
- Important issue: control of decoherence

- QML: a first-order functional language for quantum computations on finite types.
- Quantum control and quantum data.
- Design guided by semantics
- Analogy with classical computation
 FCC Finite classical computations
 FQC Finite quantum computations
- Important issue: control of decoherence
- Compiler under construction (Jonathan)

Example: Hadamard operation

Example: Hadamard operation

Matrix

$$\mathbf{H} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix}$$

Example: Hadamard operation

Matrix

$$\mathbf{H} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix}$$

QML

 $had: Q_2 \multimap Q_2$ $had x = \mathbf{if}^\circ x$ $\mathbf{then} \{qfalse \mid (-1) qtrue\}$ $\mathbf{else} \{qfalse \mid qtrue\}$

Classical computations on finite types.

- Classical computations on finite types.
- Quantum mechanics is time-reversible...

- Classical computations on finite types.
- Quantum mechanics is time-reversible...
- ...hence quantum computation is based on reversible operations.

- Classical computations on finite types.
- Quantum mechanics is time-reversible...
- ...hence quantum computation is based on reversible operations.
- However: Newtonian mechanics, Maxwellian electrodynamics are also time-reversible...

- Classical computations on finite types.
- Quantum mechanics is time-reversible...
- In the second second
- However: Newtonian mechanics, Maxwellian electrodynamics are also time-reversible...
- ...hence classical computation should be based on reversible operations.

Classical computation (FCC)

Classical computation (FCC)

Given finite sets A (input) and B (output):

$$\begin{array}{cccc}
-A & B \\
\phi & \\
h & H & G \\
\end{array}$$

Classical computation (FCC)

Given finite sets A (input) and B (output):

$$\begin{array}{cccc}
-A & B \\
\phi & \\
h & H & G \\
\end{array}$$

- a finite set of initial heaps H,
- an initial heap $h \in H$,
- \bullet a finite set of garbage states G,
- a bijection $\phi \in A \times H \simeq B \times G$,

Composing computations
Composing computations

 $\phi_{\beta \circ lpha}$

A Functional Quantum Programming Language - p.11/?

• A classical computation $\alpha = (H, h, G, \phi)$ induces a function $U\alpha \in A \rightarrow B$ by

$$\begin{array}{c} A \times H \xrightarrow{\phi} B \times G \\ \uparrow (-,h) & & \downarrow \pi_1 \\ A \xrightarrow{\psi \alpha} B \end{array}$$

• A classical computation $\alpha = (H, h, G, \phi)$ induces a function $\cup \alpha \in A \rightarrow B$ by

$$\begin{array}{c} A \times H \xrightarrow{\phi} B \times G \\ \uparrow^{(-,h)} & \downarrow^{\pi_1} \\ A \xrightarrow{\psi \alpha} B \end{array}$$

 We say that two computations are extensionally equivalent, if they give rise to the same function.

• Theorem:

$$\mathbf{U}\left(\beta\circ\alpha\right)=\left(\mathbf{U}\,\beta\right)\circ\left(\mathbf{U}\,\alpha\right)$$

Theorem:

$$\mathbf{U}\left(\boldsymbol{\beta}\circ\boldsymbol{\alpha}\right)=\left(\mathbf{U}\,\boldsymbol{\beta}\right)\circ\left(\mathbf{U}\,\boldsymbol{\alpha}\right)$$

Hence, classical computations upto extensional equality give rise to the category FCC.

Theorem:

$$\mathbf{U}\left(\boldsymbol{\beta}\circ\boldsymbol{\alpha}\right)=\left(\mathbf{U}\,\boldsymbol{\beta}\right)\circ\left(\mathbf{U}\,\boldsymbol{\alpha}\right)$$

- Hence, classical computations upto extensional equality give rise to the category FCC.
- Theorem: Any function $f \in A \rightarrow B$ on finite sets A, B can be realized by a computation.

