
A Functional Quantum
Programming Language

Thorsten Altenkirch

University of Nottingham

based on joint work with Jonathan Grattage

and discussions with V.P. Belavkin

supported by EPSRC grant GR/S30818/01

A Functional Quantum Programming Language – p.1/??

Alternative title

What you always wanted to know

about quantum computation

but never dared to ask.

A Functional Quantum Programming Language – p.2/??

Another alternative title

Quantum programming

for the

lazy functional programmer

A Functional Quantum Programming Language – p.3/??

Background

Simulation of quantum systems is expensive:
Exponential time to simulate polynomial circuits.

Feynman: Can we exploit this fact to perform
computations more efficiently?

Shor: Factorisation in quantum polynomial time.

Grover: Blind search in

Can we build a quantum computer?

yes We can run quantum algorithms.

no Nature is classical after all!

Assumption: Nature is fair. . .

A Functional Quantum Programming Language – p.4/??

Background
Simulation of quantum systems is expensive:
Exponential time to simulate polynomial circuits.

Feynman: Can we exploit this fact to perform
computations more efficiently?

Shor: Factorisation in quantum polynomial time.

Grover: Blind search in

Can we build a quantum computer?

yes We can run quantum algorithms.

no Nature is classical after all!

Assumption: Nature is fair. . .

A Functional Quantum Programming Language – p.4/??

Background
Simulation of quantum systems is expensive:
Exponential time to simulate polynomial circuits.

Feynman: Can we exploit this fact to perform
computations more efficiently?

Shor: Factorisation in quantum polynomial time.

Grover: Blind search in

Can we build a quantum computer?

yes We can run quantum algorithms.

no Nature is classical after all!

Assumption: Nature is fair. . .

A Functional Quantum Programming Language – p.4/??

Background
Simulation of quantum systems is expensive:
Exponential time to simulate polynomial circuits.

Feynman: Can we exploit this fact to perform
computations more efficiently?

Shor: Factorisation in quantum polynomial time.

Grover: Blind search in

Can we build a quantum computer?

yes We can run quantum algorithms.

no Nature is classical after all!

Assumption: Nature is fair. . .

A Functional Quantum Programming Language – p.4/??

Background
Simulation of quantum systems is expensive:
Exponential time to simulate polynomial circuits.

Feynman: Can we exploit this fact to perform
computations more efficiently?

Shor: Factorisation in quantum polynomial time.

Grover: Blind search in
� � � �

Can we build a quantum computer?

yes We can run quantum algorithms.

no Nature is classical after all!

Assumption: Nature is fair. . .

A Functional Quantum Programming Language – p.4/??

Background
Simulation of quantum systems is expensive:
Exponential time to simulate polynomial circuits.

Feynman: Can we exploit this fact to perform
computations more efficiently?

Shor: Factorisation in quantum polynomial time.

Grover: Blind search in
� � � �

Can we build a quantum computer?

yes We can run quantum algorithms.

no Nature is classical after all!

Assumption: Nature is fair. . .

A Functional Quantum Programming Language – p.4/??

Background
Simulation of quantum systems is expensive:
Exponential time to simulate polynomial circuits.

Feynman: Can we exploit this fact to perform
computations more efficiently?

Shor: Factorisation in quantum polynomial time.

Grover: Blind search in
� � � �

Can we build a quantum computer?

yes We can run quantum algorithms.

no Nature is classical after all!

Assumption: Nature is fair. . .

A Functional Quantum Programming Language – p.4/??

Background
Simulation of quantum systems is expensive:
Exponential time to simulate polynomial circuits.

Feynman: Can we exploit this fact to perform
computations more efficiently?

Shor: Factorisation in quantum polynomial time.

Grover: Blind search in
� � � �

Can we build a quantum computer?

yes We can run quantum algorithms.

no Nature is classical after all!

Assumption: Nature is fair. . .

A Functional Quantum Programming Language – p.4/??

