
Why Dependent Types Matter

Thorsten Altenkirch

School of Computer Science
University of Nottingham

October 5, 2011

Thorsten Altenkirch (Nottingham) splst 11 October 5, 2011 1 / 55

Introduction

The Greek-ASCII dichotomy

Programs are (were ?) written in ASCII . . .
Papers in theoretical Computer Science use greek letters . . .

Programmers don’t do proofs . . .
Theoreticians don’t write programs . . .

Can we bridge the gap?

Thorsten Altenkirch (Nottingham) splst 11 October 5, 2011 2 / 55

Introduction

Another observation

Compilers don’t read comments . . .
Sometimes they should!
How can we make informal statements formal
and checkable by our software tools?

Thorsten Altenkirch (Nottingham) splst 11 October 5, 2011 3 / 55

Introduction

A clarification

Formal specifications cannot be the starting point of software
development.
The early stages are exploratory steps involving prototypes
In the beginning we don’t know much about the software we are
developing.
Exploratory steps / Consolidation steps.
Specifications are one of the outputs of consolidation steps.
Would like to guarantuee that specifications and code fit together.

Thorsten Altenkirch (Nottingham) splst 11 October 5, 2011 4 / 55

Introduction

Proofs

Unrealistic to hope that all relevant properties are decidable.
Need proofs as formal objects which provide evidence that an
assertion holds.
Replace oracles
(decision procedures which answer either yes or no) . . .
. . . with evidence producing decision procedures.
Potential of an economy of proofs
(who is too blame?).

Thorsten Altenkirch (Nottingham) splst 11 October 5, 2011 5 / 55

Introduction

But how do we do it?

Programming Language + Logic
Separation of language for programming and
reasoning
Possible for (almost) any programming language
Conventional logic (1st order, classical)
Geared to posthoc verification

Dependently Typed Programming
Functional language with an expressive type system
Reasoning emerges due to the Curry-Howard
principle
Intuitionistic logic
Integration of reasoning and programming

Thorsten Altenkirch (Nottingham) splst 11 October 5, 2011 6 / 55

Introduction

From Per to Ulf

Per Martin-Löf

Introduced Type Theory
As a new constructive foundation of Mathematics
since the mid 1970ies

Ulf Norell

Implemented the current Agda system
A functional programming language
and an interactive proof assistant
based on Type Theory
in his PhD in 2005

Thorsten Altenkirch (Nottingham) splst 11 October 5, 2011 7 / 55

Introduction

Rest of the talk

A taste of Agda
The Curry-Howard Principle
Classical logic
Recursion and induction
Families of types
Coinduction
Design challenges

Thorsten Altenkirch (Nottingham) splst 11 October 5, 2011 8 / 55

A taste of Agda

A taste of Agda

Thorsten Altenkirch (Nottingham) splst 11 October 5, 2011 9 / 55

A taste of Agda

Safe lookup

Define an operation which extracts the nth element out of a list.

!!_ :List A→ N→ A
xs !! n = ?

Thorsten Altenkirch (Nottingham) splst 11 October 5, 2011 10 / 55

A taste of Agda

1st attempt

!!_ :List A→ N→ A
[] !! n = ?
(x :: xs) !! zero = x
(x :: xs) !! suc n = xs !! n

We cannot complete this program.
Agda only allows complete pattern.
A could be empty.

Thorsten Altenkirch (Nottingham) splst 11 October 5, 2011 11 / 55

A taste of Agda

2nd attempt (use monad)

!!_ :List A→ N→Maybe A
[] !! n = nothing
(a :: as) !! zero = just a
(a :: as) !! suc n = as !! n

We use the Maybe monad.
In Haskell (and other languages) this is built-in.
Runtime errors may arise at any time.