Theorem:

$$\mathbf{U}\left(\beta\circ\alpha\right)=\left(\mathbf{U}\,\beta\right)\circ\left(\mathbf{U}\,\alpha\right)$$

- Hence, classical computations upto extensional equality give rise to the category FCC.
- Theorem: Any function $f \in A \rightarrow B$ on finite sets A, B can be realized by a computation.
- Translation for Category Theoreticans: U is full and faithful.

Example π_1 :

function

$$\pi_1 \in (2,2) \to 2$$
$$\pi_1 (x,y) = x$$

Example π_1 :

function $\pi_1 \in (2,2) \rightarrow 2$ $\pi_1 (x,y) = x$

computation

A Functional Quantum Programming Language - p.13/?

Example δ :

function $\delta \in 2 \rightarrow (2, 2)$ $\delta x = (x, x)$

Example δ :

function $\delta \in 2 \rightarrow (2, 2)$ $\delta x = (x, x)$

computation

$$\begin{array}{c} x:2 & & \\ 0:2 & & \\ \end{array} \begin{array}{c} & \\ x:2 \end{array} \end{array}$$

 ϕ_{δ}

$$\phi_{\delta} \in (2,2) \rightarrow (2,2)$$

$$\phi_{\delta} (0,x) = (0,x)$$

$$\phi_{\delta} (1,x) = (1, \neg x)$$

classical (FCC)	quantum (FQC)
finite sets	

classical (FCC)	quantum (FQC)
finite sets	finite dimensional Hilbert spaces

quantum (FQC)
nite dimensional Hilbert spaces

classical (FCC)	quantum (FQC)
finite sets	finite dimensional Hilbert spaces
bijections	unitary operators

classical (FCC)	quantum (FQC)
finite sets	finite dimensional Hilbert spaces
bijections	unitary operators
cartesian product (\times)	

classical (FCC)	quantum (FQC)
finite sets	finite dimensional Hilbert spaces
bijections	unitary operators
cartesian product (\times)	tensor product (\otimes)

classical (FCC)	quantum (FQC)
finite sets	finite dimensional Hilbert spaces
bijections	unitary operators
cartesian product (\times)	tensor product (\otimes)
functions	

classical (FCC)	quantum (FQC)
finite sets	finite dimensional Hilbert spaces
bijections	unitary operators
cartesian product (\times)	tensor product (\otimes)
functions	superoperators

classical (FCC)	quantum (FQC)
finite sets	finite dimensional Hilbert spaces
bijections	unitary operators
cartesian product (\times)	tensor product (\otimes)
functions	superoperators
projections	

classical (FCC)	quantum (FQC)
finite sets	finite dimensional Hilbert spaces
bijections	unitary operators
cartesian product (\times)	tensor product (\otimes)
functions	superoperators
projections	partial trace

$\pi_1 \circ \delta$, classically

$\pi_1 \circ \delta : 2 \to 2$

$\pi_1 \circ \delta$, classically

$\pi_1 \circ \delta : 2 \to 2$

$\pi_1 \circ \delta$, classically

$\pi_1 \circ \delta : 2 \to 2$

2

2

QML is based on strict linear logic

QML is based on strict linear logic
Contraction is implicit and realized by φ_δ.

- QML is based on strict linear logic
- Contraction is implicit and realized by ϕ_{δ} .
- Weakening is explicit and leads to decoherence.

QML overview
QML overview

Types $\sigma = 1 \mid \sigma \otimes \tau \mid \sigma \oplus \tau$

QML overview

Types

$$\sigma = 1 \mid \sigma \otimes \tau \mid \sigma \oplus \tau$$

Terms

 $t = x \mid \text{let } x = t \text{ in } u \mid x \uparrow xs$ $\mid () \mid (t, u) \mid \text{let } (x, y) = t \text{ in } u$ $\mid \text{qinl } t \mid \text{qinr } u$ $\mid \text{case } t \text{ of } \{\text{qinl } x \Rightarrow u \mid \text{qinr } y \Rightarrow u'\}$ $\mid \text{case}^{\circ} t \text{ of } \{\text{qinl } x \Rightarrow u \mid \text{qinr } y \Rightarrow u'\}$ $\mid \{(\kappa) \ t \mid (\iota) \ u\}$

Qbits

 $Q_{2} = 1 \oplus 1$ qtrue = qinl () qfalse = qinr () if t then u else u' = case {qinl _ \Rightarrow u | qinr _ \Rightarrow u'} if° t then u else u' = case°{qinl _ \Rightarrow u | qinr _ \Rightarrow u'}

QML overview ...