Background
Simulation of quantum systems is expensive:
Exponential time to simulate polynomial circuits.

Feynman: Can we exploit this fact to perform
computations more efficiently?

Shor: Factorisation in quantum polynomial time.

Grover: Blind search in
� � � �

Can we build a quantum computer?

yes We can run quantum algorithms.

no Nature is classical after all!

Assumption: Nature is fair. . .

A Functional Quantum Programming Language – p.4/??

The quantum software crisis

Quantum algorithms are usually presented
using the circuit model.

Nielsen and Chuang, p.7, Coming up with
good quantum algorithms is hard.
Richard Josza, QPL 2004: We need to
develop quantum thinking!

A Functional Quantum Programming Language – p.5/??

The quantum software crisis

Quantum algorithms are usually presented
using the circuit model.

Nielsen and Chuang, p.7, Coming up with
good quantum algorithms is hard.
Richard Josza, QPL 2004: We need to
develop quantum thinking!

A Functional Quantum Programming Language – p.5/??

The quantum software crisis

Quantum algorithms are usually presented
using the circuit model.

Nielsen and Chuang, p.7, Coming up with
good quantum algorithms is hard.

Richard Josza, QPL 2004: We need to
develop quantum thinking!

A Functional Quantum Programming Language – p.5/??

The quantum software crisis

Quantum algorithms are usually presented
using the circuit model.

Nielsen and Chuang, p.7, Coming up with
good quantum algorithms is hard.
Richard Josza, QPL 2004: We need to
develop quantum thinking!

A Functional Quantum Programming Language – p.5/??

QML

QML: a first-order functional language for quantum
computations on finite types.

Quantum control and quantum data.

Design guided by semantics

Analogy with classical computation

Finite classical computations

Finite quantum computations

Important issue: control of decoherence

Compiler under construction (Jonathan)

A Functional Quantum Programming Language – p.6/??

QML
QML: a first-order functional language for quantum
computations on finite types.

Quantum control and quantum data.

Design guided by semantics

Analogy with classical computation

Finite classical computations

Finite quantum computations

Important issue: control of decoherence

Compiler under construction (Jonathan)

A Functional Quantum Programming Language – p.6/??

QML
QML: a first-order functional language for quantum
computations on finite types.

Quantum control and quantum data.

Design guided by semantics

Analogy with classical computation

Finite classical computations

Finite quantum computations

Important issue: control of decoherence

Compiler under construction (Jonathan)

A Functional Quantum Programming Language – p.6/??

QML
QML: a first-order functional language for quantum
computations on finite types.

Quantum control and quantum data.

Design guided by semantics

Analogy with classical computation

Finite classical computations

Finite quantum computations

Important issue: control of decoherence

Compiler under construction (Jonathan)

A Functional Quantum Programming Language – p.6/??

QML
QML: a first-order functional language for quantum
computations on finite types.

Quantum control and quantum data.

Design guided by semantics

Analogy with classical computation� � �

Finite classical computations� �

Finite quantum computations

Important issue: control of decoherence

Compiler under construction (Jonathan)

A Functional Quantum Programming Language – p.6/??

QML
QML: a first-order functional language for quantum
computations on finite types.

Quantum control and quantum data.

Design guided by semantics

Analogy with classical computation� � �

Finite classical computations� �

Finite quantum computations

Important issue: control of decoherence

Compiler under construction (Jonathan)

A Functional Quantum Programming Language – p.6/??

QML
QML: a first-order functional language for quantum
computations on finite types.

Quantum control and quantum data.

Design guided by semantics

Analogy with classical computation� � �

Finite classical computations� �

Finite quantum computations

Important issue: control of decoherence

Compiler under construction (Jonathan)

A Functional Quantum Programming Language – p.6/??

Example: Hadamard operation

Matrix

QML

A Functional Quantum Programming Language – p.7/??

