
Generalized general recursion
Thorsten Altenkirch

University of Nottingham

Generalized general recursion – p. 1/26

General recursion

gcd’ ∈ Nat → Nat → Nat

gcd’ m n
| m==n = m
| m<n = gcd’ (m-n) n
| n<m = gcd’ m (n-m)

Generalized general recursion – p. 2/26

General recursion . . .

Paulson 86, Nordström 88

f ∈ Πa ∈ A.(Πb ∈ A.(b < a) → B) → B

fix(f) ∈ Πa ∈ A.(Acc < a) → B

where Acc is defined inductively:

Πb ∈ A.(b < a) → Acc < b

Acc < a

Generalized general recursion – p. 3/26

Better general recursion

Bove and Capretta
Define a specific termination predicate for
each recursive function.

McBride and McKinna
Turn recursive programs into structurally
recursive ones.

Generalized general recursion – p. 4/26

Better general recursion

Bove and Capretta
Define a specific termination predicate for
each recursive function.

McBride and McKinna
Turn recursive programs into structurally
recursive ones.

Generalized general recursion – p. 4/26

Better general recursion

Bove and Capretta
Define a specific termination predicate for
each recursive function.

McBride and McKinna
Turn recursive programs into structurally
recursive ones.

Generalized general recursion – p. 4/26

nats ?

nats ∈ Nat → [Nat]

nats n = n : (nats (n+1))

Generalized general recursion – p. 5/26

nats !

nats cannot be defined by well-founded
recursion.

nats can be defined using coiteration.

nats can be defined by guarded corecursion
(Coquand 94).

Generalized general recursion – p. 6/26

nats !

nats cannot be defined by well-founded
recursion.

nats can be defined using coiteration.

nats can be defined by guarded corecursion
(Coquand 94).

Generalized general recursion – p. 6/26

nats !

nats cannot be defined by well-founded
recursion.

nats can be defined using coiteration.

nats can be defined by guarded corecursion
(Coquand 94).

Generalized general recursion – p. 6/26

ham ?

merge ∈ [Nat] → [Nat] → [Nat]

merge (as @ (a:as’)) (bs @ (b:bs’))

| a<b = a:(merge as’ bs)

| b<a = b:(merge as bs’)

| a==b = a:(merge as’ bs’)

ham ∈ [Nat]

ham = 2 : (merge (map (λ i → 2*i) ham)

(map (λ i → 3*i) ham))

Generalized general recursion – p. 7/26

ham ?

ham cannot be defined by well-founded
recursion.

It is not obvious how to use coiteration to
define ham.

ham is not guarded!

Generalized general recursion – p. 8/26

ham ?

ham cannot be defined by well-founded
recursion.

It is not obvious how to use coiteration to
define ham.

ham is not guarded!

Generalized general recursion – p. 8/26

ham ?

ham cannot be defined by well-founded
recursion.

It is not obvious how to use coiteration to
define ham.

ham is not guarded!

Generalized general recursion – p. 8/26

primes ??

sieve ∈ [Nat] → [Nat] → [Nat]

sieve (ns @ (n:ns’)) (ps @ (p:ps’))

| n < p*p = n:(sieve ns’ primes)

| mod n p == 0 = sieve ns’ primes

| otherwise = sieve ns ps’

primes ∈ [Nat]

primes = 2 : (sieve (nats 3) primes)

Generalized general recursion – p. 9/26

Generalized general recursion

John Matthews (2001)
Generalizing well-founded recursion to coinductive
domains

Fixpoints of contractive maps using converging
equivalence relations (CERs) ≈ filtered limits.

Fixpoints of functions with coinductive codomains
which are total even though they are not guarded.

Wellfounded recursion (general recursion) arises as a
special case.

Developed in a classical setting (Isabelle,HOL).

Generalized general recursion – p. 10/26

Generalized general recursion

John Matthews (2001)
Generalizing well-founded recursion to coinductive
domains

Fixpoints of contractive maps using converging
equivalence relations (CERs) ≈ filtered limits.