QML overview ...

Typing judgements $\Gamma \vdash t : \sigma$ programs $\Gamma \vdash^{\circ} t : \sigma$ strict programs

QML overview ...

Typing judgements $\Gamma \vdash t : \sigma$ programs $\Gamma \vdash^{\circ} t : \sigma$ strict programs

Semantics

 $\frac{\Gamma \vdash t : \sigma}{\llbracket t \rrbracket \in \mathbf{FQC}\llbracket \Gamma \rrbracket \llbracket \sigma \rrbracket} \qquad \begin{array}{c} \Gamma \vdash^{\circ} t : \sigma \\ \hline \llbracket t \rrbracket \in \mathbf{FQC}\llbracket \Gamma \rrbracket \llbracket \sigma \rrbracket \end{array} \qquad \boxed{\llbracket t \rrbracket \in \mathbf{FQC}^{\circ}\llbracket \Gamma \rrbracket \llbracket \sigma \rrbracket}$

The let-rule

$$\begin{array}{c} \Gamma \vdash t : \sigma \\ \Delta, \, x : \sigma \vdash u : \tau \\ \hline \Gamma \otimes \Delta \vdash \texttt{let} \ x = t \ \texttt{in} \ u : \tau \end{array} \texttt{let} \end{array}$$

The let-rule

$$\begin{split} \Gamma \vdash t : \sigma \\ \Delta, \, x : \sigma \vdash u : \tau \\ \hline \Gamma \otimes \Delta \vdash \texttt{let} \ x = t \ \texttt{in} \ u : \tau \end{split} \text{let} \end{split}$$

$\begin{array}{lll} \Gamma, x : \sigma \otimes \Delta, x : \sigma &= (\Gamma \otimes \Delta), x : \sigma \\ \Gamma, x : \sigma \otimes \Delta &= (\Gamma \otimes \Delta), x : \sigma & \text{if } x \notin \text{dom } \Delta \\ \bullet \otimes \Delta &= \Delta \end{array}$

$\begin{array}{lll} \Gamma, x : \sigma \otimes \Delta, x : \sigma &= (\Gamma \otimes \Delta), x : \sigma \\ \Gamma, x : \sigma \otimes \Delta &= (\Gamma \otimes \Delta), x : \sigma & \text{if } x \notin \text{dom } \Delta \\ \bullet \otimes \Delta &= \Delta \end{array}$

$$\begin{array}{c|c} \Gamma \otimes \Delta & & & \\ \hline & & & \\ H_{\Gamma,\Delta} & \vdash & & \\ \end{array} \begin{array}{c} \phi_{C_{\Gamma,\Delta}} & & & \\ & & & \Delta \end{array}$$

A Functional Quantum Programming Language - p.23/?

• forget mentions xforget: $2 \rightarrow 2$ forget x = if x then qtrue else qtrue

forget mentions x forget : 2 → 2 forget x = if x then qtrue else qtrue
 but doesn't use it.

forget mentions x forget: 2 → 2 forget x = if x then qtrue else qtrue
but doesn't use it.
Hence, it has to measure it!