Example: Hadamard operation

Matrix

� �
�

� �
� 	 �

QML

A Functional Quantum Programming Language – p.7/??

Example: Hadamard operation

Matrix

� �
�

� �
� 	 �

QML
�� �� � � �
�� �� � �� � ������ ��� ��� �!" #$ 	 � % � &(') " *

� +�, � ��� ��� �!" # � &(') " *

A Functional Quantum Programming Language – p.7/??

Something we know well . . .

Classical computations on finite types.

Quantum mechanics is time-reversible. . .

. . . hence quantum computation is based on reversible
operations.

However: Newtonian mechanics, Maxwellian
electrodynamics are also time-reversible. . .

. . . hence classical computation should be based on
reversible operations.

A Functional Quantum Programming Language – p.8/??

Something we know well . . .

Classical computations on finite types.

Quantum mechanics is time-reversible. . .

. . . hence quantum computation is based on reversible
operations.

However: Newtonian mechanics, Maxwellian
electrodynamics are also time-reversible. . .

. . . hence classical computation should be based on
reversible operations.

A Functional Quantum Programming Language – p.8/??

Something we know well . . .

Classical computations on finite types.

Quantum mechanics is time-reversible. . .

. . . hence quantum computation is based on reversible
operations.

However: Newtonian mechanics, Maxwellian
electrodynamics are also time-reversible. . .

. . . hence classical computation should be based on
reversible operations.

A Functional Quantum Programming Language – p.8/??

Something we know well . . .

Classical computations on finite types.

Quantum mechanics is time-reversible. . .

. . . hence quantum computation is based on reversible
operations.

However: Newtonian mechanics, Maxwellian
electrodynamics are also time-reversible. . .

. . . hence classical computation should be based on
reversible operations.

A Functional Quantum Programming Language – p.8/??

Something we know well . . .

Classical computations on finite types.

Quantum mechanics is time-reversible. . .

. . . hence quantum computation is based on reversible
operations.

However: Newtonian mechanics, Maxwellian
electrodynamics are also time-reversible. . .

. . . hence classical computation should be based on
reversible operations.

A Functional Quantum Programming Language – p.8/??

Something we know well . . .

Classical computations on finite types.

Quantum mechanics is time-reversible. . .

. . . hence quantum computation is based on reversible
operations.

However: Newtonian mechanics, Maxwellian
electrodynamics are also time-reversible. . .

. . . hence classical computation should be based on
reversible operations.

A Functional Quantum Programming Language – p.8/??

Classical computation ()

Given finite sets (input) and (output):

� �

a finite set of initial heaps ,

an initial heap ,

a finite set of garbage states ,

a bijection ,

A Functional Quantum Programming Language – p.9/??

Classical computation ()

Given finite sets (input) and (output):

- ./

0 � 1 2 �

a finite set of initial heaps ,

an initial heap ,

a finite set of garbage states ,

a bijection ,

A Functional Quantum Programming Language – p.9/??

Classical computation ()

Given finite sets (input) and (output):

- ./

0 � 1 2 �

a finite set of initial heaps ,

an initial heap
354 ,

a finite set of garbage states ,

a bijection 4 6 7 6 ,

A Functional Quantum Programming Language – p.9/??

Composing computations

�

>>
>>

>>
>>

88
88

88
8 �

�

��������

������� �

A Functional Quantum Programming Language – p.10/??

Composing computations

8
. 98 �

>>
>>

>>
>>

88
88

88
8 8�

9 �

��������

������� 9�

9 � 8

A Functional Quantum Programming Language – p.10/??

Extensional equality

A classical computation
induces a function U by

//

��

OO

U
//

We say that two computations are
extensionally equivalent, if they give rise to
the same function.

A Functional Quantum Programming Language – p.11/??

Extensional equality

A classical computation : �$; 3 ; ; %

induces a function U : 4 by

6 < // 6
=?>

��

@BADC E FOO

U 8 //

We say that two computations are
extensionally equivalent, if they give rise to
the same function.

