Codata

Thorsten Altenkirch University of Nottingham

data $List = Nil \mid Cons Nat List$

data List = Nil | Cons Nat List

 $even \in \mathbf{List} \to \mathbf{Bool}$ $even \operatorname{Nil} = \operatorname{True}$ $even (\operatorname{Cons} a \ as) = \neg (even \ as)$

data $List = Nil \mid Cons Nat List$

 $even \in List \rightarrow Bool$ even Nil = True $even (Cons a as) = \neg (even as)$

from $\in \mathbf{Nat} \to \mathbf{List}$ from $n = \mathrm{Cons} \ n \ (from \ (n+1))$

data List = Nil | Cons Nat List

 $even \in List \rightarrow Bool$ even Nil = True $even (Cons a as) = \neg (even as)$

 $from \in \mathbf{Nat} \to \mathbf{List}$ $from \ n = \mathbf{Cons} \ n \ (from \ (n+1))$ $even \ (from \ 0) \ \mathbf{diverges!}$

Type Theory: data \neq codata

Type Theory: data \neq codata data List = Nil | Cons Nat List codata List[∞] = Nil[∞] | Cons[∞] Nat List[∞]

Type Theory: data \neq codatadata List = Nil | Cons Nat Listcodata List[∞] = Nil[∞] | Cons[∞] Nat List[∞]

 $even \in \mathbf{List} \to \mathbf{Bool}$ $even \operatorname{Nil} = \operatorname{True}$ $even (\operatorname{Cons} a \ as) = \neg (even \ as)$ **Type Theory:** data \neq codata data List = Nil | Cons Nat List $codata List^{\infty} = Nil^{\infty} | Cons^{\infty} Nat List^{\infty}$ $even \in List \rightarrow Bool$ even Nil = True $even (Cons \ a \ as) = \neg (even \ as)$ $from \in \mathbf{Nat} \to \mathbf{List}^{\infty}$ from $n = \text{Cons}^{\infty} n$ (from (n+1))

Type Theory: data \neq codata data List = Nil | Cons Nat List $codata List^{\infty} = Nil^{\infty} | Cons^{\infty} Nat List^{\infty}$ $even \in List \rightarrow Bool$ even Nil = True $even (Cons \ a \ as) = \neg (even \ as)$ $from \in \mathbf{Nat} \to \mathbf{List}^{\infty}$ from $n = \text{Cons}^{\infty} n$ (from (n+1)) even (from 0) doesn't typecheck.

codata in Type Theory

codata in Type Theory

 Thierry Coquand *Infinite Objects in Type Theory* TYPES 93

codata in Type Theory

- Thierry Coquand *Infinite Objects in Type Theory* TYPES 93
- Eduardo Giminez
 Coinductive Types in COQ 93 95
 see Coq'Art, pp.347 376

Codata seems more exotic then data.

Codata ?

- Codata seems more exotic then data.
- Categorically codata (terminal coalgebras) is a dual of data (initial algebras)

Codata ?

- Codata seems more exotic then data.
- Categorically codata (terminal coalgebras) is a dual of data (initial algebras)
- Proposal: a conceptual duality based on contracts

Codata ?

- Codata seems more exotic then data.
- Categorically codata (terminal coalgebras) is a dual of data (initial algebras)
- Proposal: a conceptual duality based on contracts
- which justifies Observational Type Theory reflecting this symmetry.

Codata – p.6/

The producer of **data** promises that he/she will construct data only using the agreed constructors.

The producer of **data** promises that he/she will construct data only using the agreed constructors.

Consequences:

The producer of **data** promises that he/she will construct data only using the agreed constructors.

Consequences:

pattern matching

The producer of **data** promises that he/she will construct data only using the agreed constructors.

Consequences:

- pattern matching
- structural recursion

The producer of **data** promises that he/she will construct data only using the agreed constructors.

Consequences:

- pattern matching
- structural recursion
- induction as structural recursion on proofs

Codata – p.7/

The consumer of **codata** promises that he/she will only analyze codata using the patterns induced by the agreed constructors.

