A CORE LANGUAGE

FOR
 DEPENDENTLY
 TYPED

PROGRAMMING

THORSTEN ALTENKIRCH NI COLAS OUR Y UNIVERSITY OF NOTTINGHAM

MOTIVATIONS

- Dependently typed languages
(for programs and proofs)
e.g. CIC (Coq), Epigram, Agda, Cayenne ...
- Factor implementation into core language and high level language.
- Core language should be independent of your notion of totality.

EQUATION

Haskell DTP

$\mathrm{Fc}(\mathrm{X})$
?

GOALS

- Small and simple
- Meta-theory feasible
- Batch compilation
- No interactive development necessary
- Yet sufficiently general

DESIGN IDEAS

GENERAL RECURSION

- Allow mutual recursive definitions
- Typing assumptions and recursive definitions may depend on each other.
- Syntax

$$
\text { let } \begin{aligned}
\{x & : U \\
& x=u[x] \\
& y: V[x] \\
y & =v[x, y]\} \text { in } t[x, y]
\end{aligned}
$$

GENERAL RECURSION

- Allow mutual recursive definitions
- Typing assumptions and recursive definitions may depend on each other.
- Syntax

$$
\text { let } \begin{aligned}
\{x & : U \\
& x=u[x] \\
& y: V[x] \\
& y=v[x, y]\} \text { in } t[x, y]
\end{aligned}
$$

UNIVERSES

- General recursion makes the system logically inconsistent
- So we don't lose anything by having
Type : Type
- This allows to simulate any universes hierarchy

Finite Types

- Set of labels is a type: $\{A, B, \ldots\}$: Type
- Typing a label:

$$
L:\{\ldots, L, \ldots\}
$$

- Case analysis:
case t of \{

$$
t:\{A, B, C\}
$$

$$
\begin{gathered}
\mathrm{A} \rightarrow \ldots \\
\mid \mathrm{B} \rightarrow \ldots \\
\mid \mathrm{C} \rightarrow \ldots\}
\end{gathered}
$$

П-Types

- Nothing really new here
- П-types :

$$
(\mathrm{x}: \mathrm{A}) \rightarrow \mathrm{B}[\mathrm{x}]
$$

- Inhabited by functions: $\backslash \mathrm{x} \rightarrow \mathrm{t}[\mathrm{x}]$
- Eliminated by application:

Σ-Types

- A type for dependent pair:

$$
\mathrm{x}: \mathrm{A} ; \mathrm{B}[\mathrm{x}]
$$

- Introduce by pairing:
(u, v)
- Elimination by a letp operator:

$$
\text { letp }(x, y)=p \text { in } t
$$

FEATURES SUMMARY

- General recursion
- Very impredicative universe
- Finite type, П-Types, Σ-Types
- We postpone equality types
- That's all: simple but sufficient

ENCODING COMPLEX TYPES

ENCODING TYPES

- Labeled sums:

Either : Type \rightarrow Type \rightarrow Type
Either $=\backslash \mathrm{AB} \rightarrow$ tag : $\{$ Left, Right $\}$;
case tag of $\{$ Left $\rightarrow \mathrm{A} \mid$ Right $\rightarrow \mathrm{B}\}$

- Recursive types:

Nat: Type
Nat $=\operatorname{tag}:\{Z, S\}$; case tag of $\{$

$$
\begin{aligned}
\mathrm{Z} & \rightarrow\{\text { Void }\} \\
\mid \mathrm{S} & \rightarrow \text { Nat }\}
\end{aligned}
$$

ENCODING TYPES

- Labeled sums:

Either: Type \rightarrow Type \rightarrow Type
Either $=\backslash \mathrm{AB} \rightarrow$ tag : $\{$ Left, Right $\}$;
case tag of $\{$ Left $\rightarrow \mathrm{A} \mid$ Right $\rightarrow \mathrm{B}\}$
-Recursive types:
Nat: Type
Nat $=\operatorname{tag}:\{Z, S\}$; case tag
Unit Type
$Z \rightarrow\{$ Void $\}$
$\mid S \rightarrow$ Nat $\}$