Thorsten Altenkirch (Nottingham) splst 11 October 5, 2011 12 / 55

A taste of Agda

From Nat and List

data N : Set where
zero : N
suc : (n : N)→ N

data List (A : Set) : Set where
[] : List A

:: _ :(x : A) (xs : List A)→ List A

Thorsten Altenkirch (Nottingham) splst 11 October 5, 2011 13 / 55

A taste of Agda

To Fin and Vec

data Fin : N→ Set where
zero : Fin (suc n)
suc : (i : Fin n)→ Fin (suc n)

data Vec (A : Set) : N→ Set a where
[] : Vec A zero

:: _ :(x : A) (xs : Vec A n)→ Vec A (suc n)

Thorsten Altenkirch (Nottingham) splst 11 October 5, 2011 14 / 55

A taste of Agda

3rd attempt (use dependent types)

!!_ :Vec A n→ Fin n→ A
[] !! ()
(x :: xs) !! zero = x
(x :: xs) !! suc i = xs !! i

We have replaced List with Vec and Nat with Fin.
No runtime errors.

Thorsten Altenkirch (Nottingham) splst 11 October 5, 2011 15 / 55

A taste of Agda

Using dependent types we can eliminate runtime errors
But what if we read the index from external sources?
We need to check but only once.
Runtime errors are clearly localized.

Thorsten Altenkirch (Nottingham) splst 11 October 5, 2011 16 / 55

The Curry-Howard principle

The Curry-Howard principle

Thorsten Altenkirch (Nottingham) splst 11 October 5, 2011 17 / 55

The Curry-Howard principle

The Curry-Howard principle

We can express certain constraints using dependent types.
What are the limits of this technology?
We can encode any logical formula as a dependent type.
We assign to a logical formula the set of its proofs.

prop : Set1
prop = Set

Proving = constructing a program of this type.

Thorsten Altenkirch (Nottingham) splst 11 October 5, 2011 18 / 55

The Curry-Howard principle

Propositional Logic

Implication P→Q is given by the type of functions from P to Q.
Conjunction P ∧Q is given by the type of pairs of elements of P and Q.

data ∧_ (P Q : prop) : prop where
, : P→Q→ P ∧Q

Disjunction P∨Q is given by the disjoint union of elements of P and Q.

data ∨_ (P Q : prop) : prop where
left : P→ P ∨Q
right : Q→ P ∨Q

Thorsten Altenkirch (Nottingham) splst 11 October 5, 2011 19 / 55

The Curry-Howard principle

How to prove ?

P ∧ (Q ∨ R)⇔ (P ∧Q) ∨ (P ∧ R) ?

Thorsten Altenkirch (Nottingham) splst 11 October 5, 2011 20 / 55

The Curry-Howard principle

Write a program!

distrib : P ∧ (Q ∨ R)→ (P ∧Q) ∨ (P ∧ R)
distrib (p, left q) = left (p,q)
distrib (p, right r) = right (p, r)

Observe that the program is invertible.
Hence we can prove⇔.
This provides a different explanation than the truth table.
More accessible to programmers?!

Thorsten Altenkirch (Nottingham) splst 11 October 5, 2011 21 / 55

The Curry-Howard principle

Predicate logic

universal quantification The set of proofs of ∀x : A.P x is the set of
dependent function (x : A)→ P x .

existential quantification The set of proofs of ∃x : A.P x is the set of
dependent pairs:

data ∃ (A : Set) (P : A→ prop) : prop where
, : (a : A)→ P a→∃A P

Thorsten Altenkirch (Nottingham) splst 11 October 5, 2011 22 / 55

The Curry-Howard principle

How to prove?

∀x : A.P x → Q ⇐⇒ (∃x : A.P x)→ Q

Thorsten Altenkirch (Nottingham) splst 11 October 5, 2011 23 / 55

The Curry-Howard principle

Write a program!

curry : ((∃A P)→Q)→ (a : A)→ P a→Q
curry x = λ a x ′→ x (a, x ′)

curry ′ : ((a : A)→ P a→Q)→ ((∃A P)→Q)
curry ′ x (a, y) = x a y

Generalized form of currying.
(P ∧Q→ R)⇔ (P→Q→ R)

Not just a logical equivalence . . .
but an isomorphism.
Not all equivalences are isomorphisms.