Fixpoints of functions with coinductive codomains
which are total even though they are not guarded.

Wellfounded recursion (general recursion) arises as a
special case.

Developed in a classical setting (Isabelle,HOL).

Generalized general recursion – p. 10/26

Generalized general recursion

John Matthews (2001)
Generalizing well-founded recursion to coinductive
domains

Fixpoints of contractive maps using converging
equivalence relations (CERs) ≈ filtered limits.

Fixpoints of functions with coinductive codomains
which are total even though they are not guarded.

Wellfounded recursion (general recursion) arises as a
special case.

Developed in a classical setting (Isabelle,HOL).

Generalized general recursion – p. 10/26

Generalized general recursion

John Matthews (2001)
Generalizing well-founded recursion to coinductive
domains

Fixpoints of contractive maps using converging
equivalence relations (CERs) ≈ filtered limits.

Fixpoints of functions with coinductive codomains
which are total even though they are not guarded.

Wellfounded recursion (general recursion) arises as a
special case.

Developed in a classical setting (Isabelle,HOL).

Generalized general recursion – p. 10/26

Generalized general recursion

John Matthews (2001)
Generalizing well-founded recursion to coinductive
domains

Fixpoints of contractive maps using converging
equivalence relations (CERs) ≈ filtered limits.

Fixpoints of functions with coinductive codomains
which are total even though they are not guarded.

Wellfounded recursion (general recursion) arises as a
special case.

Developed in a classical setting (Isabelle,HOL).

Generalized general recursion – p. 10/26

Generalized general recursion

John Matthews (2001)
Generalizing well-founded recursion to coinductive
domains

Fixpoints of contractive maps using converging
equivalence relations (CERs) ≈ filtered limits.

Fixpoints of functions with coinductive codomains
which are total even though they are not guarded.

Wellfounded recursion (general recursion) arises as a
special case.

Developed in a classical setting (Isabelle,HOL).

Generalized general recursion – p. 10/26

Questions

Applicable in (extensional) Type Theory ?

More interesting examples ?

Practical ?
(i.e. better generalized general recursion)

Categorical semantics ?

Discovered before ?

Generalized general recursion – p. 11/26

Questions

Applicable in (extensional) Type Theory ?

More interesting examples ?

Practical ?
(i.e. better generalized general recursion)

Categorical semantics ?

Discovered before ?

Generalized general recursion – p. 11/26

Questions

Applicable in (extensional) Type Theory ?

More interesting examples ?

Practical ?
(i.e. better generalized general recursion)

Categorical semantics ?

Discovered before ?

Generalized general recursion – p. 11/26

Questions

Applicable in (extensional) Type Theory ?

More interesting examples ?

Practical ?
(i.e. better generalized general recursion)

Categorical semantics ?

Discovered before ?

Generalized general recursion – p. 11/26

Questions

Applicable in (extensional) Type Theory ?

More interesting examples ?

Practical ?
(i.e. better generalized general recursion)

Categorical semantics ?

Discovered before ?

Generalized general recursion – p. 11/26

Questions

Applicable in (extensional) Type Theory ?

More interesting examples ?

Practical ?
(i.e. better generalized general recursion)

Categorical semantics ?

Discovered before ?

Generalized general recursion – p. 11/26

nth

nth ∈ [a] → Nat → a

nth (a:as) 0 = a
nth (a:as) (n+1) = nth as n

Generalized general recursion – p. 12/26

The stream CER

CER = Converging equivalence relations.

We define a CER on [a]

(here Streams over a).

We define a family of equivalence relations

i ∈ Nat x, y ∈ [a]

x ≈i y ∈ Prop

i ∈ Nat x, y ∈ [a]

x ≈i y

⇐⇒ ∀j ∈ Nat.(i < j) → nth x j = nth y j

Generalized general recursion – p. 13/26

The stream CER

CER = Converging equivalence relations.

We define a CER on [a]

(here Streams over a).