A Functional Quantum Programming Language – p.11/??

Extensional equality

A classical computation : �$; 3 ; ; %

induces a function U : 4 by

6 < // 6
=?>

��

@BADC E FOO

U 8 //

We say that two computations are
extensionally equivalent, if they give rise to
the same function.

A Functional Quantum Programming Language – p.11/??

Extensional equality . . .

Theorem:

U

$ G : % �$ U

% G$ U : %

Hence, classical computations upto extensional
equality give rise to the category .

Theorem: Any function on finite sets
can be realized by a computation.

Translation for Category Theoreticans:
U is full and faithful.

A Functional Quantum Programming Language – p.12/??

Extensional equality . . .

Theorem:

U

$ G : % �$ U

% G$ U : %

Hence, classical computations upto extensional
equality give rise to the category .

Theorem: Any function on finite sets
can be realized by a computation.

Translation for Category Theoreticans:
U is full and faithful.

A Functional Quantum Programming Language – p.12/??

Extensional equality . . .

Theorem:

U

$ G : % �$ U

% G$ U : %

Hence, classical computations upto extensional
equality give rise to the category .

Theorem: Any function
4

on finite sets; can be realized by a computation.

Translation for Category Theoreticans:
U is full and faithful.

A Functional Quantum Programming Language – p.12/??

Extensional equality . . .

Theorem:

U

$ G : % �$ U

% G$ U : %

Hence, classical computations upto extensional
equality give rise to the category .

Theorem: Any function
4

on finite sets; can be realized by a computation.

Translation for Category Theoreticans:
U is full and faithful.

A Functional Quantum Programming Language – p.12/??

Example � :
function HJI 4 $ � ; � % �

HKI $ � ; L % � �

computation

�

A Functional Quantum Programming Language – p.13/??

Example � :
function HJI 4 $ � ; � % �

HKI $ � ; L % � �

computation � �

� �

/NMO

A Functional Quantum Programming Language – p.13/??

Example :

function P4 � $ � ; � %

P� �$ � ;� %

computation

� '&%$!"#

A Functional Quantum Programming Language – p.14/??

Example :

function P4 � $ � ; � %

P� �$ � ;� %

computation Q � � R Q � �

S � � � '&%$!"# Q � �

T T 4 $ � ; � % $ � ; � %

T$ S ;� % �$ S ;� %

T$ � ;� % �$ � ; U � %

A Functional Quantum Programming Language – p.14/??

Classical vs quantum

classical () quantum ()

finite sets finite dimensional Hilbert spaces

bijections unitary operators

cartesian product () tensor product ()

functions superoperators

projections partial trace

A Functional Quantum Programming Language – p.15/??

Classical vs quantum

classical (

� � �

) quantum (
� �

)

finite sets finite dimensional Hilbert spaces

bijections unitary operators

cartesian product () tensor product ()

functions superoperators

projections partial trace

A Functional Quantum Programming Language – p.15/??

Classical vs quantum

classical (

� � �

) quantum (
� �

)

finite sets

finite dimensional Hilbert spaces

bijections unitary operators

cartesian product () tensor product ()

functions superoperators

projections partial trace

A Functional Quantum Programming Language – p.15/??

Classical vs quantum

classical (

� � �

) quantum (
� �

)

finite sets finite dimensional Hilbert spaces

bijections unitary operators

cartesian product () tensor product ()

functions superoperators

projections partial trace

A Functional Quantum Programming Language – p.15/??

Classical vs quantum

classical (

� � �

) quantum (
� �

)

finite sets finite dimensional Hilbert spaces

bijections

unitary operators

cartesian product () tensor product ()

functions superoperators

projections partial trace

A Functional Quantum Programming Language – p.15/??