The consumer of **codata** promises that he/she will only analyze codata using the patterns induced by the agreed constructors.

Consequences:

The consumer of **codata** promises that he/she will only analyze codata using the patterns induced by the agreed constructors.

Consequences:

constructors

The consumer of **codata** promises that he/she will only analyze codata using the patterns induced by the agreed constructors.

Consequences:

- constructors
- guarded corecursion

The consumer of **codata** promises that he/she will only analyze codata using the patterns induced by the agreed constructors.

Consequences:

- constructors
- guarded corecursion
- coinduction as guarded recursion on proofs

 $mapS \in \mathbf{List}^{\infty} \to \mathbf{List}^{\infty}$ $mapS \operatorname{Nil}^{\infty} = \operatorname{Nil}^{\infty}$ $mapS \operatorname{Cons}^{\infty} n \ \vec{n} = \operatorname{Cons}^{\infty} (n+1) \ (mapS \ \vec{n})$

 $\begin{array}{l} mapS \in \mathbf{List}^{\infty} \to \mathbf{List}^{\infty} \\ mapS \ \mathrm{Nil}^{\infty} &= \mathrm{Nil}^{\infty} \\ mapS \ \mathrm{Cons}^{\infty} \ n \ \vec{n} = \mathrm{Cons}^{\infty} \ (n+1) \ (mapS \ \vec{n}) \end{array}$

let $n \in \mathbf{Nat}$ $lem \ n \in mapS \ (from \ n) = from \ (n+1)$

 $mapS \in \mathbf{List}^{\infty} \to \mathbf{List}^{\infty}$ $mapS \operatorname{Nil}^{\infty} = \operatorname{Nil}^{\infty}$ $mapS \operatorname{Cons}^{\infty} n \ \vec{n} = \operatorname{Cons}^{\infty} (n+1) \ (mapS \ \vec{n})$

let $\frac{n \in \mathbf{Nat}}{lem \ n \in mapS \ (from \ n) = from \ (n+1)}$

Let's have a closer look at =.

Equality for List

Codata – p.9/
Equality for List

data $\frac{\vec{m}, \vec{n} \in \mathbf{List}}{\vec{m} = \vec{n} \in \mathbf{Prop}}$

where

Equality for List

data $\frac{\vec{m}, \vec{n} \in \mathbf{List}}{\vec{m} = \vec{n} \in \mathbf{Prop}}$

where

 $EqNil \in Nil = Nil$

Equality for List

data
$$\frac{\vec{m}, \vec{n} \in \mathbf{List}}{\vec{m} = \vec{n} \in \mathbf{Prop}}$$

where

 $EqNil \in Nil = Nil$

 $\frac{p \in m = n \quad \vec{p} \in \vec{m} = \vec{n}}{\text{EqCons } p \ \vec{p} \in \text{Cons } m \ \vec{m} = \text{Cons } n \ \vec{n}}$

let
$$\frac{\vec{n} \in \text{List}}{\text{refl } \vec{n} \in \vec{n} = \vec{n}}$$

let
$$\frac{\vec{n} \in \text{List}}{\text{refl } \vec{n} \in \vec{n} = \vec{n}}$$

refl Nil = EqNil
refl (Cons $n \vec{n}$) = EqCons (refl n) (refl \vec{n})

let
$$\frac{\vec{n} \in \text{List}}{\text{refl } \vec{n} \in \vec{n} = \vec{n}}$$

refl Nil = EqNil
refl (Cons $n \vec{n}$) = EqCons (refl n) (refl \vec{n})
let
$$\frac{\vec{p} \in \vec{m} = \vec{n} \quad \vec{q} \in \vec{n} = \vec{o}}{\text{trans } \vec{p} \ \vec{q} \in \vec{m} = \vec{o}}$$

 $\vec{n} \in \mathbf{List}$ let $refl_{\vec{n}} \in \vec{n} = \vec{n}$ refl Nil = EqNil $refl (Cons \ n \ \vec{n}) = EqCons (refl \ n) (refl \ \vec{n})$ $\vec{p} \in \vec{m} = \vec{n} \quad \vec{q} \in \vec{n} = \vec{o}$ let trans $\vec{p} \ \vec{q} \in \vec{m} = \vec{o}$ trans EqNil EqNil = EqNiltrans (EqCons $p \vec{p}$) (EqCons $q \vec{p}$) = EqCons (trans p q) (trans $\vec{p} \vec{q}$)