Thorsten Altenkirch (Nottingham) splst 11 October 5, 2011 24 / 55

Classical logic

Classical logic

Thorsten Altenkirch (Nottingham) splst 11 October 5, 2011 25 / 55

Classical logic

What about the excluded middle ?

We cannot prove:

tnd : {P : prop}→ P ∨ ¬P

and other classical principles.
Because our logic is intuitionistic and constructive.

Thorsten Altenkirch (Nottingham) splst 11 October 5, 2011 26 / 55

Classical logic

The classical Babelfish
Classical reasoner says: Babelfish translates to:

A ∨ B ¬(¬A ∧ ¬B)
∃x : S.Px ¬∀x : S.¬Px

Negative translation
A ∨ ¬A is translated to ¬(¬A ∧ ¬¬A)
which is constructively provable.
A classical reasoner is somebody who is unable to say anything
positive.
However, while the axiom of choice is provable (easily)

(∀a : A.∃b : B.R a b)→ ∃f : A→ B.∀a : A.R a (f a)

its translation is not:

(∀a : A.¬∀b : B.¬R a b)→ ¬∀f : A→ B.¬∀a : A.R a (f a)

Thorsten Altenkirch (Nottingham) splst 11 October 5, 2011 27 / 55

Recursion and induction

Recursion and induction

Thorsten Altenkirch (Nottingham) splst 11 October 5, 2011 28 / 55

Recursion and induction

How to prove ?

∀i j k : N.(i + j) + k = i + (j + k)?

where

+_ :N→ N→ N
zero + n = n
suc m + n = suc (m + n)

Thorsten Altenkirch (Nottingham) splst 11 October 5, 2011 29 / 55

Recursion and induction

Equality

The only proof that a = b is refl if a and b are identical.

data ≡ _ (x : A) : A→ Set where
refl : x ≡ x

We can prove that every function respects equality using pattern
matching:

cong : (f : A→ B) {a b : A}→ a ≡ b→ f a ≡ f b
cong f refl = refl

Thorsten Altenkirch (Nottingham) splst 11 October 5, 2011 30 / 55

Recursion and induction

Write a program!

assoc : (i j k : N)→ (i + j) + k ≡ i + (j + k)
assoc zero j k = refl
assoc (suc i) j k = cong suc (assoc i j k)

This is a recursive program!
Induction = primitive recursion
What is the result of assoc 2 7 3 ?

Thorsten Altenkirch (Nottingham) splst 11 October 5, 2011 31 / 55

Recursion and induction

Proof irrelevance

Indeed assoc always returns refl .
There is no point in running assoc.
However, it is important to know that it exists.
Is this always the case?

Thorsten Altenkirch (Nottingham) splst 11 October 5, 2011 32 / 55

Recursion and induction

Deciding equality

Equality for 1st order datatypes (like N) is decidable.
This is witnessed by a boolean function:

≡? : N→ N→ Bool
zero ≡? zero = true
zero ≡? suc n = false
suc n ≡? zero = false
suc n ≡? suc m = n ≡? m

How do we know that this function decides equality?

Thorsten Altenkirch (Nottingham) splst 11 October 5, 2011 33 / 55

Recursion and induction

Decidability

To decide a proposition means we can show there is a proof . . .
or there cannot be one.

data Dec (P : Set) : Set where
yes : (p : P)→ Dec P
no : (¬p : ¬P)→ Dec P

A predicate is decidable, if each instance can be decided.
To say that equality is decidable amounts to
(m n : N)→ Dec (m ≡ n)

Thorsten Altenkirch (Nottingham) splst 11 October 5, 2011 34 / 55

Recursion and induction

Deciding equality . . .