ENCODING TYPES

- Labeled sums:

Either: Type \rightarrow Type \rightarrow Type
Either $=\backslash$ A B \rightarrow tag : $\{$ Left, Right $\}$;
case tag of $\{$ Left $\rightarrow \mathrm{A} \mid$ Right $\rightarrow \mathrm{B}\}$

- Recursive types:

Nat: Type
Nat $=\operatorname{tag}:\{Z, S\}$; case tag

Unit Type

$$
Z \rightarrow\{\text { Void }\}
$$

$$
\mid S \rightarrow \text { Nat } \mid
$$

Recursion

FAMILIES OF TYPES

Vec : Type \rightarrow Nat \rightarrow Type
Vec $=\backslash \mathrm{A} \mathrm{n} \rightarrow$ letp $\left(\mathrm{tag}, \mathrm{n}^{\prime}\right)=\mathrm{n}$ in
case tag of \{

$$
\begin{aligned}
Z & \rightarrow 1:\{\text { Nil }\} ; \text { Void } \\
& S \rightarrow 1:\{\text { Cons }\} ; \text { A; Vec A n'\}}
\end{aligned}
$$

FAMILIES OF $\begin{gathered}\text { Remember } \\ \text { Nat is a pair }\end{gathered}$
 Vec : Type \rightarrow Nat \rightarrow Type

Vec $=\backslash \mathrm{A} n \rightarrow$ letp $\left(\right.$ tag, $\left.\mathrm{n}^{\prime}\right)=\mathrm{n}$ in
case tag of \{

$$
\begin{aligned}
& \mathrm{Z} \rightarrow \mathrm{l}:\{\text { Nil }\} ; \text { Void } \\
& \left.\mid \mathrm{S} \rightarrow \mathrm{I}:\{\text { Cons }\} ; \mathrm{A} ; \text { Vec A n }{ }^{\prime}\right\}
\end{aligned}
$$

FAMILIES OF

Remember Nat is a pair
Vec : Type \rightarrow Nat \rightarrow Type
Vec $=\backslash \mathrm{A} \mathrm{n} \rightarrow$ letp $\left(\mathrm{tag}, \mathrm{n}^{\prime}\right)=\mathrm{n}$ in
case tag of $\{$

$$
\begin{aligned}
& Z \rightarrow 1:\{\text { Nil }\} ; \text { Void } \\
& \\
& S \rightarrow 1:\{\text { Cons }\} ; \text { A; Vec A n'\}}
\end{aligned}
$$

Fin : Nat \rightarrow Type
Fin $=\backslash n \rightarrow$ letp (tag, n^{\prime}) $=n$ in
case tag of $\{Z \rightarrow\} \mid S \rightarrow 1:\{Z, S\}$; case 1 of $\{Z \rightarrow\{$ Void $\}$ $S \rightarrow$ Fin n'\}\}

DIY EQUALITY

- Encoding equality of natural numbers:

$$
\begin{aligned}
\mathrm{Eq}: & \text { Nat } \rightarrow \text { Nat } \rightarrow \text { Type } \\
\mathrm{Eq}= & \text { \n m } \rightarrow \\
& \text { letp }\left(\ln , \mathrm{n}^{\prime}\right)=\mathrm{n} \text { in } \\
& \text { letp }\left(\mathrm{lm}, \mathrm{~m}^{\prime}\right)=\mathrm{m} \text { in }
\end{aligned}
$$

case \ln of $\{$

$$
Z \rightarrow \text { case } \operatorname{lm} \text { of }\{Z \rightarrow\{\text { Void }\} \mid S \rightarrow\{ \}\}
$$

| $\mathrm{S} \rightarrow$ case lm of \{

$$
\begin{aligned}
& Z \rightarrow\} \\
&\left.\mid S \rightarrow E q n^{\prime} m^{\prime}\right\}
\end{aligned}
$$

