A CORE LANGUAGE FOR DEPENDENTLY TYPED PROGRAMMING THORSTEN ALTENKIRCH NICOLAS OURY UNIVERSITY OF NOTTINGHAM

MOTIVATIONS

Dependently typed languages

(for programs and proofs)

e.g. CIC (Coq), Epigram, Agda, Cayenne ...

- Factor implementation into core language and high level language.
- Core language should be independent of your notion of totality.

- Small and simple
 - Meta-theory feasible
- Batch compilation
 - No interactive development necessary
- Yet sufficiently general

DESIGN IDEAS

GENERAL RECURSION

- Allow mutual recursive definitions
- Typing assumptions and recursive definitions may depend on each other.
- Syntax

GENERAL RECURSION

- Allow mutual recursive definitions
- Typing assumptions and recursive definitions may depend on each other.

UNIVERSES

- General recursion makes the system logically inconsistent
- So we don't lose anything by having

Type : Type

• This allows to simulate any universes hierarchy

FINITE TYPES

• Set of labels is a type:

• Typing a label:

• Case analysis: $t: \{A, B, C\}$ $case t of \{ A \rightarrow ... \\ B \rightarrow ... \\ C \rightarrow ... \}$

Π-Types

- Nothing really new here
- **П**-types :

$$(x:A) \rightarrow B[x]$$

• Inhabited by functions:

$$\setminus x \rightarrow t [x]$$

• Eliminated by application:

• A type for dependent pair:

x : A; B [x]

(u, v)

• Introduce by pairing:

• Elimination by a **letp** operator:

$$letp (x,y) = p in t$$

FEATURES SUMMARY

- General recursion
- Very impredicative universe
- Finite type, Π -Types, Σ -Types
- We postpone equality types
- That's all: simple but sufficient

ENCODING COMPLEX TYPES

ENCODING TYPES

• Labeled sums:

Either : Type \rightarrow Type \rightarrow Type Either = $\land A \land B \rightarrow$ tag : {Left, Right}; case tag of {Left $\rightarrow A \mid \text{Right} \rightarrow B$ }

• Recursive types:

Nat : Type
Nat = tag :
$$\{Z, S\}$$
 ; case tag of $\{Z \rightarrow \{Void\} | S \rightarrow Nat \}$

ENCODING TYPES

• Labeled sums:

Either : Type \rightarrow Type \rightarrow Type Either = $\land A \land B \rightarrow$ tag : {Left, Right}; case tag of {Left $\rightarrow A \mid \text{Right} \rightarrow B$ }

• Recursive types:

Nat : Type
Nat = tag : {Z, S} ; case tag
$$Z \rightarrow \{Void\}$$

 $|S \rightarrow Nat \}$

ENCODING TYPES

• Labeled sums:

Either : Type \rightarrow Type \rightarrow Type Either = $\land A \land B \rightarrow$ tag : {Left, Right}; case tag of {Left $\rightarrow A \mid \text{Right} \rightarrow B$ }

• Recursive types:

FAMILIES OF TYPES

Vec : Type
$$\rightarrow$$
 Nat \rightarrow Type
Vec = \setminus A n \rightarrow letp (tag, n') = n in
case tag of {
 $Z \rightarrow l:{Nil}; Void$
 $\mid S \rightarrow l:{Cons}; A; Vec A n'}$

FAMILIES OF

$$Vec : Type \rightarrow Nat \rightarrow Type$$

 $Vec = \land A n \rightarrow letp (tag, n') = n in$
 $case tag of \{$
 $Z \rightarrow l: \{Nil\}; Void$
 $\mid S \rightarrow l: \{Cons\}; A; Vec A n'\}$

FAMILIES OF

$$Vec : Type \rightarrow Nat \rightarrow Type$$

 $Vec = \setminus A n \rightarrow letp (tag, n') = n in$
 $case tag of \{$
 $Z \rightarrow l: \{Nil\}; Void$
 $\mid S \rightarrow l: \{Cons\}; A; Vec A n'\}$

Fin : Nat
$$\rightarrow$$
 Type
Fin = \n \rightarrow letp (tag, n') = n in
case tag of { $Z \rightarrow$ {}|S \rightarrow 1 : { Z , S};
case l of { $Z \rightarrow$ {Void}
S \rightarrow Fin n'}}

DIY EQUALITY

• Encoding equality of natural numbers:

 $Eq: Nat \rightarrow Nat \rightarrow Type$ $Eq = \langle n m \rightarrow letp (ln, n') = n in$ **letp** (lm, m') = m **in** case ln of { $Z \rightarrow case lm of \{ Z \rightarrow \{Void\} \mid S \rightarrow \{ \} \}$ $| S \rightarrow case lm of \{$ $Z \rightarrow \{\}$ $| S \rightarrow Eq n'm' \}$