We define a family of equivalence relations

i ∈ Nat x, y ∈ [a]

x ≈i y ∈ Prop

i ∈ Nat x, y ∈ [a]

x ≈i y

⇐⇒ ∀j ∈ Nat.(i < j) → nth x j = nth y j

Generalized general recursion – p. 13/26

The stream CER

CER = Converging equivalence relations.

We define a CER on [a]

(here Streams over a).

We define a family of equivalence relations

i ∈ Nat x, y ∈ [a]

x ≈i y ∈ Prop

i ∈ Nat x, y ∈ [a]

x ≈i y

⇐⇒ ∀j ∈ Nat.(i < j) → nth x j = nth y j

Generalized general recursion – p. 13/26

The stream CER

CER = Converging equivalence relations.

We define a CER on [a]

(here Streams over a).

We define a family of equivalence relations

i ∈ Nat x, y ∈ [a]

x ≈i y ∈ Prop

i ∈ Nat x, y ∈ [a]

x ≈i y

⇐⇒ ∀j ∈ Nat.(i < j) → nth x j = nth y j
Generalized general recursion – p. 13/26

The stream CER . . .

chain

i < j x ≈j y

x ≈i y

0

⊥ ∈ [a] ∀x ∈ [a].x ≈0 ⊥

global limit

h ∈ Nat → [a] ∀j < j ′.h j ≈j h j ′

lim(h) ∈ [a]

∀i ∈ Nat.lim(h) ≈i h i

(∀i ∈ Nat.x ≈i h i) → x = lim(h)

Generalized general recursion – p. 14/26

The stream CER . . .

chain
i < j x ≈j y

x ≈i y

0

⊥ ∈ [a] ∀x ∈ [a].x ≈0 ⊥

global limit

h ∈ Nat → [a] ∀j < j ′.h j ≈j h j ′

lim(h) ∈ [a]

∀i ∈ Nat.lim(h) ≈i h i

(∀i ∈ Nat.x ≈i h i) → x = lim(h)

Generalized general recursion – p. 14/26

The stream CER . . .

chain
i < j x ≈j y

x ≈i y

0

⊥ ∈ [a] ∀x ∈ [a].x ≈0 ⊥

global limit

h ∈ Nat → [a] ∀j < j ′.h j ≈j h j ′

lim(h) ∈ [a]

∀i ∈ Nat.lim(h) ≈i h i

(∀i ∈ Nat.x ≈i h i) → x = lim(h)

Generalized general recursion – p. 14/26

The stream CER . . .

chain
i < j x ≈j y

x ≈i y

0

⊥ ∈ [a] ∀x ∈ [a].x ≈0 ⊥

global limit

h ∈ Nat → [a] ∀j < j ′.h j ≈j h j ′

lim(h) ∈ [a]

∀i ∈ Nat.lim(h) ≈i h i

(∀i ∈ Nat.x ≈i h i) → x = lim(h)

Generalized general recursion – p. 14/26

The stream CER . . .

chain
i < j x ≈j y

x ≈i y

0

⊥ ∈ [a] ∀x ∈ [a].x ≈0 ⊥

global limit

h ∈ Nat → [a] ∀j < j ′.h j ≈j h j ′

lim(h) ∈ [a]

∀i ∈ Nat.lim(h) ≈i h i

(∀i ∈ Nat.x ≈i h i) → x = lim(h)

Generalized general recursion – p. 14/26

CERs in general

A CER on a set A is given by

An index set I with a well-founded relation <

i, j ∈ I

i < j ∈ Prop

A collection of equivalence relations

i ∈ I x, y ∈ A

x ≈i y ∈ Prop

Generalized general recursion – p. 15/26

CERs in general

A CER on a set A is given by

An index set I with a well-founded relation <

i, j ∈ I

i < j ∈ Prop

A collection of equivalence relations

i ∈ I x, y ∈ A

x ≈i y ∈ Prop

Generalized general recursion – p. 15/26

CERs in general

A CER on a set A is given by

An index set I with a well-founded relation <

i, j ∈ I

i < j ∈ Prop

A collection of equivalence relations

i ∈ I x, y ∈ A

x ≈i y ∈ Prop

Generalized general recursion – p. 15/26

CERs in general . . .