A UNIVERSE

U: Type

El: U \rightarrow Type
$\mathrm{U}=\mathrm{l}:\{\mathrm{u}, \mathrm{pi}\}$; case l of $\{$

$$
u \rightarrow\{\text { Void }\}
$$

$$
\mathrm{pi} \rightarrow \mathrm{a}: \mathrm{U} ; \mathrm{Ela} \rightarrow \mathrm{U}\}
$$

$$
\mathrm{El}=\backslash \mathrm{a} \rightarrow \operatorname{letp}(1 ; \text { node })=\mathrm{a} \text { in case } \mathrm{l} \text { of }\{
$$

$$
\begin{aligned}
& \mathrm{u} \rightarrow \mathrm{~A} \\
& \text { pi } \rightarrow \text { letp }(\operatorname{src}, \operatorname{tg} t)=\text { node in } \\
& (x: E l s c c) \rightarrow E l(\operatorname{tgt} x)
\end{aligned}
$$

MAIN ISSUES

MAIN ISSUES

- Looping with general recursion
- Pattern matching

LOOPING

- General recursion makes type checking undecidable
- Type checker may loop because a term doesn't terminate
- Requirement: type checker should not loop for reasonable programs.

LOOPING: IDEA

- We sometimes put a box around a part of the context:

$$
\Gamma,\left[\Gamma^{\prime}\right], \Gamma^{\prime \prime} \vdash t: T
$$

- A recursive definition can only be used when not in a box

$$
\ldots, f \rightarrow u, \ldots \vdash f \equiv u
$$

BOXES: WHEN?

- We want to prevent looping of a definition

$$
\text { fact }=\backslash n \rightarrow \ldots \text { case tag of }
$$

$$
Z \rightarrow \text { fact } n^{\prime} \ldots
$$

- We need to box recursive calls of a function
- We do this by putting a box on the context when we meet a case

$$
[\Gamma] \vdash b_{i}: T
$$

$$
\Gamma \vdash \text { case } e \text { of }\left\{L_{i} \rightarrow b_{i}, \ldots\right\}: T
$$

BOXES: WHEN?

- We want to prevent looping of a fact $=\backslash n \rightarrow \ldots$ case tag of
unfolds to: case ...
- We need to box recursive calls of a function
- We do this by putting a box on the context when we meet a case

$$
[\Gamma] \vdash b_{i}: T
$$

$$
\Gamma \vdash \text { case } e \text { of }\left\{L_{i} \rightarrow b_{i}, \ldots\right\}: T
$$

- We want to prevent lod

$$
\text { fact }=\backslash n \rightarrow \ldots \text { case tag of }
$$

$$
Z \rightarrow \text { fact } n
$$

- We need to box recursive calls of a function
- We do this by putting a box on the context when we meet a case

$$
[\Gamma] \vdash b_{i}: T
$$

$$
\Gamma \vdash \text { case } e \text { of }\left\{L_{i} \rightarrow b_{i}, \ldots\right\}: T
$$

BOXES AND COMPUTATIONS

- We need to do some computations

$$
2+2 \cong 4
$$

- What happens here?

$$
\ldots \text { case } S \text { of }\left\{S \rightarrow\left(S, n^{\prime}+m\right) \ldots\right.
$$

$$
\left(\mathrm{S}, \mathrm{n}^{\prime}+\mathrm{m}\right)
$$

- Reduction occurs when there is no stuck elimination

BOXES AND COMPUTATIONS

- We need to do some computations

$$
2+2 \cong 4
$$

- What happens here?
no case
...case S of $\{\mathrm{S} \rightarrow$ hence no box

$$
\left(S, n^{\prime}+m\right)
$$

- Reduction occurs when there is no stuck elimination

PATTERN MATCHING

- Agda: Pattern matching primitive
- Epigram: Generating motives for standard eliminators.
- Coq: Under discussion
- Our proposal: use of constraints Advantages: local case (with) is easy less complexity in the translation