Equality for List^∞

Equality for List^∞

codata

 $egin{array}{ll} ec{m},ec{n}\in\mathbf{List}^\infty\ ec{m}=ec{n}\in\mathbf{Prop} \end{array}$

where

Equality for List^∞

codata	$ec{m},ec{n}\in \mathbf{List}^\infty$
	$ec{m} = ec{n} \in \mathbf{Prop}$

where

 $\overline{\mathrm{EqNil}^{\infty} \in \mathrm{Nil}^{\infty} = \mathrm{Nil}^{\infty}}$

Equality for $\operatorname{List}^{\infty}$

codata
$$rac{ec{m},ec{n}\in \mathbf{List}^\infty}{ec{m}=ec{n}\in \mathbf{Prop}}$$
 where

 $\overline{\mathrm{EqNil}^{\infty} \in \mathrm{Nil}^{\infty} = \mathrm{Nil}^{\infty}}$

 $\frac{p \in m = n}{\operatorname{EqCons}^{\infty} p \ \vec{p} \in \operatorname{Cons}^{\infty} m \ \vec{m} = \operatorname{Cons}^{\infty} n \ \vec{n}}$

let
$$\frac{\vec{n} \in \mathbf{List}^{\infty}}{refl \ \vec{n} \in \vec{n} = \vec{n}}$$

let
$$\frac{\vec{n} \in \text{List}^{\infty}}{\text{refl } \vec{n} \in \vec{n} = \vec{n}}$$

refl Nil^{\infty} = EqNil^{\infty}
refl (Cons^{\infty} n \vec{n}) = EqCons^\infty (refl n) (refl \vec{n})

let
$$\frac{\vec{n} \in \text{List}^{\infty}}{\text{refl } \vec{n} \in \vec{n} = \vec{n}}$$

refl Nil^{\infty} = EqNil^{\infty}
refl (Cons^{\infty} n \vec{n}) = EqCons^{\infty} (refl n) (refl \vec{n})
let
$$\frac{\vec{p} \in \vec{m} = \vec{n} \quad \vec{q} \in \vec{n} = \vec{o}}{\text{trans } \vec{p} \ \vec{q} \in \vec{m} = \vec{o}}$$

$$\begin{array}{ll} \operatorname{let} & \frac{\vec{n} \in \operatorname{List}^{\infty}}{\operatorname{refl} \ \vec{n} \in \vec{n} = \vec{n}} \\ & \operatorname{refl} \operatorname{Nil}^{\infty} & = \operatorname{EqNil}^{\infty} \\ & \operatorname{refl} (\operatorname{Cons}^{\infty} n \ \vec{n}) = \operatorname{EqCons}^{\infty} (\operatorname{refl} n) (\operatorname{refl} \vec{n}) \\ \end{array} \\ \begin{array}{ll} \operatorname{let} & \frac{\vec{p} \in \vec{m} = \vec{n} \quad \vec{q} \in \vec{n} = \vec{o}}{\operatorname{trans} \ \vec{p} \ \vec{q} \in \vec{m} = \vec{o}} \\ & \operatorname{trans} \operatorname{EqNil}^{\infty} & \operatorname{EqNil}^{\infty} = \operatorname{EqNil}^{\infty} \\ & \operatorname{trans} (\operatorname{EqCons}^{\infty} p \ \vec{p}) (\operatorname{EqCons}^{\infty} q \ \vec{q}) \\ & = \operatorname{EqCons}^{\infty} (\operatorname{trans} p \ q) (\operatorname{trans} \ \vec{p} \ \vec{q}) \end{array}$$

let $n \in \mathbf{Nat}$ $lem \ n \in mapS \ (from \ n) = from \ (n+1)$

let $\frac{n \in \mathbf{Nat}}{lem \ n \in mapS \ (from \ n) = from \ (n+1)}$ $lem \ n = \mathrm{EqCons}^{\infty} \ (n+1) \ (lem \ (n+1))$

let $\frac{n \in \mathbf{Nat}}{lem \ n \in mapS \ (from \ n) = from \ (n+1)}$ $lem \ n = \mathrm{EqCons}^{\infty} \ (n+1) \ (lem \ (n+1))$