chain
i < j x ≈j y

x ≈i y

local limit

h ∈ I → A ∀j < j ′ < i.h j ≈j h j ′

limi(h) ∈ A

∀k < i.limi(h) ≈k h k

(∀k < i.x ≈k h k) → x ≈i limi(h)

global limit

h ∈ I → A ∀j < j ′.h j ≈j h j ′

lim(h) ∈ A

∀k ∈ I.lim(h) ≈k h k

(∀k ∈ I.x ≈k h k) → x = lim(h)

Generalized general recursion – p. 16/26

CERs in general . . .

chain
i < j x ≈j y

x ≈i y

local limit

h ∈ I → A ∀j < j ′ < i.h j ≈j h j ′

limi(h) ∈ A

∀k < i.limi(h) ≈k h k

(∀k < i.x ≈k h k) → x ≈i limi(h)

global limit

h ∈ I → A ∀j < j ′.h j ≈j h j ′

lim(h) ∈ A

∀k ∈ I.lim(h) ≈k h k

(∀k ∈ I.x ≈k h k) → x = lim(h)

Generalized general recursion – p. 16/26

CERs in general . . .

chain
i < j x ≈j y

x ≈i y

local limit

h ∈ I → A ∀j < j ′ < i.h j ≈j h j ′

limi(h) ∈ A

∀k < i.limi(h) ≈k h k

(∀k < i.x ≈k h k) → x ≈i limi(h)

global limit

h ∈ I → A ∀j < j ′.h j ≈j h j ′

lim(h) ∈ A

∀k ∈ I.lim(h) ≈k h k

(∀k ∈ I.x ≈k h k) → x = lim(h)

Generalized general recursion – p. 16/26

CERs in general . . .

chain
i < j x ≈j y

x ≈i y

local limit

h ∈ I → A ∀j < j ′ < i.h j ≈j h j ′

limi(h) ∈ A

∀k < i.limi(h) ≈k h k

(∀k < i.x ≈k h k) → x ≈i limi(h)

global limit

h ∈ I → A ∀j < j ′.h j ≈j h j ′

lim(h) ∈ A

∀k ∈ I.lim(h) ≈k h k

(∀k ∈ I.x ≈k h k) → x = lim(h)
Generalized general recursion – p. 16/26

Differences to Matthews

Matthews hasn’t got the uniqueness
conditions for limit and global limit.

(∀j.¬(j < i)) → x ≈i y (4)
derivable from local limit.

(∀j.x ≈j y) → x = y (6)
derivable from global limit.

Generalized general recursion – p. 17/26

Differences to Matthews

Matthews hasn’t got the uniqueness
conditions for limit and global limit.

(∀j.¬(j < i)) → x ≈i y (4)
derivable from local limit.

(∀j.x ≈j y) → x = y (6)
derivable from global limit.

Generalized general recursion – p. 17/26

Differences to Matthews

Matthews hasn’t got the uniqueness
conditions for limit and global limit.

(∀j.¬(j < i)) → x ≈i y (4)
derivable from local limit.

(∀j.x ≈j y) → x = y (6)
derivable from global limit.

Generalized general recursion – p. 17/26

Differences to Matthews

Matthews hasn’t got the uniqueness
conditions for limit and global limit.

(∀j.¬(j < i)) → x ≈i y (4)
derivable from local limit.

(∀j.x ≈j y) → x = y (6)
derivable from global limit.

Generalized general recursion – p. 17/26

A CER on Nat → [Nat]

i ∈ Nat f, g ∈ Nat → [a]

f ≈i g

⇐⇒ ∀j ∈ Nat.(j < i) →

∀n ∈ Nat.nth (f n) j = nth (g n) j

This shows how to lift a CER on B to A → B.