EXAMPLE

append $::(\mathrm{n} m) \rightarrow$ Vect $\mathrm{n} \rightarrow$ Vect $\mathrm{m} \rightarrow \operatorname{Vect}(\mathrm{n}+\mathrm{m})$
append $=\backslash n \mathrm{~m}$ xs ys \rightarrow letp $\left(\right.$ tagn, $\left.\mathrm{n}^{\prime}\right)=\mathrm{n}$ (tagxs, $\left.x s^{\prime}\right)=x s$ in
case tagn of \{
$Z \rightarrow$ case tagxs of $\{$
$\mathrm{Nil} \rightarrow \mathrm{ys}\}$
$S \rightarrow$ case tagxs of $\{$
Cons \rightarrow (Cons, append n'm xs'ys) $\}$

EXAMPLE

append $::(\mathrm{n} m) \rightarrow \operatorname{Vect} \mathrm{n} \rightarrow \operatorname{Vect} \mathrm{m} \rightarrow \operatorname{Vect}(\mathrm{n}+\mathrm{m})$
append $=\backslash n \mathrm{~m}$ xs ys \rightarrow letp (tagn. n'
case tagn of \{

$$
\text { (t) } \operatorname{tag} n \equiv Z
$$

$Z \rightarrow$ case tagxs of $\{\quad n+m \equiv m$
$\mathrm{Nil} \rightarrow \mathrm{ys}\}$
$S \rightarrow$ case tagxs of $\{$
Cons \rightarrow (Cons, append n'm xs' ys) $\}$

EXAMPLE

append $::(\mathrm{n} m) \rightarrow$ Vect $\mathrm{n} \rightarrow$ Vect $\mathrm{m} \rightarrow \operatorname{Vect}(\mathrm{n}+\mathrm{m})$
append $=\backslash n \mathrm{~m}$ xs ys \rightarrow letp (tagn. n' (t) tagn $\equiv \mathrm{Z}$
case tagn of \{
$Z \rightarrow$ case tagxs of $\{\quad n+m \equiv m$
$\mathrm{Nil} \rightarrow \mathrm{ys}\}$

$$
\begin{aligned}
\mathrm{n} & \equiv\left(\mathrm{~S}, \mathrm{n}^{\prime}\right) \\
\mathrm{n}+\mathrm{m} & \equiv\left(\mathrm{~S}, \mathrm{n}^{\prime}+\mathrm{m}\right)
\end{aligned}
$$

$S \rightarrow$ case tagxs of $\{$
Cons \rightarrow (Cons, append n'm xs' ys) $\}$

CONSTRAINTS

- Case analysis for simple types:

$$
\frac{\Gamma \vdash e:\left\{l_{1}, \ldots, l_{n}\right\} \quad \Gamma \vdash t_{i}: T}{\Gamma \vdash \text { case } e \text { of }\left\{\ldots\left|l_{i} \rightarrow t_{i}\right| \ldots\right\}: T}
$$

- Case analysis with constraints:

$$
\frac{\Gamma \vdash e:\left\{l_{1}, \ldots, l_{n}\right\} \quad \Gamma, e \equiv l_{i} \vdash t_{i}: T}{\Gamma \vdash \operatorname{case} e \text { of }\left\{\ldots\left|l_{i} \rightarrow t_{i}\right| \ldots\right\}: T}
$$