Classical vs quantum

classical (

� � �

) quantum (
� �

)

finite sets finite dimensional Hilbert spaces

bijections unitary operators

cartesian product () tensor product ()

functions superoperators

projections partial trace

A Functional Quantum Programming Language – p.15/??

Classical vs quantum

classical (

� � �

) quantum (
� �

)

finite sets finite dimensional Hilbert spaces

bijections unitary operators

cartesian product (V)

tensor product ()

functions superoperators

projections partial trace

A Functional Quantum Programming Language – p.15/??

Classical vs quantum

classical (

� � �

) quantum (
� �

)

finite sets finite dimensional Hilbert spaces

bijections unitary operators

cartesian product (V) tensor product (W)

functions superoperators

projections partial trace

A Functional Quantum Programming Language – p.15/??

Classical vs quantum

classical (

� � �

) quantum (
� �

)

finite sets finite dimensional Hilbert spaces

bijections unitary operators

cartesian product (V) tensor product (W)
functions

superoperators

projections partial trace

A Functional Quantum Programming Language – p.15/??

Classical vs quantum

classical (

� � �

) quantum (
� �

)

finite sets finite dimensional Hilbert spaces

bijections unitary operators

cartesian product (V) tensor product (W)
functions superoperators

projections partial trace

A Functional Quantum Programming Language – p.15/??

Classical vs quantum

classical (

� � �

) quantum (
� �

)

finite sets finite dimensional Hilbert spaces

bijections unitary operators

cartesian product (V) tensor product (W)
functions superoperators

projections

partial trace

A Functional Quantum Programming Language – p.15/??

Classical vs quantum

classical (

� � �

) quantum (
� �

)

finite sets finite dimensional Hilbert spaces

bijections unitary operators

cartesian product (V) tensor product (W)
functions superoperators

projections partial trace

A Functional Quantum Programming Language – p.15/??

� X , classically

HDI G P� � �

� '&%$!"# �

A Functional Quantum Programming Language – p.16/??

� X , classically

HDI G P� � �
Q � � R Q � �

S � � � '&%$!"# �

/ZY /NMO

A Functional Quantum Programming Language – p.16/??

� X , classically

HDI G P� � �
Q � � R Q � �

S � � � '&%$!"# �

/ZY /NMO
[

� �

A Functional Quantum Programming Language – p.16/??

� X , quantum

Q � � R Q � �

S � � � '&%$!"# �

/\Y /]MO

input:

output:

Decoherence!

A Functional Quantum Programming Language – p.17/??

� X , quantum

Q � � R Q � �

S � � � '&%$!"# �

/\Y /]MO
input:

� I ^ � # S _ I^ � # � _ *

output:

Decoherence!

A Functional Quantum Programming Language – p.17/??

� X , quantum

Q � � R Q � �

S � � � '&%$!"# �

/\Y /]MO
input:

� I ^ � # S _ I^ � # � _ *
output:

I � � # S _ * I � � # � _ *

Decoherence!

A Functional Quantum Programming Language – p.17/??

� X , quantum

Q � � R Q � �

S � � � '&%$!"# �

/\Y /]MO
input:

� I ^ � # S _ I^ � # � _ *
output:

I � � # S _ * I � � # � _ *

Decoherence!

A Functional Quantum Programming Language – p.17/??

Control of decoherence

QML is based on strict linear logic

Contraction is implicit and realized by .

Weakening is explicit and leads to
decoherence.

A Functional Quantum Programming Language – p.18/??

Control of decoherence

QML is based on strict linear logic

Contraction is implicit and realized by .

Weakening is explicit and leads to
decoherence.

A Functional Quantum Programming Language – p.18/??

Control of decoherence

QML is based on strict linear logic

Contraction is implicit and realized by T.

Weakening is explicit and leads to
decoherence.

A Functional Quantum Programming Language – p.18/??

Control of decoherence

QML is based on strict linear logic

Contraction is implicit and realized by T.
Weakening is explicit and leads to
decoherence.