A UNIVERSE

U : Type
El : U
$$\rightarrow$$
 Type
U = l: {u, pi} ; case l of {
 $u \rightarrow$ {Void}
 $pi \rightarrow a : U; El a \rightarrow U$ }
El = \a \rightarrow letp (l;node) = a in case l of {
 $u \rightarrow A$
 $pi \rightarrow$ letp (src, tgt) = node in
 $(x : El src) \rightarrow El (tgt x)$

MAIN ISSUES

• Looping with general recursion

• Pattern matching

LOOPING

- General recursion makes type checking undecidable
- Type checker may loop because a term doesn't terminate
- Requirement: type checker should not loop for *reasonable* programs.

LOOPING: IDEA

• We sometimes put a **box** around a part of the context:

 $\Gamma, [\Gamma'], \Gamma'' \vdash t : T$

• A recursive definition can only be used when **not** in a **box**

$$\dots, f \to u, \dots \vdash f \equiv u$$

BOXES: WHEN?

- We want to prevent looping of a definition fact = $\ n \rightarrow \dots$ case tag of $Z \rightarrow fact n' \dots$
- We need to box recursive calls of a function
- We do this by putting a box on the context when we meet a **case**

 $[\Gamma] \vdash b_i : T$

 $\Gamma \vdash \mathsf{case} \ e \ \mathsf{of} \ \{L_i \to b_i, \ldots\} : T$

BOXES: WHEN?

unfolds to:

case ...

fact n'

- We want to prevent looping of a fact = $\ n \rightarrow \dots$ case tag of $Z \rightarrow fact n' \dots$
- We need to box recursive calls of a function
- We do this by putting a box on the context when we meet a **case**

 $[\Gamma] \vdash b_i : T$

 $\Gamma \vdash \mathsf{case} \ e \ \mathsf{of} \ \{L_i \to b_i, \ldots\} : T$

- We need to box recursive calls of a function
- We do this by putting a box on the context when we meet a **case**

 $[\Gamma] \vdash b_i : T$

$$\Gamma \vdash \mathsf{case} \ e \ \mathsf{of} \ \{L_i \to b_i, \ldots\} : T$$

BOXES AND COMPUTATIONS

• We need to do some computations

• What happens here?

...case **S** of { $S \rightarrow (S, n' + m) \dots$

(S, n' + m)

• Reduction occurs when there is no stuck elimination

BOXES AND COMPUTATIONS

• We need to do some computations

• Reduction occurs when there is no stuck elimination

PATTERN MATCHING

- Agda: Pattern matching primitive
- Epigram: Generating *motives* for standard eliminators.
- Coq: Under discussion
- Our proposal: use of constraints Advantages: local case (with) is easy less complexity in the translation

EXAMPLE

append :: (n m) \rightarrow Vect n \rightarrow Vect m \rightarrow Vect (n + m) append = \ n m xs ys \rightarrow letp (tagn, n') = n (tagxs, xs') = xs in case tagn of { $Z \rightarrow$ case tagxs of { Nil \rightarrow ys }

> S → case tagxs of { Cons→ (Cons, append n' m xs' ys)}

EXAMPLE

append :: (n m) \rightarrow Vect n \rightarrow Vect m \rightarrow Vect (n + m) append = \ n m xs ys \rightarrow letp (tagn, p') n (tr tagn=Z case tagn of { $Z \rightarrow$ case tagxs of { $Nil \rightarrow ys$ }

> S → case tagxs of { Cons→ (Cons, append n' m xs' ys)}

EXAMPLE

append :: (n m) \rightarrow Vect n \rightarrow Vect m \rightarrow Vect (n + m) append = \ n m xs ys \rightarrow letp (tagn, p') n (t' tagn=Z case tagn of { $Z \rightarrow$ case tagxs of { Nil \rightarrow ys } n = (S,n') n+m = (S,n'+m)

> $S \rightarrow case tagxs of {$ $Cons \rightarrow (Cons, append n'm xs'ys)}$

CONSTRAINTS

• Case analysis for simple types:

 $\frac{\Gamma \vdash e : \{l_1, \dots, l_n\} \qquad \Gamma \vdash t_i : T}{\Gamma \vdash \mathsf{case} \ e \ \mathsf{of}\{\dots | l_i \to t_i | \dots\} : T}$

• Case analysis with constraints:

$$\frac{\Gamma \vdash e : \{l_1, \dots, l_n\}}{\Gamma \vdash \mathsf{case} \ e \ \mathsf{of}\{\dots | l_i \to t_i | \dots\} : T}$$

