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Motivations

•Dependently typed languages

 (for programs and proofs)

e.g. CIC (Coq), Epigram, Agda, Cayenne ...

• Factor implementation into core language and 
high level language.

• Core language should be independent of your 
notion of totality.



Equation

         Haskell         DTP 

                             = 

                Fc(X)                      ?



Goals

• Small and simple

•Meta-theory feasible

• Batch compilation

• No interactive development necessary

• Yet sufficiently general



Design ideas



General Recursion

• Allow mutual recursive definitions

• Typing assumptions and recursive definitions 
may depend on each other.

• Syntax

     

 let { x : U
         x = u [x]
         y : V [x]
         y = v [x, y] } in t[x, y] 



General Recursion

• Allow mutual recursive definitions

• Typing assumptions and recursive definitions 
may depend on each other.

• Syntax

     

 let { x : U
         x = u [x]
         y : V [x]
         y = v [x, y] } in t[x, y] 

depends on x = u [x]



Universes

• General recursion makes the system logically 
inconsistent

• So we don’t lose anything by having

• This allows to simulate any universes hierarchy

Type : Type



Finite Types

• Set of labels is a type:

• Typing a label:

•  Case analysis:

{A,B,...} : Type

L : {..., L, ...}

case t of {
          A → ...
        | B → ...
        | C → ...} 

t :{A, B, C}



Π-Types

• Nothing really new here

•Π-types :

• Inhabited by functions:

•  Eliminated by application: 

(x : A) → B [x]

\ x → t [x]

f   t



Σ-Types

• A type for dependent pair:

• Introduce by pairing: 

• Elimination by a letp operator:

x : A; B [x]

(u, v)

letp (x,y) = p in t



Features Summary

• General recursion

• Very impredicative universe

• Finite type, Π-Types, Σ-Types

•We postpone equality types

• That’s all: simple but sufficient



Encoding
Complex

Types



Encoding Types
• Labeled sums:

• Recursive types:

Either : Type → Type → Type
Either = \ A B → tag : {Left, Right};
      case tag of {Left →A  | Right → B}

Nat : Type 
 Nat = tag : {Z, S} ; case tag of {
                       Z → {Void}
                     | S → Nat } 
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Encoding Types
• Labeled sums:

• Recursive types:

Either : Type → Type → Type
Either = \ A B → tag : {Left, Right};
      case tag of {Left →A  | Right → B}

Nat : Type 
 Nat = tag : {Z, S} ; case tag of {
                       Z → {Void}
                     | S → Nat } 

Unit Type

Recursion



Families of types
Vec : Type → Nat → Type

 Vec = \ A n → letp (tag, n’) = n in
       case tag of {
              Z → l:{Nil}; Void
           |  S  → l:{Cons}; A; Vec A n’}
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Nat is a pair



Families of types
Vec : Type → Nat → Type

 Vec = \ A n → letp (tag, n’) = n in
       case tag of {
              Z → l:{Nil}; Void
           |  S  → l:{Cons}; A; Vec A n’}

Remember
Nat is a pair

Fin : Nat → Type
 Fin = \ n → letp (tag, n’) = n in
    case tag of { Z → {}|S → l : {Z, S};
           case l of   {Z   → {Void} 
                S  → Fin n’}} 



DIY Equality

• Encoding equality of natural numbers:
Eq : Nat → Nat → Type

 Eq = \ n m → letp (ln, n’)    = n in 
                        letp (lm, m’) = m in 
   case ln of {
        Z → case lm of { Z → {Void} | S → { }}
     |  S  → case lm of { 
                  Z → { } 
                | S → Eq n’ m’ }



A Universe

 U : Type
  El : U → Type
  U = l:{u, pi} ; case l of {
            u → {Void}
            pi → a : U; El a → U}
  El = \ a → letp (l;node) = a in case l of {
              u  → A
              pi → letp (src, tgt) = node in 
                            (x : El src) → El (tgt x)



Main Issues



Main Issues

• Looping with general recursion

• Pattern matching 



Looping

• General recursion makes type checking 
undecidable

• Type checker may loop because a term 
doesn’t terminate

• Requirement: type checker should not loop 
for reasonable programs.



Looping: Idea

•We sometimes put a box around a part of the 
context:

• A recursive definition can only be used when 
not in a box

Γ, [Γ′],Γ′′ ! t : T

. . . , f → u, . . . " f ≡ u



Boxes: When?

•We want to prevent looping of a definition

•We need to box recursive calls of a function

•We do this by putting a box on the context 
when we meet a case

fact = \ n → … case tag of  
                              Z → fact n’ …       

. . .[Γ] ! bi : T

Γ ! case e of {Li → bi, . . .} : T
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Boxes: When?

•We want to prevent looping of a definition

•We need to box recursive calls of a function

•We do this by putting a box on the context 
when we meet a case

fact = \ n → … case tag of  
                              Z → fact n’ …       

unfolds to:
case …
fact n’

unfolds to:
case …
fact n’

. . .[Γ] ! bi : T

Γ ! case e of {Li → bi, . . .} : T



boxes and 
Computations

•We need to do some computations

•  What happens here?