A Functional Quantum Programming Language – p.18/??

QML overview

Types

Terms

A Functional Quantum Programming Language – p.19/??

QML overview

Types ` � � # ` a # ` a

Terms

A Functional Quantum Programming Language – p.19/??

QML overview

Types ` � � # ` a # ` a
Terms b �� # +� �� � b �� c # � �d# $ % #$ b ; c % # +� �$ � ; L % � b �� c# � egf b # � e f ' c#ih j, � b(k � ��� e f � c # � e f ' L c l *

#ih j, � � b(k � ��� e f � c # � e f ' L c l *

�$ m % b # $�n % c *

A Functional Quantum Programming Language – p.19/??

Qbits

� � � �

� &') " � � egf $ %

� ��� �!" � � egf ' $ %

�� b ����� c � +, � c l

�h j, � ��� e f c # � e f ' c l *

�� � b ���� � c � +, � c l

�h j, � � ��� e f c # � e f ' c l *

A Functional Quantum Programming Language – p.20/??

QML overview . . .

Typing judgements
programs

strict programs

Semantics

A Functional Quantum Programming Language – p.21/??

QML overview . . .

Typing judgementso pq � ` programso p � q � ` strict programs

Semantics

A Functional Quantum Programming Language – p.21/??

QML overview . . .

Typing judgementso pq � ` programso p � q � ` strict programs

Semantics o pq � `rq s 4 r o s r ` s

o p � q � `rq s 4 � r o s r ` s

A Functional Quantum Programming Language – p.21/??

The let-rule

o pq � `
; Q � ` p�t � a " &o pvu w x Q �q y{z t � a

;;
;;

;

�

�����

�

;;
;;

;;

99
99

99
�

�

������

������ �

A Functional Quantum Programming Language – p.22/??

The let-rule

o pq � `
; Q � ` p�t � a " &o pvu w x Q �q y{z t � a

o |~}�� � �
;;

;;
;

�

��C � � � ����� � � �

� �

;;
;;

;;

99
99

99 ��

� �

������

������ ��

A Functional Quantum Programming Language – p.22/??

on contexts

if dom

�

A Functional Quantum Programming Language – p.23/??

on contexts

o ; Q � ` ; Q � ` � $ o % ; Q � `o ; Q � ` � $ o % ; Q � ` if Q �4

domR �

�

A Functional Quantum Programming Language – p.23/??

on contexts

o ; Q � ` ; Q � ` � $ o % ; Q � `o ; Q � ` � $ o % ; Q � ` if Q �4

domR �

o |~}�� � o

�C � �

A Functional Quantum Programming Language – p.23/??

Another source of decoherence

mentions

but doesn’t use it.

Hence, it has to measure it!

A Functional Quantum Programming Language – p.24/??

Another source of decoherence

��� � b mentions���� � b� � � �

��� � b� � �� � ����� � &') " � +, � � &(') "

but doesn’t use it.

Hence, it has to measure it!

A Functional Quantum Programming Language – p.24/??

Another source of decoherence

��� � b mentions���� � b� � � �

��� � b� � �� � ����� � &') " � +, � � &(') "

but doesn’t use it.

Hence, it has to measure it!

A Functional Quantum Programming Language – p.24/??

Another source of decoherence

��� � b mentions���� � b� � � �

��� � b� � �� � ����� � &') " � +, � � &(') "

but doesn’t use it.

Hence, it has to measure it!

A Functional Quantum Programming Language – p.24/??

-elim

::
::

:

�

�����

�

�

DD
DD

DD
�

�

zzzzzz �

A Functional Quantum Programming Language – p.25/??

-elim

� ���� � ����� �� � ��� ��� �� � ��� � � �¡ ¢£¥¤� W � ��¦§ ¨© � ª « ¬®°¯ ± � ²� ³ °¯ ´ � ² � µ� �

::
::

:

�

�����

�

�

DD
DD

DD
�

�

zzzzzz �

A Functional Quantum Programming Language – p.25/??

