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Alternative title

What you always wanted to know

about quantum computation

but never dared to ask.
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Another alternative title

Quantum programming

for the

lazy functional programmer

A Functional Quantum Programming Language – p.3/??



Background

Simulation of quantum systems is expensive:
Exponential time to simulate polynomial circuits.

Feynman: Can we exploit this fact to perform
computations more efficiently?

Shor: Factorisation in quantum polynomial time.

Grover: Blind search in

Can we build a quantum computer?

yes We can run quantum algorithms.

no Nature is classical after all!

Assumption: Nature is fair. . .
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The quantum software crisis

Quantum algorithms are usually presented
using the circuit model.

Nielsen and Chuang, p.7, Coming up with
good quantum algorithms is hard.
Richard Josza, QPL 2004: We need to
develop quantum thinking!

A Functional Quantum Programming Language – p.5/??



The quantum software crisis

Quantum algorithms are usually presented
using the circuit model.

Nielsen and Chuang, p.7, Coming up with
good quantum algorithms is hard.
Richard Josza, QPL 2004: We need to
develop quantum thinking!

A Functional Quantum Programming Language – p.5/??



The quantum software crisis

Quantum algorithms are usually presented
using the circuit model.

Nielsen and Chuang, p.7, Coming up with
good quantum algorithms is hard.

Richard Josza, QPL 2004: We need to
develop quantum thinking!

A Functional Quantum Programming Language – p.5/??



The quantum software crisis

Quantum algorithms are usually presented
using the circuit model.

Nielsen and Chuang, p.7, Coming up with
good quantum algorithms is hard.
Richard Josza, QPL 2004: We need to
develop quantum thinking!

A Functional Quantum Programming Language – p.5/??



QML

QML: a first-order functional language for quantum
computations on finite types.

Quantum control and quantum data.

Design guided by semantics

Analogy with classical computation

Finite classical computations

Finite quantum computations

Important issue: control of decoherence

Compiler under construction (Jonathan)
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Example: Hadamard operation

Matrix

QML
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Something we know well . . .

Classical computations on finite types.

Quantum mechanics is time-reversible. . .

. . . hence quantum computation is based on reversible
operations.

However: Newtonian mechanics, Maxwellian
electrodynamics are also time-reversible. . .

. . . hence classical computation should be based on
reversible operations.
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Classical computation ( )

Given finite sets (input) and (output):

� �

a finite set of initial heaps ,

an initial heap ,

a finite set of garbage states ,

a bijection ,
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Classical computation ( )

Given finite sets (input) and (output):

- ./

0 � 1 2 �

a finite set of initial heaps ,

an initial heap
354 ,

a finite set of garbage states ,

a bijection 4 6 7 6 ,

A Functional Quantum Programming Language – p.9/??



Composing computations

�

>>
>>

>>
>>

88
88

88
8 �

�

��������

������� �

A Functional Quantum Programming Language – p.10/??



Composing computations

8
. 98 �

>>
>>

>>
>>

88
88

88
8 8�

9 �

��������

������� 9�

9 � 8

A Functional Quantum Programming Language – p.10/??



Extensional equality

A classical computation
induces a function U by

//

��

OO

U
//

We say that two computations are
extensionally equivalent, if they give rise to
the same function.
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Extensional equality . . .

Theorem:

U

$ G : % �$ U

% G$ U : %

Hence, classical computations upto extensional
equality give rise to the category .

Theorem: Any function on finite sets
can be realized by a computation.