Generalized general recursion – p. 18/26

A CER on Nat → [Nat]

i ∈ Nat f, g ∈ Nat → [a]

f ≈i g

⇐⇒ ∀j ∈ Nat.(j < i) →

∀n ∈ Nat.nth (f n) j = nth (g n) j

This shows how to lift a CER on B to A → B.

Generalized general recursion – p. 18/26

A CER on Nat → [Nat]

i ∈ Nat f, g ∈ Nat → [a]

f ≈i g

⇐⇒ ∀j ∈ Nat.(j < i) →

∀n ∈ Nat.nth (f n) j = nth (g n) j

This shows how to lift a CER on B to A → B.

Generalized general recursion – p. 18/26

Contractive functions

Given a CER on A a function f ∈ A → A is
contractive, iff

∀j < i.x ≈j y

f x ≈i f y

Theorem (Matthews): A contractive function
f ∈ A → A has a unique fixpoint fix(f) ∈ A

Generalized general recursion – p. 19/26

Contractive functions

Given a CER on A a function f ∈ A → A is
contractive, iff

∀j < i.x ≈j y

f x ≈i f y

Theorem (Matthews): A contractive function
f ∈ A → A has a unique fixpoint fix(f) ∈ A

Generalized general recursion – p. 19/26

Proof sketch

Define h ∈ I → A using well founded recursion:

h i = f(limih)

and show that

h i ≈i f(h i)

then define

fix(f) = lim(h)

Generalized general recursion – p. 20/26

Proof sketch

Define h ∈ I → A using well founded recursion:

h i = f(limih)

and show that

h i ≈i f(h i)

then define

fix(f) = lim(h)

Generalized general recursion – p. 20/26

Proof sketch

Define h ∈ I → A using well founded recursion:

h i = f(limih)

and show that

h i ≈i f(h i)

then define

fix(f) = lim(h)

Generalized general recursion – p. 20/26

Proof sketch

Define h ∈ I → A using well founded recursion:

h i = f(limih)

and show that

h i ≈i f(h i)

then define

fix(f) = lim(h)

Generalized general recursion – p. 20/26

nats

f∈ (Nat → [Nat]) → (Nat → [Nat])

f nats = n : (nats (n+1))

Observation: f is contractive.

Generalized general recursion – p. 21/26

ham

f ∈ [Nat] → [Nat]

f ham = 2 : (merge (map (λ i → 2*i) ham)

(map (λ i → 3*i) ham))

Observation: f is contractive.
Lemma:

h ≈i h′

map g h ≈i map g h′

Lemma:
h ≈i h′ g ≈i g′

merge h g ≈i merge h′ g′

Generalized general recursion – p. 22/26

primes

sieve ∈ [Nat] → [Nat] → [Nat]

sieve (ns @ (n:ns’)) (ps @ (p:ps’))

| n < p*p = n:(sieve ns’ primes)

| mod n p == 0 = sieve ns’ primes

| otherwise = sieve ns ps’

primes ∈ [Nat]

primes = 2 : (sieve (nats 3) primes)

Left as an exercise.

Generalized general recursion – p. 23/26

Wellfounded recursion

Given:
A → B

where (A,<) is well-ordered.

We define a CER on A → B:

a ∈ A f, g ∈ A → B

f ≈ g ⇐⇒ ∀x < a.f x = g x

Local and global limits:

lim(h) = λa.h a a

Generalized general recursion – p. 24/26

Wellfounded recursion

Given:
A → B

where (A,<) is well-ordered.

We define a CER on A → B:

a ∈ A f, g ∈ A → B

f ≈ g ⇐⇒ ∀x < a.f x = g x

Local and global limits:

lim(h) = λa.h a a

Generalized general recursion – p. 24/26

Wellfounded recursion

Given:
A → B

where (A,<) is well-ordered.

We define a CER on A → B:

a ∈ A f, g ∈ A → B

f ≈ g ⇐⇒ ∀x < a.f x = g x

Local and global limits:

lim(h) = λa.h a a

Generalized general recursion – p. 24/26

Wellfounded recursion

Given:
A → B

where (A,<) is well-ordered.