-elim

� ���� � ����� �� � ��� ��� �� � ��� � � �¡ ¢£¥¤� W � ��¦§ ¨© � ª « ¬®°¯ ± � ²� ³ °¯ ´ � ² � µ� �

� W � /�¶¸·º¹ » �
::

::
:

/½¼¾ ¿ÁÀ Â1 �ÄÃ � � � ����� /ÄÅ
� Æ � �

Ç¸È ÉËÊ�1Å �

DD
DD

DD

2�1¾¸Ì À �

zzzzzz

2ÍÅ�

A Functional Quantum Programming Language – p.25/??

-elim decoherence-free

::
::

:

�

�����

�

DD
DD

DD
�

�

zzzzzz �

A Functional Quantum Programming Language – p.26/??

-elim decoherence-free

� �Î �� � � ��� �� � �Ï �� ��� �� � �Ï � � � � Ð� ��Ñ ¢£¥¤ Ï� W � �Î ¦§ ¨ © Ï � ª « ¬®°¯ ± � ²� ³ ¯ ´ � ² � µ� �

::
::

:

�

�����

�

DD
DD

DD
�

�

zzzzzz �

A Functional Quantum Programming Language – p.26/??

-elim decoherence-free

� �Î �� � � ��� �� � �Ï �� ��� �� � �Ï � � � � Ð� ��Ñ ¢£¥¤ Ï� W � �Î ¦§ ¨ © Ï � ª « ¬®°¯ ± � ²� ³ ¯ ´ � ² � µ� �

� W � /Ä¶¸·º¹ » �

::
::

:

/½¼Ò ¿ÁÓ Â1 �ÄÃ � � � ����� /ÕÔ
� Æ � Ö /¾ ×À �

ÇØÈ ÇØÈ1Ô �

DD
DD

DD

2�1Ò Ì Ó �

zzzzzz

2ÙÔ�

A Functional Quantum Programming Language – p.26/??

Ú G

This program has a type error, because
.

This program typechecks, because
.

A Functional Quantum Programming Language – p.27/??

Ú G
��� � b l� � � �

��� � b l� � �� � � ����� � &') " � +�, � � &') "

This program has a type error, because
.

This program typechecks, because
.

A Functional Quantum Programming Language – p.27/??

Ú G
��� � b l� � � �

��� � b l� � �� � � ����� � &') " � +�, � � &') "

This program has a type error, becauseÛ xDÜÝ w Û x ÜÝ w.

This program typechecks, because
.

A Functional Quantum Programming Language – p.27/??

Ú G
��� � b l� � � �

��� � b l� � �� � � ����� � &') " � +�, � � &') "

This program has a type error, becauseÛ xDÜÝ w Û x ÜÝ w.

Þß � b� � � �

Þß � b� � �� � ����� � ��� �!" � +�, � � &') "

This program typechecks, because
.

A Functional Quantum Programming Language – p.27/??

Ú G
��� � b l� � � �

��� � b l� � �� � � ����� � &') " � +�, � � &') "

This program has a type error, becauseÛ xDÜÝ w Û x ÜÝ w.

Þß � b� � � �

Þß � b� � �� � ����� � ��� �!" � +�, � � &') "

This program typechecks, becauseÛ àÁá u â w Û xDÜÝ w.
A Functional Quantum Programming Language – p.27/??

Conclusions

Our semantic ideas proved useful when
designing a quantum programming language,
analogous concepts are modelled by the
same syntactic constructs.

Our analysis also highlights the differences
between classical and quantum
programming.

Quantum programming introduces the
problem of control of decoherence, which we
address by making forgetting variables
explicit and by having different if-then-else
constructs.

A Functional Quantum Programming Language – p.28/??

Conclusions
Our semantic ideas proved useful when
designing a quantum programming language,
analogous concepts are modelled by the
same syntactic constructs.