Translation for Category Theoreticans:
U is full and faithful.
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Example � :
function HJI 4 $ � ; � % �

HKI $ � ; L % � �

computation

�
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Example � :
function HJI 4 $ � ; � % �

HKI $ � ; L % � �

computation � �

� �

/NMO
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Example :

function P4 � $ � ; � %

P� �$ � ;� %

computation

� '&%$ !"#
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Example :

function P4 � $ � ; � %

P� �$ � ;� %

computation Q � � R Q � �

S � � � '&%$ !"# Q � �

T T 4 $ � ; � % $ � ; � %

T$ S ;� % �$ S ;� %

T$ � ;� % �$ � ; U � %
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Classical vs quantum

classical ( ) quantum ( )

finite sets finite dimensional Hilbert spaces

bijections unitary operators

cartesian product ( ) tensor product ( )

functions superoperators

projections partial trace
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� X , classically

HDI G P� � �

� '&%$ !"# �
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� X , quantum

Q � � R Q � �

S � � � '&%$ !"# �

/\Y /]MO

input:

output:

Decoherence!
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� X , quantum

Q � � R Q � �
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Control of decoherence

QML is based on strict linear logic

Contraction is implicit and realized by .

Weakening is explicit and leads to
decoherence.

A Functional Quantum Programming Language – p.18/??



Control of decoherence

QML is based on strict linear logic

Contraction is implicit and realized by .

Weakening is explicit and leads to
decoherence.

A Functional Quantum Programming Language – p.18/??



Control of decoherence

QML is based on strict linear logic

Contraction is implicit and realized by T.

Weakening is explicit and leads to
decoherence.

A Functional Quantum Programming Language – p.18/??



Control of decoherence

QML is based on strict linear logic

Contraction is implicit and realized by T.
Weakening is explicit and leads to
decoherence.

A Functional Quantum Programming Language – p.18/??



QML overview

Types

Terms
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QML overview

Types ` � � # ` a # ` a
Terms b �� # +� �� � b �� c # � �d# $ % #$ b ; c % # +� �$ � ; L % � b �� c# � egf  b # � e f ' c#ih j, � b(k � ��� e f  � c # � e f ' L c l *

#ih j, � � b(k � ��� e f  � c # � e f ' L c l *

# �$ m % b # $�n % c *
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Qbits

� � � �

� &') " � � egf  $ %

� ���  �!" � � egf ' $ %

�� b ����� c � +, � c l

�h j, � ��� e f  c # � e f ' c l *

�� � b ���� � c � +, � c l

�h j, � � ��� e f  c # � e f ' c l *
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QML overview . . .

Typing judgements
programs

strict programs

Semantics
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QML overview . . .

Typing judgementso pq � ` programso p � q � ` strict programs

Semantics o pq � `rq s 4 r o s r ` s

o p � q � `rq s 4 � r o s r ` s
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The let-rule

o pq � `
; Q � ` p�t � a  " &o pvu w x Q �q y{z t � a

;;
;;

;

�

�����

�

;;
;;

;;

99
99

99
�

�

������

������ �
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� �
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on contexts

if dom

�
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on contexts

o ; Q � ` ; Q � ` � $ o % ; Q � `o ; Q � ` � $ o % ; Q � ` if Q �4

domR �

�
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Another source of decoherence

mentions

but doesn’t use it.

Hence, it has to measure it!
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-elim decoherence-free
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This program has a type error, because
.

This program typechecks, because
.
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This program has a type error, becauseÛ xDÜÝ w Û x ÜÝ w.

Þß � b� � � �
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This program typechecks, becauseÛ àÁá u â w Û xDÜÝ w.
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Conclusions

Our semantic ideas proved useful when
designing a quantum programming language,
analogous concepts are modelled by the
same syntactic constructs.

Our analysis also highlights the differences
between classical and quantum
programming.

Quantum programming introduces the
problem of control of decoherence, which we
address by making forgetting variables
explicit and by having different if-then-else
constructs.
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Further work

We have to analyze more quantum programs
to evaluate the practical usefulness of our
approach.

Are we able to come up with completely new
algorithms using QML?

How to deal with higher order programs?

How to deal with infinite datatypes?

Investigate the similarities/differences
between FCC and FQC from a categorical
point of view.
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The end

Thank you for your attention.
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