Coinductive reasoning can be easy.

let $\frac{n \in \mathbf{Nat}}{lem \ n \in mapS \ (from \ n) = from \ (n+1)}$ $lem \ n = \mathrm{EqCons}^{\infty} \ (n+1) \ (lem \ (n+1))$

- Coinductive reasoning can be easy.
- Guarded coinduction is guarded corecursion on proofs.

let $\frac{n \in \mathbf{Nat}}{lem \ n \in mapS \ (from \ n) = from \ (n+1)}$ $lem \ n = \mathrm{EqCons}^{\infty} \ (n+1) \ (lem \ (n+1))$

- Coinductive reasoning can be easy.
- Guarded coinduction is guarded corecursion on proofs.
- There is no need to construct bisimulations.

data	codata
inductive	

data	codata
inductive	coinductive

data	codata
inductive	coinductive
finite objects	

data	codata
inductive	coinductive
finite objects	infinite objects

data	codata
inductive	coinductive
finite objects	infinite objects
structural recursion	

data	codata
inductive	coinductive
finite objects	infinite objects
structural recursion	guarded corecursion

datacodatainductivecoinductivefinite objectsinfinite objectsstructural recursionguarded corecursionstructural induction

datacodatainductivecoinductivefinite objectsinfinite objectsstructural recursionguarded corecursionstructural inductionguarded coinduction

data	codata
inductive	coinductive
finite objects	infinite objects
structural recursion	guarded corecursion
structural induction	guarded coinduction

Where do functions live?

data	codata
inductive	coinductive
finite objects	infinite objects
structural recursion	guarded corecursion
structural induction	guarded coinduction

Where do functions live?

Functions are codata.

data	codata
inductive	coinductive
finite objects	infinite objects
structural recursion	guarded corecursion
structural induction	guarded coinduction

- Where do functions live?
- Functions are codata.
- Consumer contract: You may only apply a function.

Leibniz ?

let $\frac{P \in \mathbf{Nat} \to \mathbf{Type} \quad \vec{q} \in \vec{m} = \vec{n} \quad \vec{m} \in \mathbf{List} \quad p \in P \ \vec{m}}{leibniz \ P \ \vec{p} \ p \in P \ \vec{n}}$
Leibniz ?

let $\begin{array}{l}
P \in \mathbf{Nat} \to \mathbf{Type} \quad \vec{q} \in \vec{m} = \vec{n} \quad \vec{m} \in \mathbf{List} \quad p \in P \ \vec{m} \\
leibniz \ P \ intervalue \ P \ \vec{p} \ p \in P \ \vec{n} \\
leibniz \ P \ EqNil \qquad Nil \qquad p = p \\
leibniz \ P \ (EqCons \ q \ \vec{q}) \ (Cons \ m \ \vec{m}) \ p = \\
leibniz \ (\lambda n \to P \ (Cons \ n \ \vec{m})) \ m \ q \\
(leibniz \ (\lambda \vec{n} \to P \ (Cons \ m \ \vec{n})) \ \vec{m} \ \vec{q} \ p)
\end{array}$

Leibniz ?

let $\begin{array}{l}
P \in \mathbf{Nat} \to \mathbf{Type} \quad \vec{q} \in \vec{m} = \vec{n} \quad \vec{m} \in \mathbf{List} \quad p \in P \ \vec{m} \\
leibniz \ P \ intervalue \ P \ \vec{p} \ p \in P \ \vec{n} \\
leibniz \ P \ EqNil \qquad Nil \qquad p = p \\
leibniz \ P \ (EqCons \ q \ \vec{q}) \ (Cons \ m \ \vec{m}) \ p = \\
leibniz \ (\lambda n \to P \ (Cons \ n \ \vec{m})) \ m \ q \\
(leibniz \ (\lambda \vec{n} \to P \ (Cons \ m \ \vec{n})) \ \vec{m} \ \vec{q} \ p)
\end{array}$

• *leibniz* doesn't dualize to $List^{\infty}$.