Our analysis also highlights the differences
between classical and quantum
programming.

Quantum programming introduces the
problem of control of decoherence, which we
address by making forgetting variables
explicit and by having different if-then-else
constructs.

A Functional Quantum Programming Language – p.28/??

Conclusions
Our semantic ideas proved useful when
designing a quantum programming language,
analogous concepts are modelled by the
same syntactic constructs.

Our analysis also highlights the differences
between classical and quantum
programming.

Quantum programming introduces the
problem of control of decoherence, which we
address by making forgetting variables
explicit and by having different if-then-else
constructs.

A Functional Quantum Programming Language – p.28/??

Conclusions
Our semantic ideas proved useful when
designing a quantum programming language,
analogous concepts are modelled by the
same syntactic constructs.

Our analysis also highlights the differences
between classical and quantum
programming.

Quantum programming introduces the
problem of control of decoherence, which we
address by making forgetting variables
explicit and by having different if-then-else
constructs.

A Functional Quantum Programming Language – p.28/??

Further work

We have to analyze more quantum programs
to evaluate the practical usefulness of our
approach.

Are we able to come up with completely new
algorithms using QML?

How to deal with higher order programs?

How to deal with infinite datatypes?

Investigate the similarities/differences
between FCC and FQC from a categorical
point of view.

A Functional Quantum Programming Language – p.29/??

Further work

We have to analyze more quantum programs
to evaluate the practical usefulness of our
approach.

Are we able to come up with completely new
algorithms using QML?

How to deal with higher order programs?

How to deal with infinite datatypes?

Investigate the similarities/differences
between FCC and FQC from a categorical
point of view.

A Functional Quantum Programming Language – p.29/??

Further work

We have to analyze more quantum programs
to evaluate the practical usefulness of our
approach.

Are we able to come up with completely new
algorithms using QML?

How to deal with higher order programs?

How to deal with infinite datatypes?

Investigate the similarities/differences
between FCC and FQC from a categorical
point of view.

A Functional Quantum Programming Language – p.29/??

Further work

We have to analyze more quantum programs
to evaluate the practical usefulness of our
approach.

Are we able to come up with completely new
algorithms using QML?

How to deal with higher order programs?

How to deal with infinite datatypes?

Investigate the similarities/differences
between FCC and FQC from a categorical
point of view.

A Functional Quantum Programming Language – p.29/??

Further work

We have to analyze more quantum programs
to evaluate the practical usefulness of our
approach.

Are we able to come up with completely new
algorithms using QML?

How to deal with higher order programs?

How to deal with infinite datatypes?

Investigate the similarities/differences
between FCC and FQC from a categorical
point of view.

A Functional Quantum Programming Language – p.29/??

Further work

We have to analyze more quantum programs
to evaluate the practical usefulness of our
approach.

Are we able to come up with completely new
algorithms using QML?

How to deal with higher order programs?

How to deal with infinite datatypes?

Investigate the similarities/differences
between FCC and FQC from a categorical
point of view.

A Functional Quantum Programming Language – p.29/??

The end

Thank you for your attention.

A Functional Quantum Programming Language – p.30/??

	Alternative title
	Another alternative title
	Background
	The quantum software crisis
	QML
	Example: Hadamard operation
	Something we know well dots
	Classical computation ($FCC $)
	Composing computations
	Extensional equality
	Extensional equality dots
	Example ensuremath {pi _1} :
	Example ensuremath {delta } :
	Classical vs quantum
	ensuremath {pi _1mathbin {circ }delta }, classically
	ensuremath {pi _1mathbin {circ }delta }, quantum
	Control of decoherence
	QML overview
	Qbits
	QML overview dots
	The let-rule
	$otimes $ on contexts
	Another source of decoherence
	$oplus $-elim
	$oplus $-elim decoherence-free
	ensuremath {mathbf {if}^circ }
	Conclusions
	Further work
	The end