We define a CER on A → B:

a ∈ A f, g ∈ A → B

f ≈ g ⇐⇒ ∀x < a.f x = g x

Local and global limits:

lim(h) = λa.h a a

Generalized general recursion – p. 24/26

Wellfounded recursion . . .

f ∈ (A → B) → (A → B)

f contractive:

∀a < b.h ≈a h′

fh ≈b fh′

means
∀x < a < b.h x = h′ x

∀x < b.f h x = f h′ x

that f uses h only on smaller arguments.
Hence : Contractive =⇒ Wellfounded.

Generalized general recursion – p. 25/26

Wellfounded recursion . . .

f ∈ (A → B) → (A → B)

f contractive:

∀a < b.h ≈a h′

fh ≈b fh′

means
∀x < a < b.h x = h′ x

∀x < b.f h x = f h′ x

that f uses h only on smaller arguments.
Hence : Contractive =⇒ Wellfounded.

Generalized general recursion – p. 25/26

Wellfounded recursion . . .

f ∈ (A → B) → (A → B)

f contractive:

∀a < b.h ≈a h′

fh ≈b fh′

means
∀x < a < b.h x = h′ x

∀x < b.f h x = f h′ x

that f uses h only on smaller arguments.
Hence : Contractive =⇒ Wellfounded.

Generalized general recursion – p. 25/26

Wellfounded recursion . . .

f ∈ (A → B) → (A → B)

f contractive:

∀a < b.h ≈a h′

fh ≈b fh′

means
∀x < a < b.h x = h′ x

∀x < b.f h x = f h′ x

that f uses h only on smaller arguments.

Hence : Contractive =⇒ Wellfounded.

Generalized general recursion – p. 25/26

Wellfounded recursion . . .

f ∈ (A → B) → (A → B)

f contractive:

∀a < b.h ≈a h′

fh ≈b fh′

means
∀x < a < b.h x = h′ x

∀x < b.f h x = f h′ x

that f uses h only on smaller arguments.
Hence : Contractive =⇒ Wellfounded.

Generalized general recursion – p. 25/26

Back to Questions

Applicable in (extensional) Type Theory ?

More interesting examples ?

Practical ? (i.e. better generalized general
recursion)

Categorical semantics ?

Discovered before ?

Generalized general recursion – p. 26/26

	General recursion
	General recursion dots
	Better general recursion
	Better general recursion
	Better general recursion

		exttt {nats} ?
		exttt {nats} !
		exttt {nats} !
		exttt {nats} !

		exttt {ham} ?
		exttt {ham} ?
		exttt {ham} ?
		exttt {ham} ?

		exttt {primes} ??
	Generalized general recursion
	Generalized general recursion
	Generalized general recursion
	Generalized general recursion
	Generalized general recursion
	Generalized general recursion

	Questions
	Questions
	Questions
	Questions
	Questions
	Questions

		exttt {nth}
	The stream CER
	The stream CER
	The stream CER
	The stream CER

	The stream CER dots
	The stream CER dots
	The stream CER dots
	The stream CER dots
	The stream CER dots

	CERs in general
	CERs in general
	CERs in general

	CERs in general dots
	CERs in general dots
	CERs in general dots
	CERs in general dots

	Differences to Matthews
	Differences to Matthews
	Differences to Matthews
	Differences to Matthews

	A CER on $	exttt {Nat}	o 	exttt {[Nat]}$
	A CER on $	exttt {Nat}	o 	exttt {[Nat]}$
	A CER on $	exttt {Nat}	o 	exttt {[Nat]}$

	Contractive functions
	Contractive functions

	Proof sketch
	Proof sketch
	Proof sketch
	Proof sketch

		exttt {nats}
		exttt {ham}
		exttt {primes}
	Wellfounded recursion
	Wellfounded recursion
	Wellfounded recursion
	Wellfounded recursion

	Wellfounded recursion dots
	Wellfounded recursion dots
	Wellfounded recursion dots
	Wellfounded recursion dots
	Wellfounded recursion dots

	Back to Questions