• Reduction occurs when there is no stuck 
elimination

2+2 ≅ 4

…case S of { S → (S, n’ + m) …

(S, n’ + m)



boxes and 
Computations

•We need to do some computations

•  What happens here?

• Reduction occurs when there is no stuck 
elimination

2+2 ≅ 4

…case S of { S → (S, n’ + m) …

(S, n’ + m)

no case
hence no box



Pattern Matching

• Agda: Pattern matching primitive

• Epigram: Generating motives for standard 
eliminators.

• Coq: Under discussion

•Our proposal: use of constraints
Advantages: local case (with) is easy
less complexity in the translation



Example
append :: (n m) → Vect n → Vect m → Vect (n + m)

 append = \ n m xs ys → letp (tagn, n’)    = n
                                                (tagxs, xs’) = xs in
       case tagn of {
                 Z → case tagxs of {
                                Nil    → ys }

                 S → case tagxs of {                                
                                Cons→ (Cons, append n’ m xs’ ys)}
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Example
append :: (n m) → Vect n → Vect m → Vect (n + m)

 append = \ n m xs ys → letp (tagn, n’)    = n
                                                (tagxs, xs’) = xs in
       case tagn of {
                 Z → case tagxs of {
                                Nil    → ys }

                 S → case tagxs of {                                
                                Cons→ (Cons, append n’ m xs’ ys)}
      

tagn≡Z 
so

n+m ≡ m

n ≡ (S,n’)
n+m ≡ (S,n’+m)



Constraints

• Case analysis for simple types:

• Case analysis with constraints:

Γ ! e : {l1, . . . , ln} Γ ! ti : T

Γ ! case e of{. . . |li → ti| . . .} : T

Γ ! e : {l1, . . . , ln} Γ, e ≡ li ! ti : T

Γ ! case e of{. . . |li → ti| . . .} : T



Examples
So : {True, False} → Type

 So = \ b →  case b of {True → {Void} | False → {}}

 reflNat : (n:Nat) → So (eq n n).
 reflNat = \ n  → 
               letp (nl,n') = n in
                           case nl of {
                                Z → Void
                             |  S → reflNat n' }
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Examples
So : {True, False} → Type

 So = \ b →  case b of {True → {Void} | False → {}}

 reflNat : (n:Nat) → So (eq n n).
 reflNat = \ n  → 
               letp (nl,n') = n in
                           case nl of {
                                Z → Void
                             |  S → reflNat n' }

nl≡Z 
so

eq n n ≡ {Void}

nl≡S 
so

eq n n ≡ eq n’  n’



Examples
filter : (A) → (A → Bool) → List A → List A.

 filter = …
 all : (p : A → Bool) → List A → Bool
 all = …

 prop : (A p) → (as:List A) → So (all A p  (filter A p as))
 prop = \ A p as → letp (tag,node) = as in
    case tag of {
               Nil → Void
               Cons → letp (a,as’) = node in
                    case p a of {
                     True →  prop A p as’ 
                     False → prop A p as’ }}
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Examples
filter : (A) → (A → Bool) → List A → List A.

 filter = …
 all : (p : A → Bool) → List A → Bool
 all = …

 prop : (A p) → (as:List A) → So (all A p  (filter A p as))
 prop = \ A p as → letp (tag,node) = as in
    case tag of {
               Nil → Void
               Cons → letp (a,as’) = node in
                    case p a of {
                     True →  prop A p as’ 
                     False → prop A p as’ }}

So True

p a ≡ True so 
all (filter a:as’) ≡ all (filter as’)



Prototype



Prototype

• Some design choices:

• Bidirectional type checking

• Typed equality test

• Constraints: 

• rewrite rules applied to head of values

• naive but works on examples



Prototype

• Implementing general recursion
Can be difficult to restart evaluation when 
unfolding a definition.

•We glue together a neutral  with its content

•We use laziness to postpone evaluation of v 

x t … [:= v]



Future Work



General Constraints

• Add any constraint to the type checker
 Type “T if u and v are convertible”

Type “T and I ensure that u and v are 
convertible”

• Encode equality type

{T | u ≡ v}

{u ≡ v} ⇒ T

eq u v = {{Void} | u ≡ v}



General constraints

•What kind of constraints?
It may be possible to include constraints 
between constructors, tuples and neutral 
terms.

• In a given context, all these are order 0 terms.

• For higher order, use an Observational Type 
Theory like equality.



General Boxes

•We protect recursion under cases

•We can add user specified boxes
Specify not to unfold recursion in [t]

•  Example: co-data

stream : (A : Type) → Type
 stream =  \ A →  l:{Cons}; A;
           case l of { Cons → (stream A)-}
 zeros : stream Nat
 zeros = 0, [ zeros ]

[t] : T-



General Boxes
• To compute we need to open a box

  open [ t ] ≡ t

•Our boxes are a special case :
 open (case e of { … → [ t ]})

•Working with codata

tail : stream A → stream A
 tail = \ xs → letp (tag, node) = xs in

    case tag  of 
        {Cons → letp (_, tl) = node in
                                 open tl }



More to do

• Integrate meta-variables. 
May have strange interaction with constraints.

• Reflection and generic programming.

• Phase separation and compiler.

• Evidence based optimization.