⊕-elim

$$\begin{array}{c} \Gamma \vdash c : \sigma \oplus \tau \\ \Delta, \, x : \sigma \vdash t : \rho \\ \Delta, \, y : \tau \vdash u : \rho \\ \hline \Gamma \otimes \Delta \vdash \mathsf{case} \, c \, \mathsf{of} \, \{ \mathsf{inl} \, x \Rightarrow t \, | \, \mathsf{inr} \, y \Rightarrow u \} : \rho \end{array} + \mathsf{elim} \end{array}$$

⊕-elim

$$\begin{array}{c} \Gamma \vdash c : \sigma \oplus \tau \\ \Delta, \, x : \sigma \vdash t : \rho \\ \Delta, \, y : \tau \vdash u : \rho \\ \hline \Gamma \otimes \Delta \vdash \mathsf{case} \ c \ \mathsf{of} \ \{ \mathsf{inl} \ x \Rightarrow t \, | \, \mathsf{inr} \ y \Rightarrow u \} : \rho \end{array} + \mathsf{elim} \end{array}$$

—-elim decoherence-free

—-elim decoherence-free

$$\begin{split} \Gamma \vdash^{a} c : \sigma \oplus \tau \\ \Delta, \ x : \sigma \vdash^{\circ} t : \rho \\ \Delta, \ y : \tau \vdash^{\circ} u : \rho \quad t \perp u \\ \hline \Gamma \otimes \Delta \vdash^{a} \mathsf{case}^{\circ} \ c \text{ of } \{ \mathsf{inl} \ x \Rightarrow t \mid \mathsf{inr} \ y \Rightarrow u \} : \rho \\ \end{split}$$

-elim decoherence-free

$$\begin{array}{c} \Gamma \vdash^{a} c : \sigma \oplus \tau \\ \\ \Delta, \ x : \sigma \vdash^{\circ} t : \rho \\ \\ \Delta, \ y : \tau \vdash^{\circ} u : \rho \quad t \perp u \\ \hline \Gamma \otimes \Delta \vdash^{a} \mathsf{case}^{\circ} \ c \ \mathsf{of} \ \{ \mathsf{inl} \ x \Rightarrow t \mid \mathsf{inr} \ y \Rightarrow u \} : \rho \end{array} \oplus -\operatorname{elim}^{\circ} \end{array}$$

\mathbf{if}°

forget': $2 \rightarrow 2$ forget' $x = \mathbf{i}\mathbf{f}^\circ x$ then qtrue else qtrue

forget': 2 → 2
forget' x = if° x then qtrue else qtrue
This program has a type error, because qtrue ≠ qtrue.

forget': $2 \rightarrow 2$ forget' $x = if^{\circ} x$ then qtrue else qtrue This program has a type error, because qtrue $\not\perp$ qtrue. $qnot: 2 \rightarrow 2$ qnot x = if x then qfalse else qtrue forget': 2 → 2
forget' x = if° x then qtrue else qtrue
This program has a type error, because qtrue ¼ qtrue.

qnot: 2 → 2
qnot x = if x then qfalse else qtrue
This program typechecks, because qfalse ⊥ qtrue.

 Our semantic ideas proved useful when designing a quantum programming language, analogous concepts are modelled by the same syntactic constructs.

- Our semantic ideas proved useful when designing a quantum programming language, analogous concepts are modelled by the same syntactic constructs.
- Our analysis also highlights the differences between classical and quantum programming.

- Our semantic ideas proved useful when designing a quantum programming language, analogous concepts are modelled by the same syntactic constructs.
- Our analysis also highlights the differences between classical and quantum programming.
- Quantum programming introduces the problem of *control of decoherence*, which we address by making forgetting variables explicit and by having different if-then-else constructs.

 We have to analyze more quantum programs to evaluate the practical usefulness of our approach.

- We have to analyze more quantum programs to evaluate the practical usefulness of our approach.
- Are we able to come up with completely new algorithms using QML?

- We have to analyze more quantum programs to evaluate the practical usefulness of our approach.
- Are we able to come up with completely new algorithms using QML?
- How to deal with higher order programs?

- We have to analyze more quantum programs to evaluate the practical usefulness of our approach.
- Are we able to come up with completely new algorithms using QML?
- How to deal with higher order programs?
- How to deal with infinite datatypes?

- We have to analyze more quantum programs to evaluate the practical usefulness of our approach.
- Are we able to come up with completely new algorithms using QML?
- How to deal with higher order programs?
- How to deal with infinite datatypes?
- Investigate the similarities/differences between FCC and FQC from a categorical point of view.

Thank you for your attention.