EXAMPLES

So : $\{$ True, False $\} \rightarrow$ Type
So $=\backslash \mathrm{b} \rightarrow$ case b of $\{$ True $\rightarrow\{$ Void $\} \mid$ False $\rightarrow\}\}$
reflNat: $(\mathrm{n}: \mathrm{Nat}) \rightarrow$ So (eq $\mathrm{n} n$).
reflNat $=\backslash n \rightarrow$

$$
\text { letp }\left(\mathrm{nl}, \mathrm{n}^{\prime}\right)=\mathrm{n} \text { in }
$$

case nl of $\{$

$$
\begin{aligned}
\mathrm{Z} & \rightarrow \text { Void } \\
\mid \mathrm{S} & \left.\rightarrow \text { reflNat } n^{\prime}\right\}
\end{aligned}
$$

EXAMPLES

So : $\{$ True, False $\} \rightarrow$ Type
So $=\backslash \mathrm{b} \rightarrow$ case b of $\{$ True $\rightarrow\{$ Void $\} \mid$ False $\rightarrow\}\}$

$$
\begin{aligned}
& \text { reflNat: }(\mathrm{n}: \text { Nat }) \rightarrow \text { So (eq } n \mathrm{n}) \quad \mathrm{nl} \equiv \mathrm{Z} \\
& \text { reflNat }=\backslash \mathrm{n} \rightarrow \\
& \text { letp }\left(\mathrm{nl}, \mathrm{n}^{\prime}\right)=\mathrm{n} \text { in } \quad \text { so } \\
& \text { case } n l \text { of }\{ \\
& Z \\
& \text { eq } n \mathrm{n} \equiv\{\text { Void }\} \\
& \mid S \rightarrow \text { Void }
\end{aligned}
$$

EXAMPLES

So : $\{$ True, False $\} \rightarrow$ Type
So $=\backslash \mathrm{b} \rightarrow$ case b of $\{$ True $\rightarrow\{$ Void $\} \mid$ False $\rightarrow\}\}$

$$
\begin{aligned}
& \text { reflNat : }(\mathrm{n}: \mathrm{Nat}) \rightarrow \text { So (eq n n) } \quad \mathrm{nl} \equiv \mathrm{Z} \\
& \text { reflNat }=\backslash n \rightarrow \\
& \text { letp }\left(\mathrm{nl}, \mathrm{n}^{\prime}\right)=\mathrm{n} \text { in } \\
& \text { SO } \\
& \text { eq } \mathrm{n} \mathrm{n} \equiv\{\text { Void }\} \\
& \text { case } \mathrm{nl} \text { of }\{ \\
& Z \rightarrow \text { Void } \\
& \left.\mid \mathrm{S} \rightarrow \text { reflNat } \mathrm{n}^{\prime}\right\rangle \quad \mathrm{nl} \equiv \mathrm{~S} \\
& \text { SO }
\end{aligned}
$$

EXAMPLES

filter $:(\mathrm{A}) \rightarrow(\mathrm{A} \rightarrow$ Bool $) \rightarrow$ List $\mathrm{A} \rightarrow$ List A .
filter $=\ldots$
all $:(\mathrm{p}: \mathrm{A} \rightarrow$ Bool $) \rightarrow$ List $\mathrm{A} \rightarrow$ Bool all $=\ldots$
prop : $(\mathrm{Ap}) \rightarrow($ as:List $A) \rightarrow$ So (all A p (filter A p as)) prop $=\backslash \mathrm{A} p$ as \rightarrow letp (tag,node) $=$ as in case tag of \{

Nil \rightarrow Void
Cons \rightarrow letp $\left(\mathrm{a}, \mathrm{as}^{\prime}\right)=$ node in
case p a of \{
True \rightarrow prop A p as'
False \rightarrow prop A p as' $\}\}$

EXAMPLES

filter $:(\mathrm{A}) \rightarrow(\mathrm{A} \rightarrow$ Dol $) \rightarrow$ List $\mathrm{A} \rightarrow$ List A .
filter $=\ldots$
all $:(\mathrm{p}: \mathrm{A} \rightarrow$ Boor $) \rightarrow$ List $\mathrm{A} \rightarrow$ Bool all = ...
prop $:(A p) \rightarrow($ as: List A) \rightarrow So (all Ap (filter A p as))
prop $=\backslash A$ p as \rightarrow lett \quad as in case tag of \{