Observational Type Theory
 We can implement *leibniz* by internalizing the setoid model – see my LICS 99 paper *Extensional Type Theory, intensionally.*

- We can implement *leibniz* by internalizing the setoid model – see my LICS 99 paper *Extensional Type Theory, intensionally.*
- Using this construction we implement both consumer and producer contracts without giving up decidability.

- We can implement *leibniz* by internalizing the setoid model – see my LICS 99 paper *Extensional Type Theory, intensionally.*
- Using this construction we implement both consumer and producer contracts without giving up decidability.
- This is based on a translation of Observational Type Theory into intensional Type Theory + a proof irrelevant universe of propositions.

- We can implement *leibniz* by internalizing the setoid model – see my LICS 99 paper *Extensional Type Theory, intensionally.*
- Using this construction we implement both consumer and producer contracts without giving up decidability.
- This is based on a translation of Observational Type Theory into intensional Type Theory + a proof irrelevant universe of propositions.
- Alternative: any two hypothetical proofs of False are convertible.

Anarchy

Codata – p.17/

Anarchy No contracts, not even producer contracts.

Anarchy

No contracts, not even producer contracts. Instead of $\Pi \ n \in \mathbf{Nat}$: ... we write $\Pi \ n \in \mathbf{Nat}.(Ind \ n) \to \dots$

Anarchy

No contracts, not even producer contracts. Instead of $\Pi \ n \in \mathbf{Nat}$: ... we write $\Pi \ n \in \mathbf{Nat}.(Ind \ n) \rightarrow \dots$. Impredicative encodings of data

Wild West

Wild West Producer contracts but no consumer contracts.

Wild West Producer contracts but no consumer contracts. We can quantify over Nat

Wild West
Producer contracts but no consumer contracts.
We can quantify over Nat
We have to verify again and again that a consumer of codata respects equality.

Wild West
Producer contracts but no consumer contracts.
We can quantify over Nat
We have to verify again and again that a consumer of codata respects equality.
Intensional Type Theory

Rule of law

Rule of law Producer and consumer contracts.

Rule of law Producer and consumer contracts. We can quantify over Nat

Rule of law Producer and consumer contracts. We can quantify over Nat We know that any consumer of codata respects equality.

Rule of law Producer and consumer contracts. We can quantify over Nat We know that any consumer of codata respects equality. *Observational Type Theory*

 The goal of our recently funded EPSRC project *Decidable Type Theory with Observational Equality* is to implement a Type Theory with observational equality (Observational Epigram)

- The goal of our recently funded EPSRC project *Decidable Type Theory with Observational Equality* is to implement a Type Theory with observational equality (Observational Epigram)
- We want to improve on my LICS 99 paper by adding the conversion equality $leibniz \dots refl \ x \equiv x$

- The goal of our recently funded EPSRC project *Decidable Type Theory with Observational Equality* is to implement a Type Theory with observational equality (Observational Epigram)
- We want to improve on my LICS 99 paper by adding the conversion equality $leibniz \dots refl \ x \equiv x$
- And hence strictly extend intensional Type Theory.

- The goal of our recently funded EPSRC project *Decidable Type Theory with Observational Equality* is to implement a Type Theory with observational equality (Observational Epigram)
- We want to improve on my LICS 99 paper by adding the conversion equality $leibniz \dots refl \ x \equiv x$
- And hence strictly extend intensional Type Theory.
- We also want to realize another extension of the mirror:

- The goal of our recently funded EPSRC project *Decidable Type Theory with Observational Equality* is to implement a Type Theory with observational equality (Observational Epigram)
- We want to improve on my LICS 99 paper by adding the conversion equality $leibniz \dots refl \ x \equiv x$
- And hence strictly extend intensional Type Theory.
- We also want to realize another extension of the mirror:

data	codata
subset types	quotient types