≡? : (m n : N)→ Dec (m ≡ n)
zero ≡? zero = yes refl
zero ≡? suc n = no (λ ())
suc n ≡? zero = no (λ ())
suc n ≡? suc m with n ≡? m
suc n ≡? suc m | yes p = yes (cong suc p)
suc n ≡? suc m | no np =

no (λ q→ np (cong pred q))

Similar structure as the boolean function.
Instead of returning true or false . . .
≡? returns yes or no and evidence that this is the correct answer.
Indeed ≡?’s type already completely specifies its behaviour.

Thorsten Altenkirch (Nottingham) splst 11 October 5, 2011 35 / 55

Families of types

Families of types

Thorsten Altenkirch (Nottingham) splst 11 October 5, 2011 36 / 55

Families of types

How to define 6 _ ?

data 6 _ :N→ N→ Set where
le0 : zero 6 n
leS : m 6 n→ suc m 6 suc n

m 6 n is the set of derivation trees showing that m is less or equal
n.
E.g. leS (leS le0) : 2 6 4

How to prove transitivity?

Thorsten Altenkirch (Nottingham) splst 11 October 5, 2011 37 / 55

Families of types

Write a program!

data 6 _ :N→ N→ Set where
le0 : zero 6 n
leS : m 6 n→ suc m 6 suc n

trans : ∀{ l m n}→ l 6 m→m 6 n→ l 6 n
trans le0 p = le0
trans (leS p) (leS q) = leS (trans p q)

Thorsten Altenkirch (Nottingham) splst 11 October 5, 2011 38 / 55

Families of types

How to define provability?

data ` _ :Context → Formula→ Set where
ass : Γ · A ` A
weak : Γ ` A→ Γ · B ` A
app : Γ ` A⇒ B→ Γ ` A→ Γ ` B
abs : Γ · A ` B→ Γ ` A⇒ B

Minimal propositional logic.
Γ ` A is the set of derivation trees proving A from Γ.
This is a natural deduction style definition.
Corresponds to typed λ-calculus with de Bruijn variables.
Define typed terms directly, not untyped terms and typing relation.

Thorsten Altenkirch (Nottingham) splst 11 October 5, 2011 39 / 55

Families of types

Combinatory logic

data ` sk_ : Context → Formula→ Set where
ass : Γ · A ` sk A
weak : Γ ` sk A→ Γ · B ` sk A
app : Γ ` sk A⇒ B→ Γ ` sk A→ Γ ` sk B
K : Γ ` sk A⇒ B⇒ A
S : Γ ` sk (A⇒ B⇒ C)⇒ (A⇒ B)⇒ A⇒ C

Can prove equivalence
Γ ` A⇔ Γ ` sk A
by recursion / induction over derivation trees.
Key lemma: Γ · A ` sk B→ Γ ` sk A⇒ B

Thorsten Altenkirch (Nottingham) splst 11 October 5, 2011 40 / 55

Coinduction

Coinduction

Thorsten Altenkirch (Nottingham) splst 11 October 5, 2011 41 / 55

Coinduction

Streams

While List A represents the set of finite sequences.
Stream A is the set of infinite sequences.

data Stream (A : Set) : Set where
:: _ :A→∞(Stream A)→ Stream A

To define Stream A we exploit the notion of lifted types∞A.
Delay :] : A→∞A
Force : [:∞A→ A

Thorsten Altenkirch (Nottingham) splst 11 October 5, 2011 42 / 55

Coinduction

Computations on streams

Define the sequence of numbers starting wth n:

from : N→ Stream N
from n = n ::](from (suc n))

Can we prove?
mapStream suc (from n)≈ from (suc n) where

mapStream : (A→ B)→ Stream A→ Stream B
mapStream f (a :: as) = f a ::](mapStream f ([as))

Thorsten Altenkirch (Nottingham) splst 11 October 5, 2011 43 / 55

Coinduction

Infinite proofs

Since proofs = programs
proofs over infinite datastructures
can be infinite datastructures themselves.
Extensional equality of streams (bisimilarity).

data ≈ _ {A} : (xs ys : Stream A)→ Set where
:: _ : ∀ x {xs ys} (xs ≈ :∞ ([xs ≈ [ys))→ x :: xs ≈ x :: ys