So True

Nil \rightarrow Void
Cons \rightarrow lets ($\mathrm{a}, \mathrm{as} \mathbf{s}^{\prime}$) = node in
case p a of \{

$$
\begin{aligned}
& \text { True } \rightarrow \text { prop A p as' } \\
& \text { False } \rightarrow \text { prop A p as' }\}\}
\end{aligned}
$$

EXAMPLES

filter $:(\mathrm{A}) \rightarrow(\mathrm{A} \rightarrow$ Boor $) \rightarrow$ List $\mathrm{A} \rightarrow$ List A .
filter $=\ldots$
all $:(\mathrm{p}: \mathrm{A} \rightarrow$ Boor $) \rightarrow$ List $\mathrm{A} \rightarrow$ Bool
all = ...
prop $:(A p) \rightarrow($ as:List A) \rightarrow So (all Ap (filter A p as))
prop $=\backslash \mathrm{A} p$ as \rightarrow lett \quad as in case tag of \{

So True

 case p a of \{$$
\begin{aligned}
& \text { True } \rightarrow \text { prop A pas' } \\
& \text { False } \rightarrow \text { prop Ap as' }\}\}
\end{aligned}
$$

PROTOTYPE

PROTOTYPE

- Some design choices:
- Bidirectional type checking
- Typed equality test
- Constraints:
- rewrite rules applied to head of values
- naive but works on examples

PROTOTYPE

- Implementing general recursion

Can be difficult to restart evaluation when unfolding a definition.

- We glue together a neutral with its content

$$
\mathrm{xt} \ldots[:=\mathrm{v}]
$$

- We use laziness to postpone evaluation of \mathbf{v}

FUTURE WORK

GENERAL CONSTRAINTS

- Add any constraint to the type checker Type "T if u and v are convertible"

$$
\{u \equiv \mathrm{v}\} \Rightarrow \mathrm{T}
$$

Type " T and I ensure that u and v are convertible"

$$
\{T \mid u \equiv v\}
$$

- Encode equality type

$$
\text { eq } u v=\{\{\text { Void }\} \mid \mathrm{u} \equiv \mathrm{v}\}
$$

GENERAL CONSTRAINTS

- What kind of constraints?

It may be possible to include constraints between constructors, tuples and neutral terms.

- In a given context, all these are order 0 terms.
- For higher order, use an Observational Type Theory like equality.

GENERAL BOXES

- We protect recursion under cases
- We can add user specified boxes Specify not to unfold recursion in [t]
- Example: co-data

$[\mathrm{t}]$: T -

$$
\begin{aligned}
& \text { stream : }(A: \text { Type }) \rightarrow \text { Type } \\
& \text { stream }=\backslash A \rightarrow 1:\{\text { Cons }\} ; A ; \\
& \quad \text { case } l \text { of }\{\text { Cons } \rightarrow(\text { stream } A)-\} \\
& \text { zeros }: \text { stream Nat } \\
& \text { zeros }=0,[\text { zeros }]
\end{aligned}
$$

GENERAL BOXES

- To compute we need to open a box open [t] $\equiv \mathrm{t}$
- Our boxes are a special case : open (case e of $\{\ldots \rightarrow[t]\}$)
- Working with codata
tail : stream $A \rightarrow$ stream A
tail $=\backslash x s \rightarrow$ letp $($ tag, node $)=x s$ in case tag of

$$
\begin{gathered}
\left\{\text { Cons } \rightarrow \text { letp } \left(\begin{array}{c}
(, t l)=\text { node in } \\
\text { open } t l\}
\end{array}\right.\right.
\end{gathered}
$$

MORE TO DO

- Integrate meta-variables.

May have strange interaction with constraints.

- Reflection and generic programming.
- Phase separation and compiler.
- Evidence based optimization.