EXAMPLES

So : {True, False} \rightarrow Type So = $\b \rightarrow$ case b of {True \rightarrow {Void} | False \rightarrow {}} reflNat : (n:Nat) \rightarrow So (eq n n). reflNat = $\ n \rightarrow$ letp(nl,n') = n incase nl of { $Z \rightarrow Void$ $| S \rightarrow reflNat n' \}$

So : {True, False} \rightarrow Type So = $\b \rightarrow$ case b of {True \rightarrow {Void} | False \rightarrow {}} reflNat : (n:Nat) \rightarrow So (eq n n) nl≡Z reflNat = $\ n \rightarrow$ SO letp(nl,n') = n in $eq n n \equiv {Void}$ case nl of { $Z \rightarrow Void$ $| S \rightarrow reflNat n' \}$

So : {True, False} \rightarrow Type So = $\b \rightarrow$ case b of {True \rightarrow {Void} | False \rightarrow {}} reflNat : (n:Nat) \rightarrow So (eq n n) nl≡Z reflNat = $\ n \rightarrow$ SO letp(nl,n') = n in $eq n n \equiv {Void}$ case nl of { $Z \rightarrow Void$ $| S \rightarrow reflNat n' \rangle$ nl≡S SO eq n n ≡ eq n' n'

filter : (A) \rightarrow (A \rightarrow Bool) \rightarrow List A \rightarrow List A. filter = ... all : (p : A \rightarrow Bool) \rightarrow List A \rightarrow Bool all = ...

 $prop : (A p) \rightarrow (as:List A) \rightarrow So (all A p (filter A p as))$ $prop = \langle A p as \rightarrow letp (tag, node) = as in$ $case tag of \{$ $Nil \rightarrow Void$ $Cons \rightarrow letp (a, as') = node in$ $case p a of \{$ $True \rightarrow prop A p as'$ $False \rightarrow prop A p as' \}\}$

filter : (A) \rightarrow (A \rightarrow Bool) \rightarrow List A \rightarrow List A. filter = ... all : (p : A \rightarrow Bool) \rightarrow List A \rightarrow Bool all = ...

prop : (A p) \rightarrow (as:List A) \rightarrow So (all A p (filter A p as)) prop = \ A p as \rightarrow letp case tag of { Nil \rightarrow Void Cons \rightarrow letp (a,as') = node in case p a of { True \rightarrow prop A p as' False \rightarrow prop A p as' }}

filter : (A) \rightarrow (A \rightarrow Bool) \rightarrow List A \rightarrow List A. filter = ... all : (p : A \rightarrow Bool) \rightarrow List A \rightarrow Bool all = ...

prop : (A p) \rightarrow (as:List A) \rightarrow So (all A p (filter A p as)) prop = \A p as \rightarrow letp case tag of { Nil \rightarrow Void Cons \rightarrow letp (a,a) case p a of { True \rightarrow prop A p as' False \rightarrow prop A p as' }}

PROTOTYPE

PROTOTYPE

- Some design choices:
 - Bidirectional type checking
 - Typed equality test
- Constraints:
 - rewrite rules applied to head of values
 - naive but works on examples

PROTOTYPE

- Implementing general recursion Can be difficult to restart evaluation when unfolding a definition.
- We glue together a neutral with its content

• We use laziness to postpone evaluation of v

FUTURE WORK

GENERAL CONSTRAINTS

• Add any constraint to the type checker Type "T if u and v are convertible"

$$\{u \equiv v\} \Rightarrow T$$

Type "T and I ensure that u and v are convertible" $\{T \mid u \equiv v\}$

• Encode equality type

 $eq u v = \{\{Void\} \mid u \equiv v\}$

GENERAL CONSTRAINTS

- What kind of constraints? It may be possible to include constraints between **constructors**, **tuples** and **neutral terms**.
- In a given context, all these are order 0 terms.

• For higher order, use an Observational Type Theory like equality.

GENERAL BOXES

- We protect recursion under cases
- We can add user specified **boxes** Specify not to unfold recursion in [t]
- Example: co-data

stream : $(A : Type) \rightarrow Type$ stream = $\setminus A \rightarrow l: \{Cons\}; A;$ case l of { Cons \rightarrow (stream A)-} zeros : stream Nat zeros = 0, [zeros]

[t] : T-

GENERAL BOXES

- To compute we need to open a box
 open [t] = t
- Our boxes are a special case :
 open (case e of { ... → [t]})
- Working with codata

tail : stream A \rightarrow stream A tail = \ xs \rightarrow letp (tag, node) = xs in case tag of {Cons \rightarrow letp (_, tl) = node in open tl }

MORE TO DO

- Integrate meta-variables. May have strange interaction with constraints.
- Reflection and generic programming.
- Phase separation and compiler.
- Evidence based optimization.