Can construct an infinite proof:

nthLem : (n : N)→mapStream suc (from n)≈ from (suc n)
nthLem n = suc n ::]nthLem (suc n)

Thorsten Altenkirch (Nottingham) splst 11 October 5, 2011 44 / 55

Design challenges

Design challenges

Thorsten Altenkirch (Nottingham) splst 11 October 5, 2011 45 / 55

Design challenges

Termination checking

Need to ensure programs are total.
Agda termination checker verifies structural recursion /
guardedness .
Non-structural / non-guarded total programs can be implemented
. . .
. . . but the effort is considerable.
Need extensible but safe termination checker.
Reduction to total core language instead of external checker?

Thorsten Altenkirch (Nottingham) splst 11 October 5, 2011 46 / 55

Design challenges

Efficient implementation of IDEs

Interactive program development creates new challenges.
Symbolic evaluation.
Typechecking incomplete programs.
Issues with scaling to larger sized developments.
Agda: problems with records due to η-expansion.

Thorsten Altenkirch (Nottingham) splst 11 October 5, 2011 47 / 55

Design challenges

Efficent compilation

Naive compilation creates considerable overhead.
Many expressions don’t need to be computed, no computational
content.
See Edwin Brady’s work on compilation of dependently typed
languages.
Dependent type provide ample opportunities for novel
optimisations (e.g. exploiting finiteness)

Thorsten Altenkirch (Nottingham) splst 11 October 5, 2011 48 / 55

Design challenges

Interfacing the real world

Monads provide a clear interface to effectful programming.
Haskell’s IO monad is opaque.
How to reason about it?
What happes when I/O expression appear in dependent types?
See wouter Swierstra’s work on functional specification of I/O.

Thorsten Altenkirch (Nottingham) splst 11 October 5, 2011 49 / 55

Design challenges

Proof automatisation

Want to create proofs (semi) automatically.
Instead of providing a tactic language . . .
exploit reflection!
Use Agda to write tactics.
E.g. see the recent work of Struth and Foster.

Thorsten Altenkirch (Nottingham) splst 11 October 5, 2011 50 / 55

Design challenges

Reusability

Finer types
reduce reusability
E.g. instead of lists we have vectors, sorted lists, contexts, . . .
Hard to implement a useful library.
Use generic programming to derive datatypes
and share common structure
Topic of an ongoing research project (Nottingham, Oxford,
Strathclyde)

Thorsten Altenkirch (Nottingham) splst 11 October 5, 2011 51 / 55

Design challenges

Tricky datatypes

Agda allows very flexible mutual definitions.
induction-recursion.
induction-induction.
which are not well understood semantically.
Topic of an ongoing research project (Nottingham, Swansea,
Strathclyde).

Thorsten Altenkirch (Nottingham) splst 11 October 5, 2011 52 / 55

Design challenges

Extensionality

The principle of extensionality is not provable in Agda
ext : (f g : A→ B)→ ((a : A)→ f a ≡ g a)→ f ≡ g
Lack of quotient types.
New proposal: identify types upto isomorphism (Voevodsky)
Don’t want to add axioms
because they destroy the computational structure of the theory.
Can these principles be eliminated?

Thorsten Altenkirch (Nottingham) splst 11 October 5, 2011 53 / 55

Conclusions

Conclusions

Thorsten Altenkirch (Nottingham) splst 11 October 5, 2011 54 / 55

Conclusions

Conclusions

DTP: new perspective on certified program development.
Reasoning emerges from a rich type discipline.
Covers the whole spectrum from programming to verification.
Allows a pay-as-you go approach to certification.
New challenges . . .
. . . but many of them seem to be unavoidable.

Thorsten Altenkirch (Nottingham) splst 11 October 5, 2011 55 / 55

	Introduction
	A taste of Agda
	The Curry-Howard principle
	Classical logic
	Recursion and induction
	Families of types
	Coinduction
	Design challenges
	Conclusions

